Quantitative and Qualitative

Extensions of
Event Structures

Joost-Pieter Katoen

(&

CTIT Ph. D-thesis series No. 96-09 Centre for
Telematics and

P.O. Box 217 - 7500 AE Enschede - The Netherlands Information
telephone +31-53-4893779 / fax +31-53-4893247 Technology

Promotiecommissie:

prof. dr. W.E. van der Linden (voorzitter)

prof. dr. ir. C.A. Vissers (promotor)

prof. dr. H. Brinksma (promotor)

dr. ir. A. Rensink (referent, Universitdt Hildesheim)

prof. dr. U. Herzog (Universitdt Erlangen-Niirnberg)

prof. dr. M. Rem (Technische Universiteit Eindhoven)

prof. dr. F.W. Vaandrager (Katholieke Universiteit Nijmegen)
prof. dr. ir. Th. Krol

dr. L. Ferreira Pires, M.Sc.

Druk: Ponsen & Looijen, Wageningen
Copyright (© 1996 by J.-P. Katoen, Hengelo, The Netherlands

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Katoen, Joost-Pieter

Quantitative and qualitative extensions of event
structures / Joost-Pieter Katoen. - Enschede : Centre for
Telematics and Information Tenchnology. — Ill. — (CTIT
Ph. D-thesis series, ISSN 1381-3617 ; 96-09)

Proefschrift Universiteit Twente, Enschede. - Met index,
lit. opg.

ISBN 90-365-0799-5

Trefw.: procesalgebra / systeemontwerp.

QUANTITATIVE AND QUALITATIVE
EXTENSIONS OF
EVENT STRUCTURES

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit T'wente,
op gezag van de rector magnificus,
prof.dr. Th.J.A. Popma,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen op
donderdag 18 april 1996 te 15.00 uur.

DOOR

Joost-Pieter Katoen
geboren op 6 oktober 1964

te Krimpen aan den I[Jssel

Dit proefschrift is goedgekeurd door de promotores:

prof. dr. ir. C.A. Vissers
prof. dr. H. Brinksma

Acknowledgements

In 1987 I had the privilege to work for about 7 months at Philips Research Laboratories. Under
the supervision of Pierre Jansen and Lex Augusteijn a simulator for a parallel computer was
built. From then on I was captured by the phenomenon ‘concurrency’.

To enlarge my practical background with some theoretical insights I spent two years as a ‘twaio’
at Eindhoven University of Technology. Martin Rem, together with Rob Hoogerwoord, learned
me to appreciate a formal attitude to the design of programs, including concurrent ones. The
spontaneously introduced HG 7.37 sessions with my roommates Berry Schoenmakers, Pieter
Struik and Wim Kloosterhuis made it all work: besides the consumption of ‘Bossche bollen’
my interest for theory and its application(s) increased.

Back at Philips Research, I worked on the engineering and performance analysis of communi-
cation protocols, an exciting application field in which concurrency (again) plays a prominent
role. Together with Marnix Vlot I worked on the definition of a (standard) communication
system for various types of equipment in domestic environments, while having a great time in
sharing a room with another ‘sport-en-in-het-bijzonder-Tour-gek’, Frans Sijstermans.

In the spring of 1992 I started to work under the supervision of Chris Vissers at the University
of Twente. Due to the freedom he created to perform research in a pleasant and stimulating
environment I was able to work on several fascinating subjects during the last four years.
His comments on earlier versions of this dissertation, his view on conceptual issues, and our
discussions about the relationship between formal methods and (basic) architectural concepts
have been a continuous inspiration and have taught me very much. I also like to thank my
other promotor, Ed Brinksma, for sharing his creativity, enthusiasm, and knowledge about
concurrency and formal methods. With a small amount of information he was able to give me
the right hints at the right moment to overcome technical problems. His active contributions
to several parts of this dissertation are greatfully acknowledged.

This dissertation would not have its current state without the cooperation with Rom Langerak
and Diego Latella. The many sessions we had together were the basis for most of the material
conducted in this dissertation. Their enthusiasm, detailed comments on draft chapters, and
constructive attitude were invaluable; this includes the many nice Italian dinners and lunches
(even those in Castelleto) and trips to various exotic places like Barga, San Miniato, Lucca and
Buti. I hope we will continue our friendship and our professional cooperation. In this respect I
also like to thank Mieke Massink, Tommaso Bolognesi, Stefania Ciompi, and Maurizio Caneve
for their hospitality and friendship.

Then I would like to thank my referent, Arend Rensink. His comments and recommendations
have strongly improved this dissertation. Our 3-day session in Hildesheim was, despite catch-
ing a cold, very fruitful and constructive. Various colleagues have read parts of my dissertation;
Pedro d’Argenio, Lex Heerink, Jan Tretmans and Luis Ferreira Pires are kindly acknowledged
for their effort and comments. Boudewijn Haverkort and Victor Nicola are thanked for discus-
sions and suggestions concerning Chapter 8. Furthermore, I like to thank some of the many

ii Acknowledgements

people with which I had the pleasure to cooperate during the last years: Jakob Brunekreef,
Wouter van den Broek, Robert Huis in 't Veld, Ron Koymans, Harro Kremer, Sjouke Mauw
and (last but not least) Albert Nymeyer.

To conclude T would like to thank my family, other friends, and relatives. In particular I like
to thank my parents Joost and Korrie Katoen for supporting me during my study and work,
and for their love and understanding. Unfortunately, they are not privileged to be a witness
of this milestone. Finally my grateful thanks go to my wife Erna for her never-ceasing support
and understanding, and for reminding me together with our son Joost, that life encompasses
much more than writing a dissertation.

Summary

An important application of formal methods is the specification, design, and analysis of func-
tional aspects of (distributed) systems. Recently the study of quantitative aspects of such
systems based on formal methods has come into focus. Several extensions of formal meth-
ods where the occurrence of actions can be assigned a (fixed) probability and/or the time of
occurrence of actions can be constrained are known from the literature.

An important reason for enhancing formal methods with quantitative notions is to facilitate
the analysis of performance characteristics of system designs. In this way the efficiency of
design alternatives can be assessed such that in early design stages designs can be rejected
because of unsatisfactory performance characteristics, thus avoiding costly redesign at later
stages. A formal specification incorporating quantitative aspects can also be very useful for
establishing a well-understood and effective way of developing performance models, such as
Markov chains and queuing networks, from system specifications.

Quantitative extensions of formal methods that are based on interleaving of causally indepen-
dent actions have been amply investigated. Interleaving models abstract from the fact that a
system is actually composed of a set of (partly) independent subsystems. The global system
state is considered without due regard of its distributed nature. The system’s behaviour is
modelled in terms of sequences of actions that are totally ordered by precedence and in which
actions of one independent subsystem are merged with actions of others.

This dissertation deals with quantitative and qualitative extensions of event structures, a
prominent branch of partial-order, or noninterleaving, models for concurrency. Example ex-
tensions are the incorporation of issues like time, both real-time and stochastic of nature,
urgency (timeouts), and probability. Nowadays the treatment of these concepts in noninter-
leaving models has only been scarcely addressed.

Noninterleaving models do not abstract from the fact that a system consists of a set of (partly)
independent subsystems. The notion of global state does not play a central role in these
models. The systems’ behaviour is modelled in terms of sequences of actions that are not
required to be totally ordered, but that are partially ordered. The causal dependencies between
actions are reflected in this partial order.

Interleaving and noninterleaving models are complementary in the system’s design process. In
this dissertation we basically deal with noninterleaving models, but also provide the ingredients
to obtain corresponding interleaving models. This facilitates the use of both types of models
in a coherent way and enables a comparison with existing approaches.

Starting points for this dissertation are
e cxtended bundle event structures, an adaptation of the traditional event structures of

Winskel to fit the specific requirements of multi-party synchronization and disruption,
and

iii

iv Summary

e process algebras, abstract description formalisms for distributed systems that consist of
powerful composition operators.

Extended bundle event structures consist of labelled events modelling occurrences of actions
(indicated by the labels), a bundle relation indicating the causal dependencies between events,
and an (asymmetric) conflict relation modelling exclusions between events. Event structures,
in particular extended bundle event structures, are treated in Chapter 2.

The bundle relation relates a set of events, the bundle set, to an event. The interpretation is
that one event in the bundle set must have happened in order to enable (or cause) the event
to which it is related. All events in a bundle set are required to be mutually in conflict such
that only one event in a bundle set can happen. By dropping this constraint more events in a
bundle set can happen and the expressivity is increased, i.e., so-called disjunctive causality is
supported. In Chapter 3 it is investigated how labelled partial orders (Iposets), which are used
in this dissertation as underlying semantical models for event structures, can be generated
when this constraint is dropped. This chapter also investigates useful transformations for the
resulting model that preserve equivalence in terms of lposets and considers the incorporation
of a symmetric irreflexive interleaving relation between events.

Event structures describe system behaviours by causal orderings (bundles) among events and
their branching structure (conflicts). To facilitate the specification of timing-based systems,
such as communication protocols, the concept of time is considered. Chapters 4, 6, and 7
treat the incorporation of time in extended bundle event structures. Real-time event struc-
tures associate a set of time instants to bundles, indicating relative time constraints between
causally dependent events, and to events, modelling absolute time constraints (Chapter 4 and
7). Urgent event structures allow for the specification of minimal time constraints only, but
incorporate urgent events, events that are forced to happen once they are enabled (Chapter
6). Urgent events are typically used to model timeouts. The generalization of deterministic
time towards time of a more dynamic stochastic nature is treated in Chapter 8. Stochas-
tic event structures attach distribution functions to bundles and events, rather than sets of
time instants. Finally, in Chapter 9 we consider the incorporation of probabilities in extended
bundle event structures. Probabilities are attached to events and quantify the likelihood of
appearance of events once they are enabled.

Event structures are well-suited to provide a noninterleaving semantics for process algebras
in a compositional way. That is, the interpretation of any composite behaviour expression
in the process algebra is defined as a function of the interpretation of its constituents. In
this dissertation we investigate whether the quantitative extensions of event structures can
be used to define a noninterleaving semantics to quantitative extensions of process algebras.
To that purpose we take the process algebra PA as a basis, which is in fact the international
standardized process algebra LOTOS with a somewhat more concise syntax. The principles
do, however, also apply to related process algebras like Milner’s CCS and Hoare’s CSP. For
each quantitative variant of PA the noninterleaving semantics of the plain process algebra PA
is tried to retain as much as possible, aiming at maximal backwards compatibility.

The quantitative extensions of process algebras that we consider are real-time variants that
incorporate timeout, watchdog and urgency operators, stochastic variants in which the oc-

Summary A\

currence times of actions is constrained by exponential, or the more general and practical,
phase-type distributions, and a probabilistic variant that contains an (internal) probabilistic
choice operator. For each variant a denotational semantics in terms of the corresponding
quantitative extension of extended bundle event structures is provided. This is performed in
a modular way such that combinations (like time and probability) can be made in a rather
straightforward way.

In addition, for most aforementioned process algebras an event-based operational semantics is
presented. This operational semantics keeps track of the occurrence of actions, rather than
the actions themselves (as usual in structured operational semantics), and provides a basis
for comparison with existing quantitative extensions of interleaving models. The operational
rules obtained for the real-time case are a novel (and minimal) extension to the untimed case;
for the urgent case the rules strongly resemble a proposal of Bolognesi, Lucidi and Trigila; for
the stochastic exponential case the rules resemble that of several existing stochastic process
algebras, and for the probabilistic case we obtain rules that are related (but simpler) to
work of Hansson and Jonsson. The relationship between these operational semantics and the
denotational semantics is thoroughly investigated.

The incorporation of recursion in all extensions of process algebras in this dissertation is treated
in Chapter 10. Using standard domain theory the denotational semantics of the quantitative
extensions of PA is extended in order to cover recursively defined processes. The same is done
for the event-based operational semantics. It is shown that the consistency results for the
finite case carry over to the recursive case.

Chapter 11 contains a retrospective view on the work presented in this dissertation, summa-
rizes the main technical results and provides some overall conclusions.

vi

Summary

Contents

Acknowledgements
Summary
Contents

1 Introduction
1.1 Introduction
1.2 Interleaving versus noninterleaving models
1.3 Integration of formal and quantitative methods
1.4 Process algebra e e e
1.5 Standard semantics and behavioural equivalences
1.6 The principles of event structures
1.7 Families of Iposets e
1.8 Synopsis o .o e

2 Extended bundle event structures
2.1 Imtroduction L
2.2 The realm of event structures L.
2.2.1 Prime event structures L oo
2.2.2 Stable event structures Lo Lo
2.2.3 Flow event structures Lo
2.2.4 Bundle event structures oo
2.3 Extended bundle event structureso
2.3.1 What are extended bundle event structures?
2.3.2 Familiesof Iposets
233 Remainder
2.3.4 Transformationrules
2.4 Causality-based semantics of PA L.

2.5 Event-based operational semantics for PA

vii

iii

vi

N Ot W N = =

viii Contents
3 Disjunctive causality and interleaving 41
3.1 Introduction e e e 41
3.2 Disjunctive causality 43
3.2.1 What are dual event structures? 44

3.2.2 Families of lposets 45

3.23 Remainder. e 52

3.2.4 Transformationrules 54

3.2.5 Expressiveness of dual event structures 57

3.3 Interleaving e e e e 61
3.4 Conclusions e e e 64

4 A simple timing module 65
4.1 Introduction L 65
4.2 Timed event structures e 66
4.2.1 What are timed event structures? 66

4.2.2 Timed event traces 68

4.2.3 A lattice of timed traces 70

4.2.4 Families of lposets Lo 73

4.2.5 Timed remainder 74

4.2.6 Some transformationrules oL, 7

4.3 A timed process algebra Lo L Lo 78
4.3.1 Syntax e e e e 78

4.3.2 Causality-based semantics L. 79

4.3.3 Syntactic conditions for simplificationo Lo 84

4.4 Conclusions i e e e e e e e e e e 86

5 Timed operational semantics 89
5.1 Introduction e e e 89
5.2 Event-based operational semantics for PAr oL 91
5.3 Correspondence with causality-based semantics 97
5.4 An alternative approach for PAr 103
5.5 Alternative timed event transition semantics 107
5.6 Model properties L 110
5.7 Related work e e 112

Contents ix
5.8 Conclusions e e e 112
6 The urgency module 115
6.1 Introduction e e e 115
6.2 Urgent event structures Lo 116
6.2.1 Timed event traces e 116
6.2.2 Families of lposetso 118
6.2.3 Urgent remaindero 120
6.3 A timed process algebra including urgency 123
6.3.1 Syntax 123
6.3.2 Causality-based semantics L. 124
6.3.3 Event-based operational semantics for PAyzo, 125
6.4 Is urgency captured faithfully? o 0. 129
6.5 Correspondence with causality-based semantics 134
6.5.1 Operational characterization of timed event traces 134
6.5.2 Denotational characterization of timed event traces 137
6.5.3 Consistency between causality-based and operational
semantics L e e e e e e 138
6.6 Related work 141
6.7 Conclusion e e e 142
7 The real-time module 143
7.1 Introduction e e e e 143
7.2 Real-time event structures L o 144
7.2.1 Timed event traces e e 145
7.2.2 Familiesof lposets L Lo 147
7.2.3 Real-time remainder e 148
7.2.4 Transformationrules, 150
7.3 A real-time process algebra. Lo oL 151
7.3.1 Syntax e 152
7.3.2 Causality-based semantics 153
7.3.3 Properties L 156
7.3.4 Event-based operational semantics for PAg 159

Contents

7.4
7.5

The
8.1
8.2

8.3

8.4

The
9.1
9.2

9.3

9.4
9.5

7.3.5 Consistency between causality-based and operational

semantics Lo
7.3.6 An alternative approach for PAp
Time in causality-based models

Conclusions v v v i e e e e e e e

stochastic timing module

Introduction L L
Simple stochastic event structures
821 Themodel
8.2.2 A simple stochastic process algebra
8.2.3 Event-based operational semantics for PAg
8.2.4 Related approaches L L.
Generalized stochastic event structures
83.1 Themodel
8.3.2 A generalized stochastic process algebra
8.3.3 PH-distributions o oL

Concluding remarks oo

probability module

Introduction Lo
Probabilistic event structures
9.2.1 What are probabilistic event structures?
9.2.2 Probabilistic remaindero
9.2.3 Probability measure on configurations.
A probabilistic process algebra 0oL
9.3.1 Syntax
9.3.2 Causality-based semantics
9.3.3 Properties
9.3.4 [Event-based operational semantics for PAp
Time and probability o o oL
Performance analysis—two examples
9.5.1 Discrete-time semi-Markov chains

9.5.2 An unreliable coffee machine

Contents xi
9.5.3 Illustrating locality L. 217
9.6 Related and further work 218
9.6.1 Nondeterminism, probabilistic choice and parallel
composition e e e 219
9.6.2 Related approaches 219
9.6.3 Reactive, generative, and stratified models 220
9.6.4 Compatibility with nonprobabilistic semantics 221
9.6.5 Further work 221
9.7 Conclusions e e e e 222
10 Recursion 225
10.1 Introduction L. e e e 225
10.2 Extended bundle event structures L. 227
10.2.1 A pointed complete partial order 227
10.2.2 A fixed point semantics Lo oo 230
10.3 Timed event structures e e 232
10.3.1 A pointed complete partial order 232
10.3.2 A fixed point semantics e 236
10.3.3 Event-based operational semantics 241
10.4 Urgent event structures L Lo 243
10.4.1 A pointed complete partialorder 244
10.4.2 A fixed point semantics L L e 249
10.4.3 Event-based operational semantics 252
10.5 Real-time event structures L. e 257
10.6 Stochastic event structures 258
10.7 Probabilistic event structures L. 259
10.7.1 A pointed complete partialorder 259
10.7.2 A fixed point semantics 260
10.7.3 Event-based operational semantics 263
10.8 Conclusions 0 i e e e e e e e e 263
11 Conclusion 265
11.1 Introduction L e e e e e e e 265
11.2 Originality« . o e e 265

xii Contents

11.3 Main technical achievements 266
11.4 Epilogue and further worko 268
A Stochastic processes 269
A1 Basic notions s, 269
A.2 Discrete-time Markov chains 271
A.3 Continuous-time Markov chains 273
B Domain theory 275
Bibliography 278
Glossary of notation 291
Index 295
Samenvatting 299

Curriculum Vitae 303

1 Introduction

“Abandonment of causality as a matter of principle
should be permitted only in the most extreme emergency”
ALBERT EINSTEIN, 1924!

This chapter highlights the main topics of this dissertation and sketches its
context. The chapter briefly introduces the aspects of using formal models
for concurrency in the design of distributed systems, and motivates the need
for integrated formal and quantitative methods to effectively support this
design process. The importance of the notion of causality for distributed
systems’ design is described. A synopsis is given of the contents of this
dissertation.

1.1 Introduction

Concurrency is a phenomenon that plays a prominent role in systems of different nature. In
fact, only a minority of the systems in real-life is purely sequential. The functionality in
communication systems such as the mobile telecommunication system GSM (Global System
for Mobile telecommunication) is distributed over several geographically separated subsystems,
each having its own functionality, and a VLSI chip comprises several components connected
via a network of on-chip wires.

Sequential computer systems have been extensively studied and a number of well-establish-
ed mathematical models that describe the behaviour of such systems have been developed.
These models usually describe a relation between input and output values and character-
ize behaviours as computations that evolve from an initial to a final state. For systems
whose functionality is distributed over subsystems interactions do not conform to this sim-
ple scheme—usually inputs to the system depend on previous system outputs—and typically
such systems are required not to terminate. Systems whose behaviour is characterized by their
interaction with the environment are often referred to as reactive systems.

During the last decade several models for concurrent systems have been (and still are being)
investigated. We confine ourselves to formal models for concurrency. Formal models for
concurrency have a mathematically sound basis which is used to specify and reason about
concurrent systems. Their main aim should be to effectively support the system design process,
where the design process consists of a sequence of specification and transformation phases.
For an overview of formal models for concurrency we refer to Winskel & Nielsen [156].

LA. Pais - ‘Subtle is the Lord....” — The science and the life of Albert Einstein. Oxford University Press,
1983.

2 Chapter 1: Introduction

The correct design of concurrent systems is known to be a complex task and is usually carried
out in a step-wise fashion, starting from a set of user requirements evolving towards a concrete
instance of the system via a sequence of design steps. Formal models can support this design
process in several ways. For instance, they allow to provide unambiguous specifications of
designs (within the constraints of the model at hand) and due to their mathematical basis
they enable to verify properties like absence of deadlocks and livelocks. In addition, based
on a formal notion of whether a design conforms to its specification the formal specification
can be used as a blueprint to generate correct tests for assessing this conformance relation.
Finally, we mention that formal models provide a basis for design transformations that given
a specification S generate a specification S’ by incorporating some design decisions, while
guaranteeing the correctness of this process (in terms of some formally defined relation).
Altogether this renders important benefits for reaching correctness during the design process.

1.2 Interleaving versus noninterleaving models

A main distinction between formal models for concurrency is that of interleaving versus nonin-
terleaving models. In interleaving models one abstracts from the fact that a system is actually
composed of a set of (partly) independent subsystems. They consider the global system state
without regarding its distributed nature. The system’s behaviour is modelled in terms of
sequences of actions that are totally ordered by precedence. Actions of one independent sub-
system are merged, or interleaved, with actions of others. Interleaving models allow for the
transformation of the parallel composition of finite subsystems into an equivalent specification
in which parallel composition (denoted |||) is replaced by alternative composition (denoted
+) and sequencing (denoted ;), e.g.,

alllb=a;b+b;a

This transformation—in its complete form known as the expansion theorem—eases the verifi-
cation process. A main shortcoming of interleaving models is that they do abstract from the
distribution and independence of subsystems and their actions. Well-known examples of inter-
leaving models for concurrency are (labelled) transition systems of Keller [84], synchronization
trees of Milner [103] and traces of Hoare [74].

Noninterleaving models do not abstract from the fact that a system consists of a set of (partly)
independent subsystems. The notion of global state does not play a central role in these
models. The systems’ behaviour is modelled in terms of sequences of actions that are not
required to be totally ordered, but that are only partially ordered. This partial order reflects
the causal dependencies between actions. Noninterleaving models are therefore also referred to
as partial-order or causality-based models.? Prominent examples of noninterleaving models for
concurrency are Petri nets, Reisig [125], event structures, Nielsen et al. [114], Mazurkiewicz
traces [101], asynchronous transition systems, Shields [137] and pomsets (partially ordered
multisets), Pratt [121].

2Terminology in the literature is not always clear; e.g., there are models for concurrency that are neither
interleaving nor causality based, such as ST-bisimulation of Van Glabbeek and Vaandrager [54].

Integration of formal and quantitative methods 3

There is sometimes a strong debate between advocates of interleaving and noninterleaving
models about the question ‘which model is better?’. It is doubtful whether this is the right
question to be answered. There are a lot of cases in which interleaving models impose the right
amount of abstraction, and the same applies to noninterleaving ones. When we want to reason
about, for instance, the observational behaviour of a system it is usually not so relevant to
take into account the fact that a system is composed of subsystems, but it suffices to consider
a system as a black box while ignoring this composition aspect. This applies, for instance,
to the field of conformance testing where usually (and often deliberately) no knowledge is
available about the internal structure of a system. Also in the realization phase of the design
trajectory when (part of) a specification has to be realized on a single processor, interleaving
models suffice. Finally, for verification purposes it has been proven by numerous case studies
that interleaving models are appropriate to prove important and interesting properties of
distributed systems.

Interleaving models are not that appropriate for design stages in which the distribution aspects
of the system play a prominent role. The global state assumption of interleaving models ham-
pers to faithfully model that a system consists of several co-operating subsystems at different
locations, each having its own local state. In these design stages the system is considered as
a white bor where the internal system structure prevails. In particular, if the specification
serves as a prescription for the system’s implementation rather than as a description of the
observational behaviour of a system, interleaving models become unattractive or even mis-
leading since the independence of actions is not reflected properly, see Vissers [147]. Also
for an important design technique, known as action refinement, where an abstract action is
implemented by a number of more concrete actions, it appears that noninterleaving models
are more appropriate.

We, therefore, believe that both models are legitimate and complementary in the design pro-
cess. Going from one design stage to another may therefore imply a transition from one
model for concurrency to another, and this might involve a change from an interleaving to a
causality-based model or vice versa. Of course, such transitions should be carried out in a
consistent way: there must be a strong (and formal) correspondence between the two models.

This dissertation deals with event structures, a prominent branch of noninterleaving models.
Although we mainly deal with noninterleaving models, we will provide the ingredients to
obtain consistent interleaving models such that both models can be used in a coherent way.

1.3 Integration of formal and quantitative methods

Originally, formal models concentrated on the specification, design and analysis of functional
aspects of distributed systems. This is not at all surprising as traditionally the design process
is carried out focusing entirely on the functional aspects without due regard of performance is-
sues. During the design trajectory quantitative modelling is often disregarded, and only in the
implementation (or realization) phase—or even worse, after finishing this phase—performance
aspects come into focus. As pointed out in Harvey [66] it is not unusual that a system is com-
pletely designed and tested for its conformance with respect to the functional specification

4 Chapter 1: Introduction

before any attempt is made to assess its performance characteristics. In case the finally ob-
tained design has unsatisfactory efficiency characteristics such an a posteriori performance
assessment may lead to a complete re-design or to the operation of the system with degraded
efficiency. From several perspectives this is not desirable.

Performance should therefore be considered as one of a number of design constraints and one
should aim at a close integration of performance modelling in the design process. In this way,
even in the early phases of the design trajectory the efficiency of design alternatives can be
assessed such that designs can be rejected because of unsatisfactory performance characteris-
tics, thus avoiding costly re-design at later phases. Obviously, such design decisions are only
of value if the performance information is adequate and reliable. Since at each phase of the
design a system specification is available it seems beneficial to consider this specification not
only as a basis for the functional design, but also as the starting-point for carrying out a
performance assessment.

In order not to burden the design engineer with details of performance modelling and analysis it
would be optimal if system specifications can be enhanced with quantitative information in an
easy and conservative way. This embodies that the specification language should have a high
level of ‘ease of expressiveness’, that it allows for the addition of quantitative information only
in parts of the specification where it is really necessary, and that functional specifications can
be annotated with quantitative information in such a way that when deleting this information
the original functional specification is obtained (while preserving its semantics).

Performance models are typically developed by experienced performance engineers. Usually
performance models are developed while intuitively simplifying the system specification that
is used for the qualitative analysis and functional design of the system. Even in cases when
the system specification is used as a basis, the process of going from this specification to a
performance model is based on human ingenuity and is carried out manually. As a result the
link between the performance model and the system specification that is used for the design is
weak—there is no guarantee for the correspondence between the two—and the adequacy and
reliability of the obtained results from the performance model may be limited. The validity of
the performance model could be increased significantly when performance models are derived
from (formal) system specifications in an algorithmic way.

We believe that the integration of formal and quantitative methods is needed. Starting from
a formal model facilitates tool support—which is indispensable to support the design process
and performance engineering—and allows for a provably correct mapping of specifications onto
performance models. The first step towards such an integration is the extension of formal
models for concurrency with quantitative information such as time (both deterministic and
stochastic) and probability, which is the main topic of this dissertation. Timing information
can be used to constrain the time of occurrence of actions while probabilities can be used to
quantify the likelihood of happening of actions.

Quantitative extensions of interleaving models have been investigated thoroughly in the last 5
10 years. Although there does not yet seem to be a consensus on how to incorporate issues like
time and probability in labelled transition systems—the most prominent interleaving model—
the different ways in which this can be done seem to be quite well-understood. Various recipes
on how to incorporate time in transition systems, for instance, are described by Nicollin &

Process algebra 5

Sifakis [112] and Alur & Dill [5], while different approaches for the incorporation of probabilities
are described by Van Glabbeek et al. [53].

The incorporation of quantitative information in noninterleaving models has received scant
attention in the literature. Since these models seem to be attractive at the design stages in
which the observational behaviour is no longer prevalent, but where the intensional system
characteristics dominate, one might even argue that such models in particular should deal
with issues like time and probability. In these design stages it is of utmost importance how
actions are scheduled in time and with what probability certain alternative executions, which
at a more high level of abstraction could be faithfully modelled by means of nondeterminism,
can appear.

In addition, if one aims at the integration of formal and quantitative methods for the support
of the system design process there are several reasons why it seems to be beneficial to start
from a noninterleaving model. Noninterleaving models retain explicit information about the
parallelism between system components. As performance models typically are based on ab-
stractions of the control and/or data flow structure of the systems, the use of causality-based
models is thought to be a direct way of narrowing the gap with functional models. Additional
advantages of these models are that they are less affected by the problem of ‘state explosion’,
since parallelism leads to a sum of the components states, rather than to their product (as
in interleaving), and that they have the possibility of local analysis. This means that it is
relatively easy to study only that part of a system in which one is interested, isolating it from
the rest.

In this dissertation we investigate several quantitative extensions of event structures. Although
it has been argued, for instance by Baeten [6], that the incorporation of features like time and
probability is “more difficult to achieve in the full generality of partial order semantics” and “is
so much more complex in partial order semantics, that the key issues and main difficulties do
not stand out so easily” we believe that most of the quantitative extensions discussed in this
dissertation prove the opposite. Also the consistent interleaving models for these extensions
often turn out to be simpler than various extensions of interleaved models that have been
proposed in the literature. One might pose that starting from a model that explicitly reflects
the causal dependencies between actions provides another, and often clarifying, insight into
the intertwining of notions like time, probability, causality and independence.

1.4 Process algebra

Although formal models for concurrency aim (amongst others) at facilitating unambiguous
specifications of designs, they are not attractive as such for this purpose, but they are usually
used as semantical models for more abstract description languages. A prominent branch of
such description languages is formed by the family of process algebras, like ACP of Bergstra
& Klop [13], CSP of Hoare [74] and Milner’s CCS [104].

Process algebras are characterized by a high level of abstraction and the presence of a number
of powerful composition operators that facilitate the development of well-structured speci-
fications. It has been widely recognized that due to these characteristics process algebras

6 Chapter 1: Introduction

syntactic construct syntax label set Act(B)
inaction 0 @
successful termination / %)
action-prefix (a; B),a € Act {a} UAct(B)

(1; B) Act(B)
choice (B; + Bs) Act(B;) U Act(By)
enabling (B; >> By) Act(B;) U Act(Bs)
disrupt (Bl [> Bg) ACt(Bl) U ACt(Bg)
parallel composition (B ||g Ba) Act(B;) U Act(Bs)
hiding (B\ G) Act(B)\ G
relabelling (B[H]) {H(a) | a € Act(B) }
process instantiation P Act(B) for P:= B

Table 1.1: The syntax of process algebra PA.

are appropriate for the effective support of the design process (see, for instance, Bolognesi et
al. [21]) and the specification of real-life systems such as communication protocols, see e.g.
Sharp [136]. Therefore, in this dissertation we will investigate for each quantitative extension
of event structures whether such a model can be used to provide a denotational semantics to
a quantitative extension of a process algebra, referred to as PA, in a compositional way.

According to the compositionality principle the interpretation of each composite behaviour ex-
pression in the process algebra is defined as a function of the interpretation of its constituents.
Another important characteristic that is considered in this dissertation is called backwards
compatibility [147]. This principle embodies that the semantic function for, let say a timed be-
haviour B, should not modify the semantics of the untimed behaviour B’ obtained by omitting
all timing information in B, but rather should preserve the semantics of B’. Stated otherwise,
the semantics of e.g. a timed behaviour should be a conservative extension of the semantics
of its corresponding untimed behaviour.

In this dissertation we consider the process algebra PA which is, in fact, the process algebra
LOTOS (for an introduction to LOTOS see, for instance, Bolognesi & Brinksma [16] and
Logrippo et al. [94]) with a somewhat more concise syntax. The syntax of PA is listed in
Table 1.1. The table assumes a given set of observable actions Act and an additional silent
or internal action 7; T ¢ Act. The special action ¢, which is not user-definable, indicates
the successful termination of a behaviour; § ¢ Act. Act(B) for behaviour B is the set of
observable actions in B, i.e., Act(B) C Act. G C Act is a set of observable actions, and
H:ActU{7,6} — ActU {7,6} a relabelling function that satisfies H(7) = 7, H(6) = ¢
and for a € Act : H(a) # 7 and H(a) # 6. PN is a set of process names with P € PN. For set
of actions G C Act we often abbreviate G U { 7} by G", and similarly for 6.

As syntactical sugar we let || be denoted by |||, and |[|acc by ||. The precedences of the
composition operators are, in decreasing binding order: ;, +, ||, [>, >>, \ and [|. Parentheses
are omitted if this does not introduce ambiguities.

Standard semantics and behavioural equivalences 7

The simplest behaviour is the behaviour that can perform no actions at all, called inaction
(or deadlock) and denoted by 0. 4/ represents the successful termination of a behaviour and
can perform an action ¢ after which it behaves like O.

For a an action and B a behaviour, a; B denotes a behaviour which may engage in a after
which it behaves like B. This operator is called action-prefix.

B; + B, denotes the choice between behaviours B; and B,. It should be noted that this choice
is resolved in interaction with the environment, that is, by a behaviour that is composed in
parallel with By + B,.

B; >> B, denotes the sequential composition (or enabling) of behaviours B; and B,. Initially
this behaviour behaves like B; but at the successful termination of B; control is passed to the
second behaviour B,.

The intuitive interpretation of By [> B (pronounce disrupt) is that B; at any point of its exe-
cution may be disrupted by B,, where the successful termination of B; leads to the successful
termination of the entire behaviour By [> By.

Parallel composition of behaviours is denoted by B ||g B2, where G is the set of actions which
have to be performed by both behaviours in co-operation. B; and B, can perform actions
that are not part of the (synchronization) set G independently of each other. Successful
termination actions have to be commonly executed; this means that Bj ||g By terminates if
and only if both components terminate.

Abstraction of a set of actions G in a behaviour B is supported by the hiding operator, denoted
B\G. Behaviour B\ G behaves analogous to B except that actions in the set G are turned into
silent actions (denoted by 7) such that those actions are no longer visible to the environment
of the behaviour.

B[H] (called relabelling) denotes a behaviour which is obtained by renaming the actions in B
according to H. Notice that silent actions 7 are not renamed.

P denotes a process instantiation; we assume a behaviour is always considered in the context
of a set of process definitions of the form P := B where B is a behaviour (possibly containing
occurrences of P) .

1.5 Standard semantics and behavioural equivalences

The formal semantics of PA is given by a set of SOS (Structured Operational Semantics, Plotkin
[120]) rules that define transitions of the form -%». B -%» B’ denotes that behaviour B can
perform action a € Act™ evolving into B’. In the SOS-style the transition relation is defined
by means of deduction rules. For every syntactical construct in PA rules will be presented
that define the transitions that are possible for a behaviour of this form by referring to the
possible transitions of the components of this behaviour. The general format for these rules
is as follows:

This general rule should be read as follows: if condition is satisfied, the rule can be applied
and it can be derived that the conclusion holds in case all preconditions premise; ... premise,

8 Chapter 1: Introduction

premise; A ... A premise,
conclusion

(condition)

are satisfied.

The transition relation -2+ is defined as the smallest relation closed under all inference rules
of Table 1.2.

Usually transition systems are too concrete in the sense that they distinguish behaviours
which—from a particular perspective—are considered to represent the same thing. We recall
five notions of equivalence from the literature that are used in this dissertation, viz. isomor-
phism, strong bisimulation of Milner [103] and Park [116], weak bisimulation of Milner [104],
testing equivalence by De Nicola & Hennessy [111], and trace equivalence by Hoare [74]. For
an overview and comparison of the different types of equivalence relations on labelled transi-
tion systems we refer to the studies of Van Glabbeek [49, 50]. The order of presentation of
equivalence relations in this section is by decreased distinguishing power.

1.1. DEFINITION. (Labelled transition system)

A labelled transition system is a quadruple (S, L, T, so) with

e S, a set of states
e L, a set of labels
e T'CSxL xS, a transition relation, and

e sy € S, the initial state.
O

(s,a,s") € T is usually denoted as s -2+ s’. The class of labelled transition systems is denoted
by LTS and is ranged over by TS. In the remainder of this section we will identify a labelled
transition system with its initial state. We recall the following (standard) notations. Let
a; € Act™, b, € Act®, o a finite sequence of actions a;...a,, and ¢ a finite sequence of
observable actions b; ...b,.

! A — !

s-%ss = ds1,...,8,1:8 Mg 22y Inlyg o Onsg

€ ! A n !
s=—s = dn>0:5-T>s

b ' A 5 b € '
S=>s5 = 18,8 :8=8 2 8=—35

!

o ' A b1 ba br—1 b '
s=—=8 = d81,...,8,_1:8—— 51 Sp_1=—=§

The = transition relation concentrates on observable actions. s=—= s’ denotes that s can
evolve into s’ in an unobservable way, either by executing a number of - steps or by

performing no step at all (n=0). s—= s' denotes that s may evolve into s’ by performing
observable action b, possibly preceded and/or followed by any finite number of = steps.

o' . . . b .
-%» and —=- are the generalizations for sequences of actions of %+ and =, respectively.

Standard semantics and behavioural equivalences

V-0 a; B4 B
B, %> B! By % By
B+ B, % B] B, + B, = B,
B, % B! 48 B, 5 B!
B; >> Bzi>Bi >> B, B; > By, s B,
B, -% B! B % Bj
a ! (a%é)) /
B, [> B2—>B1 [> B, B; [> B, —>Bl
B, % B,
B.[> B, % B,

B, -% B!

B, % B,
a Gé 2
Billch ©B o8 %)

ad Gl
By ||¢ By - B ||¢ By (a ¢ &)

B, % B, A B,-% B}

: - € G
BB = BB,)
B B B-% B
necopg *%0) neop\g (*€0)
B-% B’ B-% B’
o—B p._p
B[H] 29, B'[H] P B ()

Table 1.2: Operational semantics of PA.

10 Chapter 1: Introduction

1.2. DEFINITION. For TS € LTS let der(TS) 2 { TS'| 30 € (Act®)*: TS== TS'}. O

Two labelled transition systems are isomorphic if their reachable states can be mapped one-
to-one to each other, preserving transitions and initial states.

1.3. DEFINITION. (Isomorphism)

Fori=1,2let TS; = (S;, L, T}, so,). T'S1 and T'S; are called isomorphic, denoted TSy =i,
TS,, iff there exists a bijection ¢ : der(TS;) — der(TS,) such that ¢(so,) = so, and
s - 5" iff ¢(s) % ¢(s'), for all s, s’ € der(TS;) and a € Act™. O

Strong bisimulation equivalence requires the existence of a relation between the reachable
states of two transition systems that can simulate each other: if one can perform action
a € Act™, the other must be able to do the same, and vice versa, and the resulting states
must simulate each other again.

1.4. DEFINITION. (Strong bisimulation equivalence)
Fori=1,2let TS; = (S;, L, T}, so,). T'S1 and TS, are called strong bisimulation equivalent
, denoted TS; ~ TS,, iff there exists a relation R C der(TS;) x der(TS;) such that
(50,,50,) € R and if (s1,5,) € R then for all a € Act™
o Vs €518 %8 implies Is) € Sy 1 52 23985 A (s,85) €R;

o Vsh €S58y —2,s, implies Is] € 51 : 81 18] A (s),85) € R.

Weak bisimulation is defined similarly, but focuses on observable transitions.

1.5. DEFINITION. (Weak bisimulation equivalence)

For i=1,2 let TS; = (S;, L, T;, so,). T'S1 and TS, are called weak bisimulation equivalent
, denoted TS; ~ TS,, iff there exists a relation R C der(TS;) x der(TS;) such that
(50,,50,) € R and if (s1,55) € R then for all o € (Act®)*

o Vs €85 == s implies 3s) € Sy : s9==>9 5y A (s},5)) € R;
o Vsh €Sy :sy==ysh implies 35| € Sy : 57==>1 8] A (s1,55) € R.
U

The notion of testing equivalence is used to determine whether an implementation (concrete
behaviour) is correct with respect to a specification (abstract behaviour). The following char-
acterization of testing equivalence is taken from Tretmans [142].3

For TS € LTS and trace o the predicate TS after 0 deadlocks is defined as:

TS after o deadlocks 2 (3TS': TS=2> TS’ A (Va € Act® : TS'—4))

3This characterization coincides with the definition of testing equivalence in De Nicola & Hennessy [111]
for strongly converging labelled transition systems, that is, transition systems in which no infinite chains of
internal actions appear.

The principles of event structures 11

That is to say, TS after o deadlocks is true iff T'S can evolve observedly via o to TS’ and
TS' cannot perform any observable action.

As a second subsidiary notion let Obs(TS1, T'S;) denote the set of observable traces o such
that T'S; || TS, deadlocks after performing o.

Obs(TSy, TS;) 2 {0 € (Act®)* | (TS, || TS,) after o deadlocks }.

T'S; and TS, are called testing equivalent iff there is no transition system (often called test)
which can distinguish between TS; and TS,.

1.6. DEFINITION. (Testing equivalence)
TS; and TS, are called testing equivalent, denoted TS; =4, TS,, iff

V TS € LTS : Obs(TSy, TS) = Obs(TS,, TS)

0
Let us define the set of sequences consisting of observable actions of TS. That is,
Traces(TS) £ {0 € (Act’)* |Ise€ S:sp=5} .
Two transition systems are called trace equivalent if they have the same set of traces.
1.7. DEFINITION. (Trace equivalence)
TS; and TS, are called trace equivalent iff Traces(TS;) = Traces(TSs). O

The equivalence relations defined above for labelled transition systems will be used for be-
haviours in the same way.

1.6 The principles of event structures

Event structures constitute a major branch of noninterleaving models. The basic ingredients
of event structures are labelled events, and the causality, conflict, and independence relation
between events. Since the conception of event structures in Winskel’s thesis [152] various types
of event structures have been developed. Many of these models are introduced in Chapter 2.
This section treats the elementary concepts of event structures.

The basic building blocks of behaviours are actions. An action models an activity, like con-
suming a sandwich, preparing a dinner, or pressing a button on a keyboard. Actions are
atomic in the sense that they are indivisible. This implies that an action either takes place, or
does not take place at all. It cannot take place partly, given the abstraction level at hand. At
a lower abstraction level, however, an action may be refined into more detailed actions which
at that level of abstraction are again considered to be atomic. For instance, preparing a dinner
may be considered as a single action at some abstraction level, but at a more detailed level,

12 Chapter 1: Introduction

it may consist of several (sub-)activities such as cleaning the ingredients, preparing the first
course, preparing the second course, and so on. Actions are represented in event structures by
labels. We assume the existence of some universe of actions, denoted A, and indicate elements
of this universe by a,b,c,

The building blocks of event structures are events. An event models the occurrence of an
action. For each occurrence of an action the time at which it occurs, the reasons for its
occurrence, and the context in which it happens are different. An event is a specific occurrence
of an action. For instance, preparing dinner at Christmas 1995 or on June 3th 1987 could be
modelled as two distinct events of the action preparing a dinner (at any day). The relation
between events and actions is provided by a labelling function that associates to an event the
action whose occurrence is modelled by this event. Since different events may model distinct
occurrences of the same action, and as there may exist actions to which no event corresponds,
this labelling function is, in general, neither injective nor surjective.

Events are denoted in pictures as black dots; near the dot the action label is given. We usually
denote an event labelled a by e,. In case the event’s label is irrelevant it is omitted and we
simply write e, €', and so on. Event names are taken from some (arbitrary) domain such that
events can be identified uniquely. We are actually not interested in explicitly defining event
names and consider event structures up to event renaming.

Causality (or precedence) is a binary relation between events where the intuitive interpretation
of e causes €', denoted by a directed arrow from e to €', is that if e and €’ both occur then
e’ is caused by e. Stated otherwise, the occurrence of e is a condition for ¢’ to be able to
occur. It does not need to be a sufficient condition for ¢’ to happen, because there may be
other events on which e’ causally depends, or there may be other events which may disable
the occurrence of €’ (see below). Causality is based on the intuition that there is a fixed cause-
and-effect relation between occurrences of actions (i.e., events) in system runs. Causality is
described at the level of events rather than at the level of actions since in general different
action occurrences have different causes.

Conflict (or choice) is a symmetric binary relation between events, represented by a dotted
line between e and €', with the intended meaning that e and e’ will never both happen in a

possible run of the system. Thus, if e (¢’) happens in a system run then €’ (e) is permanently
disabled.

Independence is a symmetric binary relation between events with the intended meaning that
if e and €' are neither causally related nor in conflict, then they can happen independently
of each other. That is, once enabled they can happen in any order or even simultaneously.
The independence of two events is indicated by the absence of a causal relation and conflict
relation between these events.

The representation of the basic ingredients of event structures is presented in Figure 1.1.

There are various types of event structures defined in the literature (see Chapter 2). The
specific requirements of parallel composition with multi-way synchronization and the disrupt
operator of our process algebra PA are appropriately addressed by Langerak’s extended bundle
event structures [89, 90]. In a nutshell, this type of event structures incorporates besides
labelled events, an asymmetric conflict relation, denoted ~~», and a causality relation between

Families of Iposets 13

ae co a b a b a b
b — e e ° °
labelled events causality conflict independence

Figure 1.1: Basic ingredients of event structures.

a set X of events, that are pairwise in mutual conflict, and an event e. The intuitive meaning
of e ~> €' is that (i) e cannot occur once €’ has occurred, and (ii) if e and €’ both occur in a
single system run then e causally precedes €¢’. The interpretation of X +— e is that if e happens
in a system run, exactly one event in X has happened before (and caused e). This enables us
to uniquely define a causal ordering between the events in a system run.

In this dissertation we take extended bundle event structures as a starting-point for our in-
vestigations on quantitative extensions of noninterleaving models.

Besides the use of event structures as a semantical model for process algebras we like to
mention the increase of interest in causality-based models in other areas like, for instance, the
automatic verification of temporal logic properties (known as model checking) [55], the design
and verification of distributed algorithms [33, 134, 77|, the modelling of advanced architectural
concepts [46, 145], and the design and analysis of parallel computations [12].

1.7 Families of lposets

The interpretation of event structures is traditionally defined in terms of families of configura-
tions as in Winskel & Nielsen [156]. A configuration is a representation of the system state by
means of the set of events that have occurred up to a certain point. For extended bundle event
structures it turns out that families of configurations are not sufficiently expressive. That is to
say, there are extended bundle event structures that have identical families of configurations,
but that are different from a causality point of view. We therefore take a more discriminating
model, known as labelled partially ordered sets, or Iposets, for short. Families of Iposets do not
only record the set of events that have happened so far, but also the causal ordering between
the events. Rensink [126, 127] showed that Iposets form a convenient underlying model for
many formal models for concurrency. Let A denote a set of actions.

1.8. DEFINITION. (Labelled partially ordered set)
A labelled partially ordered set (Iposet) is a triple (E, <,) with

e F. a set of events
e <C F x FE, a partial order on FE

e |: E — A, the action labelling function.

A relation is a partial order iff it is reflexive, antisymmetric and transitive.

14 Chapter 1: Introduction

For denoting Iposets we use the following conventions. ¢ denotes (&, &, &), the empty lpo-
set. Non-empty lposets are often graphically denoted: e.g., ({eq, ep }, <, { (eq,a), (ep,0) }) is
e

denoted by | *|if e, and e; are unrelated under <, and by if e, < €. The arrow symbol

— can be read as ‘causes’.

An important relation on lposets is the prefix relation.

1.9. DEFINITION. (Prefiz of an lposet)
(B, <, l)isapreficof (E',<',I') it ECE, <=<"N(E'xFE)andl=1TE. O

The second constraint says that no event in E’ \ E may precede under <' an event in E.
Evidently, the relation ‘is a prefix of’ is a partial order on Iposets.

1.10. DEFINITION. (Family of Iposets)
A family P of Iposets is a non-empty set of finite Iposets such that

Vp an lposet,q € P :pis aprefixof ¢ = peP
]

That is to say, a family of lposets is a non-empty set of (finite) lposets that is downwards
closed with respect to the prefix ordering on lposets.

1.11. ExAMPLE. Consider the family of Iposets graphically denoted as:

/ N
a C
o
ea
€ e

The arrows between the different Iposets denote the prefix relation, omitting the transitive
closure for convenience. O

Lposets are a very discriminating model—Iposets that only differ in their event names are
considered to be different. Less discriminating semantical models such as pomset (partially
ordered multiset), multiset, and interleaving models can be obtained from an lposet semantics
by using the appropriate abstraction mechanism. Pomsets, for example, are equivalence classes
of Iposets under isomorphism.

1.12. DEFINITION. (E,<,l) and (E',<',l') are isomorphic iff there exists a bijection ¢ :
E — E' such that I(e) = I'(¢(e)) and e < €' iff ¢(e) < d(€'). O

1.13. DEFINITION. A pomset is an isomorphism class of Iposets. O

Synopsis 15

An important difference between pomsets and lposets is that pomsets are linear-time models,
i.e., they abstract from the timing of choices, whereas lposets are branching-time models, i.e.,
they keep track of the moments of choice. (For an extensive discussion about the relevance of
branching-time models we refer to Van Glabbeek [51].) In linear-time models we have

a; (b;04+¢;0)=a;b;0+a;c;0
The left-hand side defines a choice between b and ¢ after having performed an a, whereas

the right-hand side the choice is made before an a is performed. The corresponding event
structures of these expressions are as follows:

a a a
€ €1 €a2
b c b c
€ € € €
a;(;0+c;0) a;b;0+a;c;0

The (maximal) Iposets of the right-hand event structure are [€e; —€b] and [€a, —€c] whereas
the (maximal) lposets of the left-hand event structure are [62—€p] and [€a—€]. Since [€a, — €]
and are isomorphic, and [€a; —€c] and [Ea—€.] are isomorphic, we obtain the (maximal)
pomsets and for both event structures. Lposets thus distinguish between these
two event structures while pomsets do not.

1.8 Synopsis
This thesis is further organized as follows.

Chapter 2: Extended bundle event structures provides a brief survey of three tradi-
tional types of event structures: prime and stable event structures of Winskel, and the
flow event structures of Boudol & Castellani. The adaptations made in Langerak’s bun-
dle and extended bundle event structures are described and justified. The latter model
is extensively discussed and the major results that are of importance for this thesis
are summarized. It will be shown how extended bundle event structures can be used
to provide a compositional causality-based semantics to PA. In addition, a consistent
event-based operational semantics of PA is presented.

Chapter 3: Disjunctive causality and interleaving presents two qualitative extensions
of extended bundle event structures. In the first extension the stability constraint on
bundles is dropped. The resulting model, called dual event structures, incorporates
conjunctive causality—Ilike all other event structures—and disjunctive causality—unlike
most other event structures. The second extension comprehends the incorporation of
an (irreflexive and symmetric) interleaving relation between events. We investigate for

16 Chapter 1: Introduction

both models how Iposets can be deduced and what transformation rules are supported.
The expressiveness of the two models is compared with the event structures of Chapter
2.

Chapter 4: A simple timing module describes a simple timed variant of extended bundle
event structures. We equip events and bundles with a time attribute. An event e with
time ¢ denotes that e is enabled from ¢ time units on since the system has been started,
usually assumed to be time 0. t associated with bundle X — e denotes that the time
between the occurrence of an event in X and the appearance of e should be at least ¢ time
units. The result is a causality-based model allowing the specification of minimal time
constraints. The timing extension is a conservative extension of the untimed causality-
based model, is suitable for discrete and continuous time, and does not include notions
to explicitly force the passage of time. A temporal process algebra PAr is defined that
includes a delay function which constrains the occurrence time of actions. The suitability
of timed event structures for providing a compositional causality-based semantics to this
algebra is studied.

A preliminary version of part of this chapter has been published as [28].

Chapter 6: Timed operational semantics presents two timed event transition systems
for the timed process algebra PAz. Opposed to the standard case transitions are equipped
with event and action (and time) labels. The timed event transition systems are defined
by structured operational semantics. One transition model is based on timed-action
transitions and the other is based on the separation between time- and (untimed) action-
transitions. The compatibility of these timed transition models with the causality-based
semantics of PA7 as provided in Chapter 4 is investigated. The timed event traces of the
timed-action transition model and the causality-based semantical model are shown to
coincide. For the model distinguishing between time- and action-transitions this holds
when restricting to time-consistent traces.

Chapter 6: The urgency module introduces the concept of urgent events—events that
are forced to occur once they are enabled—in timed event structures. Typically an urgent
event ‘guards’ the occurrence time of an alternative event in the sense that this other
event is prevented from happening after a particular time instant. Timeout mechanisms
are well-known urgent phenomena. It is investigated how the theory of Chapter 4 carries
over to this new model, referred to as urgent event structures. The timed process algebra
PAr is extended with an urgency operator that forces (local or synchronized) actions to
happen in an urgent fashion. Urgent event structures are used as a vehicle to provide
a denotational causality-based semantics for this formalism. In the spirit of Chapter 5
a consistent event-based operational semantics based on a separation of the passage of
time and the occurrence of actions is presented.

An extended abstract of this chapter has been published as [83].
Chapter 7: The real-time module generalizes timed event structures by equipping events

and bundles with sets of time instants and use urgent events for the sole purpose of
modelling timeout mechanisms (thus restricting urgent event structures). An event e

Synopsis 17

with set T of time instants denotes that e can only occur at some ¢ € T since the start
of the system. T associated with bundle X +— e denotes that the time between the
occurrence of an event in X and the appearance of e should equal ¢, for some ¢t € T'. The
result is a causality-based model allowing the specification of minimal, maximal and, for
instance, periodic time constraints. This chapter generalizes the theory of Chapter 4 and
uses urgent events in a controlled way. It investigates how the more expressive model,
baptized real-time event structures, can be used as a vehicle to provide a semantics to a
real-time process algebra including timeout and watchdog operators.

Chapter 8: The stochastic timing module treats stochastic variants of extended bundle
event structures. As a result causality-based models are obtained that allow the spec-
ification of stochastic timing constraints. Events are supposed to happen after a delay
that is determined by a stochastic variable with a certain distribution function. First, a
simple model is discussed restricting the distribution functions to be exponential. Then
the generalization of deterministic times towards more general types of distributions
is investigated and a stochastic variant of event structures is proposed with (the more
practical) phase-type distributions. This class of distributions includes exponential, Er-
lang, Coxian and mixtures of exponential distributions. It is shown how both stochastic
models can be used to provide a compositional causality-based semantics to a stochastic
extension of PA, and for the exponential case a corresponding event-based operational
semantics is provided that is proven to coincide with various existing interleaving pro-
posals.

This chapter has been published as [29].

Chapter 9: The probability module presents a probabilistic variant of extended bundle
event structures, in which internal events (i.e., events labelled 7) can be assigned a
(fixed) probability. In this way, a causality-based model is obtained that allows for the
specification of (internal) probabilistic behaviour. For probabilistic event structures the
notion of cluster, a set of mutually conflicting internal events such that the sum of the
probabilities associated to these events is 1, is defined. A cluster corresponds to an
independent stochastic experiment. A probabilistic process algebra PAp is introduced
and assigned a causality-based semantics. The integration of the probabilistic model
with the simple timed model (of Chapter 4) is briefly discussed. By means of example
it is shown how to obtain a performance model (i.e., a discrete-time semi-Markov chain)
from a timed probabilistic event structure.

A preliminary version of part of this chapter has been published as [82].

Chapter 10: Recursion provides an event structure semantics for recursively defined pro-
cesses. We consider the timed (and urgent) variant and the probabilistic variant, and
show that the stochastic case can be taken into account by a straightforward general-
ization of the deterministic timed case. Recursion is dealt with using standard domain
theory. A complete partial order is defined on each type of event structure and all
operators on these structures (which correspond to operators in the related process al-
gebra) are shown to be continuous with respect to this partial order. The semantics
of P := B is then defined as the limit of a series of better and better approximations.

18 Chapter 1: Introduction

Finally, for PAr, PAr, PAy and PAp we give an operational semantics for recursively
defined processes and prove the consistency between this operational semantics and the
denotational causality-based semantics.

Chapter 11: Conclusion contains a retrospective view on the work presented in this dis-
sertation, summarizes the main technical results and provides some overall conclusions.
In addition, some thoughts on future work are presented.

Appendix A: Stochastic processes provides an introduction to some basic notions of sto-
chastic processes. Notions like distribution functions, memoryless distributions, discrete
and continuous-time Markov chains are introduced and some basic results are summa-
rized. The material of this appendix is used in Chapters 8 and 9.

Appendix B: Domain theory gives a brief introduction to standard domain theory and
fixes some terminology. The material of this appendix is used in Chapter 10.

This dissertation presents 8 extensions of extended bundle event structures. These extensions
and their dependencies are depicted in Figure 1.2. The numbers in brackets indicate the
chapter numbers in which the corresponding model is treated. This figure thus provides also
a reading guidance. For example, readers that are only interested in the stochastic extension
should read Chapters 2, 4 and 8, whereas those that are interested only in the probabilistic
aspects should consult Chapters 2 and 9. Chapter 10 considers recursion for all treated models.

extended dual
event structures (3)

dual event
structures (3)

/ real-time

extended bundle timedevent urgent event
event structures (2) structures (4) structures (5) Strﬁé’ﬁ,?és (7

probabilistic simple stochastic stochastic
event event — event
structures (9) structures (8) structures (8)

Figure 1.2: Overview of extensions of event structures.

2 Extended bundle event structures

This chapter provides a brief survey of three traditional types of event struc-
tures: prime and stable event structures of Winskel, and the flow event
structures of Boudol & Castellani. The adaptations made in Langerak's
bundle and extended bundle event structures are described and justified.
The latter model is extensively discussed and the major results that are of
importance for this thesis are summarized. It will be shown how extended
bundle event structures can be used to provide a compositional causality-
based semantics to PA. In addition, a consistent event-based operational
semantics of PA is presented.

2.1 Introduction

For investigating qualitative and quantitative extensions of partial-order models we take
Langerak’s ezxtended bundle event structures as a starting-point. This chapter is mainly de-
voted to this type of event structures. We start by briefly describing three traditional models
of event structures: prime, stable and flow event structures. The descriptions of these models
are not intended to give all details and internals of a certain model, but are meant to show
the development and differences between the kinds of event structures.

The main difference of (extended) bundle event structures and prime and flow event structures
is that the causality relation, denoted by +, is not a binary relation between events, but a
relation between a set X of events and an event e. X +— e means that e is enabled if precisely
one event in X has happened. As argued in [89] this relation is convenient for modelling
multi-party synchronization, as present in process algebras like LOTOS and CSP, without the
need for copying events.

Prime, flow, stable, and bundle event structures incorporate a symmetric conflict relation,
denoted by #. To model the disrupt operator [> appropriately this relation is replaced by
an asymmetric conflict relation (denoted by ~-) in extended bundle event structures. The
intuitive meaning of e ~» ¢’ is that (i) e cannot occur once e’ has occurred, and (ii) if e and
e’ both occur in a single system run then e causally precedes e’. Similar constructs have been
considered in the study of architectural issues of distributed systems by Ferreira Pires et al.
[46, 145], in the notions of event automata by Pinna & Poigné [118], and in the geometric
automata of Gunawardena [60].

In the main part of this chapter we consider extended bundle event structures. We justify the
use of families of lposets as an underlying semantical model and define how lposets can be

19

20 Chapter 2: Extended bundle event structures

generated. A pleasant property of extended bundle event structures is that ‘local’ transforma-
tion rules, i.e., transformation rules involving part of an event structure, can be defined. We
summarize some basic transformation rules that preserve the semantics in terms of lposets.
A denotational semantics of PA in terms of extended bundle event structures is defined. This
semantics provides the basis for extensions of PA that are treated later on in this thesis. In
addition, an operational semantics for PA is presented and shown to be consistent with the
denotational semantics.

2.2 The realm of event structures

This section presents an overview of a prominent subset of event structure models as described
in the literature. The presentation of these models is in chronological order of their conception,
ranging from the well-known prime event structures to bundle event structures. The treatment
of other types of event structures (or alikes) such as the free event structures of Darondeau
& Degano [37], prioritized event structures of Degano et al. [43], event automata of Pinna &
Poigné [118] and local event structures of Hoogers et al. [75, 76] is outside the scope of this
chapter.

2.1. NoTATION. For X a set of events, predicate CF(X) is true iff X is conflict-free, that
is, CF(X) £ (Ve,e' € X : = (e#e)).
For finite sequences ¢ = z;...x,, let @ denote the set of elements in o, that is, &

{z1,...,2, }, and let o; denote the prefix of o up to the (i—1)-th element, that is, o;
x1...x;1, for 0 < i < n+l.

a > 1>

2.2.1 Prime event structures

Originally, event structures were introduced as a vehicle to relate subclasses of Petri nets,
such as occurrence nets and causal nets, and Scott’s domain theory [114]. Event structures
were introduced as ‘net-alikes with the places removed’. To relate occurrence nets to domains
the notion of prime event structures was introduced. Their labelled variants, associating with
each event an action from a set A of actions, are defined as follows.

2.2. DEFINITION. (Prime event structure)

A (labelled) prime event structure £ is a quadruple (E, #, <,1) with

e F, a set of events
e # C E x E, the (irreflexive and symmetric) conflict relation
e <C F x F, a partial order, the causality relation

e |: E — A, the action-labelling function
such that for alle € F

1. { € E|e < e} is finite

The realm of event structures 21

2. Ve, " e E:(e#e N e <€) = e#e.
]

The first condition states that the number of causes of any event should be finite. The second
condition, known as the conflict inheritance property, states that if an event e is in conflict
with some event €, then it is in conflict with all causal successors of €.

A configuration is a set of events that have happened during a specific run of the event
structure. Conceptually a configuration C' can also be viewed as a global state, namely the
state of a system where all events in C' have occurred.

2.3. DEFINITION. (Configuration of a prime event structure)

For prime event structure & = (F, #,<,1), set C C E is a configuration of £ iff CF(C)
holdsand Ve e C,e' e E: e/ <e = € €C. O

A configuration should be conflict-free since conflicting events can never happen in a system
run. In addition, all causal predecessors of e in C must be contained in C, i.e., C' is downwards
closed (w.r.t. <), as otherwise e could not have happened at all. The semantics of a prime
event structure is defined as the family of its configurations, ordered by set inclusion. The
resulting domain is a so-called prime algebraic coherent partial order [114]; this explains the
name prime event structures.

2.4. EXAMPLE. An example of a prime event structure and its semantics in terms of
families of configurations is given in Figure 2.1(a) and (b), respectively. In this structure we
have e, # €y, €y < €4, €. < €4, and e, # ¢4 (due to conflict inheritance). O
{ew & e
d Caed {en, &
ea””
{ed {ep}
a b c
(@) (b)

Figure 2.1: A prime event structure (a) and its family of configurations (b).

Prime event structures are simple mathematical structures: labelled partial orders extended
with a conflict relation. The main limitation of prime event structures is the conflict inher-
itance property. Due to this property all causal successors of two conflicting events are in
mutual conflict. This implies that each event can be enabled only in one way, thus disallowing
an event to have alternative enablings. For describing a single system run—the original goal of
occurrence nets, and thus of prime event structures—this does not bother, but for specifying
behaviours this is undesirable. The fact that an event can have alternative causes can only

22 Chapter 2: Extended bundle event structures

be modelled by introducing one event for each possible enabling. This is unattractive—events
usually have different alternative enablings by nature; modelling each alternative enabling of
an event by a separate event would lead to an explosion of the number of events.

For similar reasons, prime event structures are unattractive as a semantical model for pro-
cess algebras. Especially the semantics of the parallel composition operator is considerably
complex, despite attempts to simplify it by Loogen & Goltz [95] and Vaandrager [144].

2.2.2 Stable event structures

Stable event structures were introduced by Winskel to overcome the unique enabling problem
of prime event structures [153, 154]. In contrast with the binary causality relation <, stable
event structures have an enabling relation, denoted I, relating a (usually finite) set of events
to a single event!. The interpretation of X I e for a set X of events and an event e is that e
is enabled if all events in X have occurred.

2.5. DEFINITION. (Stable event structure)
A (labelled) stable event structure £ is a quadruple (E,#,+,1) with

e FE, a set of events
e # C E x E, the (irreflexive and symmetric) conflict relation
e -C P(E) x E, the enabling relation

e [: E — A, the action-labelling function
such that

I.VXCEecE:XFe = CF(XU{e})
22.VX,YCEecE:(XFe ANYFe) = (-CF(XUY) V X=Y).
U

Enabling X I e is represented by drawing an arrow from each event in X to e and connecting
all arrows by a small line. For instance, X - e. with X = {e,, e, } is depicted as
a

b

The first constraint of Definition 2.5, referred to as the consistency constraint, states that

!For technical convenience we consider a minimal enabling relation. For X a set of events and event e, the
minimal enabling relation F,,;, is defined as:

Xtmne2XFe A VY CX:Yhe = X=Y)

Since we only consider minimal enablings of stable event structures we write simply - rather than t,,;,.

The realm of event structures 23

for enabling X I e, all events in X U {e} should be conflict-free. The second constraint,
called the stability constraint, ensures that an event in a system run is always enabled in a
unique way. So, if there are two enablings X F e and Y F e then either they are equal
(X =Y) or there exists a conflict between X and Y such that they cannot both cause e. As
a result, when event e occurs in a system run the events that have caused its occurrence can
be unambiguously determined. This property is referred to as absence of causal ambiguity.

In contrast with prime event structures, events in stable event structures can have different
enablings. For instance, in
a

b

event e. can either be enabled by e, or by e,. This possibility leads to a more involved
definition of a configuration. For that purpose the intermediate concept of event trace (also
called proving sequence) is used. For technical convenience we define the set of events that
are in conflict with some event in o.

2.6. DEFINITION. For ¢ a sequence of events let cfl(c) = {e € E |Je; €T :e;# e }. O

2.7. DEFINITION. (Configuration of a stable event structure)

An event trace o of stable event structure & = (E, #, ,1) is a sequence of events e; . . . e,
with e; € F such that forall ¢, 0 <i < n

(e; & cfllo;) UT;) AN 3X Ca;: X e
A set C' C F is a configuration iff there is an event trace o such that C' =&. O

An event trace is conflict-free since all events in an event trace should be able to happen in a
system run. In addition, for each event e; in o, at least one of the enablings X of e; must be
satisfied.

2.2.3 Flow event structures

An alternative model to overcome the unique enabling problem of prime event structures,
called flow event structures, was developed by Boudol and Castellani [24, 26]. In flow event
structures the causality relation < of prime event structures is replaced by an (irreflexive) flow
relation, similar to the flow relation in Petri nets which is defined by the existence of a place
between two transitions. In addition, there is no requirement on the relationship between flow
relations and conflicts, like the stability and consistency constraint in stable event structures,
and the conflict relation is not required to be irreflexive. Whereas prime event structures
correspond to occurrence nets, flow event structures correspond to a richer subclass of safe
Petri nets, called flow nets [26].

24 Chapter 2: Extended bundle event structures

2.8. DEFINITION. (Flow event structure)
A (labelled) flow event structure € is a quadruple (E, #, <,1) with

e F, a set of events
e # C E x E, the (symmetric) conflict relation
e < C E x E, the (irreflexive) flow relation
e [: E — A, the action-labelling function.
]

Since # is not required to be irreflexive, self-conflicting events, that is, e such that e # e, are
allowed. Such events seem not very useful from a specifier’s point of view as they will never
occur, but turn out to be essential for defining operations (like parallel composition) on flow
event structures. It should also be noted that the conflict and flow relations are not required
to be disjoint as opposed to stable event structures. Thus, a structure with two events e and
e/ with e < e’ and e# ¢ is a legitimate flow event structure.

Like for prime and stable event structures, the semantics of a flow event structure is determined
by its family of configurations, ordered by set inclusion.

2.9. DEFINITION. (Configuration of a flow event structure)

An event trace o of flow event structure £ = (E, #, <, 1) is a sequence of events e; . .. e,
with e; € F such that forall2, 0 <7< n

(e; € cfl(oze;) Ua;) A (Ve:e<e = (A €a;:e <e; N (€ =e V e #e))).
A set C C FE is a configuration iff there is an event trace o such that C =&. 0

The constraint e; ¢ cfl(o; e;) guarantees that self-conflicting events can never occur. As pointed
out in [26] self-conflicting events cannot in general be removed from a flow event structure
without changing its set of configurations. So, given a flow event structure £ containing
some self-conflicting events, it is impossible to construct a flow event structure without self-
conflicting events that has the same family of configurations as £. This is a rather awkward
property for specifying behaviours—it is rather unnatural to be forced to introduce impossible
events in order to be able to specify some desired behaviour. Impossible events might be useful,
but it should always be possible to safely remove them.

2.2.4 Bundle event structures

Langerak studied the suitability of prime, flow, and stable event structures as a noninterleav-
ing semantic model for the process algebra LOTOS [89, 90]. He concludes that all these event
structures have some drawbacks, making them unattractive for this purpose. As an alternative
he proposes bundle event structures. Bundle event structures share some advantages of the

The realm of event structures 25

aforementioned models while avoiding some of their drawbacks. For example, in bundle event
structures events can have different enablings, and self-conflicting events are not allowed.

Causality is represented by a relation — between a set X of events, which are pairwise in
conflict, and an event e. The interpretation is that if e happens in a system run, exactly one
event in X has happened before (and caused e). This enables us to uniquely define a causal
ordering between the events in a system run (i.e., absence of causal ambiguity, like in stable
event structures). Pairs (X, e), such that X — e, are called bundles; X is also called a bundle
set.

2.10. DEFINITION. (Bundle event structure)

A bundle event structure £ is a quadruple (E, #,—,1) with

e FE, a set of events
e # C E x E, the (irreflexive and symmetric) conflict relation
e — C P(E) x E, the bundle relation

e [: E — A, the action-labelling function

suchthat VX CEe€c E: X —e = (Ve,e" € X:e #£e" = e #e"). O

The constraint, referred to as the stability constraint, says that all events in a bundle set
should be in conflict. Let BES denote the class of bundle event structures.

A bundle (X, e) is indicated by drawing an arrow from each element of X to e and connect-
ing all arrows by small lines, analogous to the representation of enablings in stable event
structures?.

The above definition allows an empty bundle, @ +— e, to be defined. The interpretation
of such bundle is that e can never happen; e is an impossible event. Events pointed to
by empty bundles are comparable with self-conflicting events in flow event structures, but
have—as opposed to self-conflicting events—the pleasant property that they can always be
eliminated while preserving the semantics (in terms of configurations). An alternative way to
specify impossible events is by {e} — e. Also these bundles can always be eliminated while
preserving the semantics.

2.11. DEFINITION. For o a sequence of events let

sat(0) 2 {ec E|VXCE:X—e => XNo#a)
O

Stated in words, sat(c) is the set of events that have a causal predecessor in ¢ for all bundles
pointing to them. That is, for events in sat(c) all bundles are ‘satisfied’ by o.

2Tt should be recalled, however, that X | e in stable event structures means that when e happens all events
in X have happened before, whereas X — e, although represented in the same way as X F e, means that
when e happens precisely one event in X has happened before.

26 Chapter 2: Extended bundle event structures

2.12. DEFINITION. (Ewvent trace of a bundle event structure)

An event trace o of bundle event structure £ = (E,#,+,1) is a sequence of events
er...e, with e; € F, satisfying for all i, 0 < i < n

e; € sat(o;) \ (cfl(o;) U T7)
A set C C FE is a configuration iff there is an event trace o such that C =&. 0

Event traces are conflict-free, as expected, and each event in the event trace is preceded in
the sequence by a causal predecessor for each bundle pointing to it. Event traces correspond
to linearizations of system runs.

2.13. EXAMPLE. Some bundle event structures are depicted in Figure 2.2. Event structure
(c) has bundles { e4, ey} — e, { €y} — eq, and {ef } — €4, and a conflict between e, and e,

Example event traces of this event structure are e, efe., ey e, and ef ey eq €. O
a
a
ae eb ce
(a) (b) (c)

Figure 2.2: Example bundle event structures.

The semantics of bundle event structures is defined using labelled partially ordered sets
(Iposets), cf. Definition 1.8. We will not consider how these lposets can be generated, as
this procedure is analogous to that of extended bundle event structures, see Section 2.3.2.
An lposet keeps track of the causal dependencies between events. An event trace abstracts
from these dependencies and is a linearization of an lposet, since it keeps track of the order-
ing of events. A configuration abstracts from the ordering of events, and thus it is the less
discriminating (and simplest) notion of these three.

2.14. NoTATION. For an event structure &£ let T'(£) denote the set of event traces of £,
C(€) the set of configurations of £, and L(€) the family of lposets of £. O

For bundle event structures, having the same set of configurations is equivalent to having the
same set of Iposets. This result indicates that it suffices to use families of configurations as an
underlying semantical model for bundle event structures.

2.15. THEOREM. V&, € BES: C(€) =C(€') <= L(€) = L(&").
PROOF. See [89, Theorem 5.4.2]. O

Since families of configurations can be used as an underlying semantical model for prime, flow,
stable, and bundle event structures, the expressivity of these models can be compared in terms
of configurations. From [89] we recall that, using T for denoting ‘is strictly less expressive
than’, prime C bundle C flow C stable.

Extended bundle event structures 27

2.3 Extended bundle event structures

This section discusses extended bundle event structures. Section 2.3.1 introduces this type
of event structures. Section 2.3.2 presents two recipes to deduce lposets from such event
structures. Section 2.3.3 defines the status of an extended bundle event structure after the
occurrence of a sequence of events, and Section 2.3.4 presents some simple, though useful
transformation rules.

2.3.1 What are extended bundle event structures?

In order to model the disrupt operator [> the symmetric conflict relation in bundle event
structures is replaced by an asymmetric conflict relation, denoted by ~+.® The intuitive mean-
ing of e ~ ¢’ is that (i) if ¢’ occurs it disables the occurrence of e, and (ii) if e and €’ both
occur in a single system run then e causally precedes e'.

2.16. DEFINITION. (Extended bundle event structure)

An extended bundle event structure € is a quadruple (E,~>, 1) with

e F, a set of events
e ~» C FE X E, the (irreflexive) asymmetric conflict relation
e — C P(E) x E, the bundle relation

e |: E — A, the action-labelling function

suchthat VX CElec E: X —e = (Ve,e" € X:e £e = € ~ €'). O

In the rest of this dissertation we assume extended bundle event structures to have a finite set
of events, unless stated otherwise.

The constraint above is a straightforward generalization of the stability constraint in Defini-
tion 2.10. e ~» €' is represented as a dotted arrow pointing from e to €, thus reflecting that in
case both e and ¢’ happen in a single system run, there is a causal relation between the two
(as if it were the case that {e} — ¢). If e ~ ¢’ and €’ ~» e this is indicated using the same
representation for e # ¢’ in (bundle) event structures, i.e., a dotted line.

In the rest of this thesis EBES denotes the class of extended bundle event structures and we
use &, possibly subscripted and/or primed, to denote members of this class.

The definitions of configuration and event trace are a straightforward adaptation of the same
notions for bundle event structures (cf. Definition 2.12). For technical convenience we intro-
duce:

3The term asymmetric conflict does not mean that e ~» €' = €' » e as it might suggest. e ~ €’ and
e' ~» e is allowed and is equivalent with e # e’. The terminology ‘asymmetric’ is adopted from Langerak [89)
and Pinna & Poigné [118§].

28 Chapter 2: Extended bundle event structures

2.17. DEFINITION. (Enabled events after o)

The set en(o) of events that are enabled after o is defined as

en(oc) 2 {e|ecsat(o)\T A ~(Fe; €T e~ ¢)}
U

e is enabled after o if it does not occur in o, if all bundles pointing to it are satisfied by events
in o, and if there is no event in ¢ that disables e.

2.18. DEFINITION. (Event trace of an extended bundle event structure)

An event trace o of extended bundle event structure £ = (E, ~,—,1) is a sequence of
events e ...e, with e; € F, satisfying e; € en(o;), for all i, 0 < i < n.

A set C' C F is a configuration iff there is an event trace o such that C' =&. O

2.3.2 Families of lposets

The semantics of EBES is given by sets of lposets ordered under the prefix relation on lposets.
This is convenient since all other semantics, such as pomset, multiset and interleaving seman-
tics, can be defined on top of an lposet semantics.

We present two possible ways in which lposets can be generated. The first recipe is an
intensional one in the sense that the bundles and asymmetric conflicts in £ are used to deduce
the causal dependencies. The second recipe is an operational (or, observational) one. This
recipe allows to generate lposets from the event traces of £ without referring to the structure
of £. Both recipes will be used in this dissertation. The lposets generated according to the
intensional scheme are denoted by L°, the ones according to the operational scheme by L°.

2.19. DEFINITION. For C € C(€) let <¢ C C x C be the smallest relation satisfying, for all
€, €5 eC:
1. (HXQEBZEX A Xi—>6j) = €; <cC €
2. e~ e = e <c €

O

Let <% be the reflexive and transitive closure of <¢, and let <, be the precedence relation of
events in event trace o, that is, for c = e;...e, we have e; <, €3 <, ... <, €.

2.20. LEMMA. Vo e T(€) : <% C <.

PROOF. See [89, Lemma 6.3.6]. O

Given this lemma it is now easy to verify that < is a partial order on C.

Extended bundle event structures 29

2.21. COROLLARY. (C,<§) is a poset.

PROOF. <} is reflexive and transitive by definition. It remains to prove antisymmetry, i.e., for
e,e €C:e<5e N e <;e = e=c¢e. Let 0 be an event trace such that C' = 7. Then, according
to Lemma 2.20 we have e <5 €' A e <z e = e <, e A € <} e. Since <} is a partial order it
follows e = €. O

The family of intensional lposets of &, denoted L°(E), is defined as the set of all lposets
corresponding to its configurations.

2.22. DEFINITION. (Intensional lposets of an extended bundle event structure)

For £ € EBES: L°(€) £ {(C,<%,11C) | C € C(€)}. O
As a prerequisite to defining how to obtain Iposets from £ in an operational way we define
2.23. DEFINITION. 0,0’ € T(€) are configuration equivalent, denoted o ~ o', iff 7 =5'.* O

Lposets of £ are now determined in an operational way as follows. Consider all o € T(€)
and consider its class of configuration-equivalent traces, [o].. For each ¢’ € [o]. we take the
reflexive and transitive closure of the precedence relation of events in ¢’, <./, and consider all
common orderings for any o’ € [o]..

2.24. DEFINITION. (Operational lposets of an extended bundle event structure)

For £ € EBES : L*(€£) £ { (7, Nyrcpo. <ol 17) |0 € T(E) }. O

o

It is easy to verify that N,.¢f,., <} is a partial order on . We sometimes let L(c) denote

o
<E, OJIE[J}N <:;:, [r E>
It turns out that the operational and intensional characterizations of Iposets coincide. This

means that all causal dependencies between events can be deduced from the sequential obser-
vations.

2.25. THEOREM. V& € EBES : L°(€) = L*(€).
PROOF. This follows from (¢, <, ==z for o € T(€); see [89, Chapter 7]. O

2.26. ExXAMPLE. Consider
ae ®b a®e—»@b

@) (b)

The Iposets (ordered under prefix) of these extended bundle event structures are

4Configuration equivalence is similar to the equivalence relation on sequential observations as defined by
Mazurkiewicz [101]. He defines a binary independence relation on actions and considers sequential observations
to be equivalent iff they contain the same actions with independent actions possibly swapped. Mazurkiewicz
calls the equivalence classes traces, rather than their elements. An important distinction is that he consid-
ers actions whereas we consider events; for instance, a;a and al||a cannot be distinguished by considering
Mazurkiewicz’ traces, but they can in our setting.

30 Chapter 2: Extended bundle event structures

7 Ne e A R
€ e \

b
NS

(a) (b)
0

The following theorem states that £ and £’ have identical event traces iff they have identical
Iposets. This is a nice result since it simplifies proof obligations—rather than proving that &
and &' have identical lposets (i.e., are Iposet equivalent) it suffices to prove their event trace
equivalence.

2.27. THEOREM. V&,&' € EBES: L(€) = L(&') <= T (&) =T(&").
PROOF. See [89, Theorem 6.3.12]. O

For bundle event structures having the same configurations is equivalent to having the same
Iposets (see Theorem 2.15). This result does not hold for extended bundle event struc-
tures. For example, both event structures in Example 2.26 have family of configuration
{2,{e.},{ev},{€arer}}. So, families of configurations cannot distinguish between these—
from a causality point of view—different elements of EBES.®

We conclude this section by addressing the expressiveness of extended bundle event structures.
Even on the level of families of configurations extended bundle event structures are strictly
more expressive than bundle event structures, and consequently, than prime event structures.
The relation with stable and flow event structures is less clear—there exist extended bundle
event structures with a set of configurations that cannot be induced by any flow or stable
event structure, and vice versa.

2.3.3 Remainder

During a run, or computation, of the system it is convenient to know the status or remaining
behaviour. To that purpose we define the status of £ after the occurrence of an event trace.

2.28. DEFINITION. (Remainder of an extended bundle event structure)
&' = (E',~', =" l') is a remainder of € after o € T(E), denoted &' = E[o], iff
e E'=FE\7T
e =~ N(E"xE")
= \{(X,e) | X—e ANXNag#a}H)U{(D,e) |Te €T,ec E:e~e€'}
I'=1TE.

O

5This also means that it is impossible to model asymmetric conflicts without copying events in prime,
stable, or flow event structures. This impossibility has been argued in [89, Chapter 6].

Extended bundle event structures 31

It follows that for each bundle (X,e) € —' that X C E' and e € E’, because if X Z E’ then
XNo # Tso (X,e) ' and if e ¢ E' then e € 7, say e = ¢;, but then X N7; # I,
so (X,e) ¢ —'. Tt is not difficult to check that the remainder is an extended bundle event
structure.

The intuitive interpretation of the above definition is as follows. First, all events in o are
removed from F and the conflicts between the remaining events are retained. Then, each event
e € F that is disabled by some event in ¢ cannot happen anymore, and is made impossible
by introducing an empty bundle pointing to it. Each bundle X +— e such that X NG # & is
removed, because the condition that this bundle poses, namely some event in X should have
happened before e can happen, has now been satisfied.

2.29. ExAMPLE. The remainder of an extended bundle event structure is exemplified in

Figure 2.3. 0J
b b b
| SEPY L4
c d C d d

Figure 2.3: Example remainder of an extended bundle event structure.

We have the following correctness result concerning the remainder. It says that if £ can evolve
into &' by executing o then ¢’ is a trace of £ iff 0 ¢’ is a trace of £. This implies that £ after
o does not allow evolutions that are disallowed by £. In addition, it states that the Iposet
induced by o ¢’ is an extension of the lposet induced by o.

2.30. THEOREM. Correctness of remainder

For o0 € T(€) and ¢’ a sequence of events:
1. o' €T(€o]) <= o0’ € T(E)
2. o' € T(€lo]) = L(o) is a prefix of L(o o’).

PROOF. Follows directly from [89, Theorem 6.3.9]. O

2.3.4 Transformation rules

This section presents some transformation rules for extended bundle event structures that can
be used to transform £ into & such that L(€) equals L(E'). The rules involve only part of
the event structure at hand. Each rule is defined in a pictorial form; the formalization and
correctness proofs of these rules is not relevant here and can be found in [89]. Each picture

32 Chapter 2: Extended bundle event structures

shows only the relevant part of an event structure, that is, the part that is not depicted does
not affect the validity of the presented rule. For the representation of the transformation rules
we use the following notation.

2.31. NOTATION. Sets of events are represented by circles. A bundle X + e is represented
by a directed arrow from the circle representing X to event e. In addition, for X, Y C F, and
X,Y # @ we have:

e XY 2 (Vec X,e' €Y : e~ ¢€). This is represented by a dotted arrow from X to
Y.

e X—Y 2 (VecY :X s e). This is represented by an arrow from X to Y.

O

The transformation rules are depicted in Figure 2.4. The sub-bundle removal rule is not
an elementary rule, but can be derived from the symmetric conflict inheritance and bundle
redundancy I rules. The rules facilitate the separation of all impossible events in an extended
bundle event structure. The following theorem shows that all the isolated impossible events
can be safely eliminated.

2.32. THEOREM. Removal of impossible events

Let &€ = (E,~,—,l) with e ¢ E, and let a € A. Then £ is Iposet equivalent with
(BEu{e}l,~,—U{(g,e)},1U{(e,a)}).

PROOF. Straightforward and omitted. O

Although the transformation rules are not complete they are useful to remove the major
undesirable aspects from event structures, such as impossible events (e with & — e), and
cyclic bundles (X — ... +— X). Redundancy in bundles can also always be eliminated.

2.4 Causality-based semantics of PA

In this section we show how extended bundle event structures can be used to provide a
causality-based semantics to PA in a compositional way. We define a function, denoted £[|,
that associates to each term B € PA an element of EBES. This mapping is adopted from [89,
Chapter 6]. The set A of action labels of events equals Act™®.

The initial events and successful termination events of an extended bundle event structure are
defined as follows. The initial events are those events that have no bundle pointing to them.
Let & = (E,~,—,1).

2.33. DEFINITION. (Initial events)

The set of initial events of £ is defined by init(§) £ {e€ E| ~(3X CE: X —e)}.
U

Causality-based semantics of PA

33

@ e Bundle transitivity
(: > : —bre € _

e
Symmetric conflict

—’.

e

’ e

@/ e = (: ;ﬂe inheritance
, o

G e G

= Conflict generation

Asymmetric conflict
e inheritance

_ @ Impossible event
generation
e
e = e’ Bundle redundancy |
e
e’ = @ e Bundle redundancy Il
®_}‘, e = @ \o e Superfluous bundles

% e = Sub-bundle removal

e’ \ e - e’ \ e Superfluous asymmetrig
o iad N i o conflicts |
, , Superfluous asymmetri¢
e«—\. e = o \. e conflicts Il

Figure 2.4: Transformation rules for extended bundle event structures.

34 Chapter 2: Extended bundle event structures

Notice that init(€) equals the set of enabled events after the empty trace, i.e., en(e). Successful
termination events are events that are labelled with 8, the successful termination action.

2.34. DEFINITION. (Successful termination events)

The set of successful termination events of £ is defined by exit(£) = {e € E |l(e) =6 }.
0

E[] is defined recursively according to the following definitions. We suppose there is an infinite
universe Ey of events. In the rest of this section let E[B;| = & = (E;, ~, —4, i), for i=1,2
with 1 N Ey = &. (If E; N Ey # & then a suitable event renaming can be applied extended
to ~», — and [.)

2.35. DEFINITION. (Semantics of 0, /, a;, and +)

glo] & (9,9,9,9)
E[v] = ({es},2,9,{(es,6)}) for some es € Ey
Ela; Bi] £ (E,~1,—,l U{(e4,a)}) where
E = FE;U{e,} forsomee, € Ey \ E;
— = 1 U ({{es}} x init(&))
E[Bi +By] 2 (EiUBEy, ~, 1 U=yl Uly) where
vy =~y U o~y U (init(€r) X init(€2)) U (init(Ey) X init(&r)).

O

The semantics of 0 and 4/ is self-explanatory. In €[a; B;] a bundle is introduced from the new
event e, (labelled a) to all initial events in &; as e, causally precedes these events. £] B; + Bs |
is equal to & U &; extended with mutual conflicts between all initial events of £ and &, such
that in the resulting structure only either B; or B, can happen.

2.36. ExAMPLE. Let Figure 2.5 (a) through (c) depict the event structures corresponding
to B; through Bjs, respectively. Then Figure 2.5 (d) and (e) depict £[a; By] and €[By + Bs |,
respectively. O

2.37. DEFINITION. (Semantics of \, [|, >> and [>)

E[BI\G] £ (Ey,~1,1,]) where
(li(e) e G = lle)=71) A (l1(e) € G = l(e) =l1(e))
E[Bi[H]] 2 (Bi,~1,—1,Holy)
E[B, >> B,] £ (E,U E,y,~»,+,l) where
~= ey U o~y U{(e,€) | e,e € exit(€) N e#e'}
= = 1 U =y U ({exit(&) } x init(Ey))
I = (LUly)\ (exit(&) x {6})) U (exit(&r) x {7})
E[By[> By] 2 (ELU FEy,~, 1 U =y, Uly) where

¢
I

~1 U e U (Ey X init(€y)) U (init(€y) X exit(&r)).

Causality-based semantics of PA 35

d
d a ¢
e
b c e
b (UM |
(@):Bg (b): B, (c):B3
a
d
d
a e
b
Co ¢ b
(d):a; B; (e):By + B3

Figure 2.5: Examples of the semantics of action-prefix and choice.

E[B1 \ G] is identical to & except that events labelled with a label in G are now labelled
with 7 turning those events into internal ones. £[B1[H]|] is defined similarly where events are
relabelled according to H (o denotes usual function composition).

E[B; >> B»] isequal to & U &, where bundles are introduced from the successful termination
events of £ to the initial events of £. (To create bundles, mutual conflicts are introduced
between the successful termination events of £;.) This corresponds with the fact that these
initial events can only occur if B; has successfully terminated. The successful termination
events of & are relabelled into internal events.

E[B [> B:] is equal to & U &, extended with some additional asymmetric conflicts. First,
each event in £ may be disabled by an initial event of £,. This models that By is disrupted once
an initial event of By happens. In addition, after the occurrence of a successful termination
event in & no initial event of £ can happen anymore.

2.38. EXAMPLE. Let Figure 2.6 (a) and (b) depict £] By | and E] Bs], respectively.
E[By >> B;] and £[By [> B, | are depicted in Figure 2.6 (c) and (d), respectively. O

We finally consider parallel composition. The events of £] By ||g B2] are constructed in the
following way: an event e of £ or & that does not need to synchronize is paired with the
auxiliary symbol *, and an event which is labelled with an action in G? is paired with all
events (if any) in the other process that are equally labelled. Thus events are pairs of events
of & and &, or with one component equal to x. Two events are now put in conflict if any
of their components are in conflict, or if different events have a common component different
from * (such events appear if two or more events in one process synchronize with the same
event in the other process). A bundle is introduced such that if we take the projection on the
i-th component (i=1,2) of all events in the bundle we obtain a bundle in] B;].

36 Chapter 2: Extended bundle event structures

d e
a b 0
o »® >Q®
(2):B ¢
e (b): B,
d e
a b 1
@ »® »
C
(c):B1>>B; (d):B1[>By

Figure 2.6: Examples of the semantics for enable and disrupt.

For G C Act, BS 2 {ec E; | l;(e) € G?} is the set of synchronization events and Ef 2 E;\E?
the set of non-synchronizing events.

2.39. DEFINITION. (Semantics of ||c)

E[Bi|l¢B:] & (E,~,—,1) where
E = (B x{+*})HU({+}xEf)U
{(e1,e2) € EY x Ej [l1(e1) = la(e2) }
(e1,€2) ~ (e1,€5) < (ex ~1 €1) V (e2 ~2 €3) V
(er =€l #* N ex#ey)V(ea=ey#* A e #el)
X (e,e) & (@AXiCE :Xi—1e1 AN X={(e,e')eE|ec Xi})
VEXy CEy:Xygrspes AN X={(e,e') e E|e € Xy})
[((e1,e9)) = if e = x then [y(ez) else I;(ey).

O

Note that X +— (e, ey) is indeed a bundle, because, for instance, for X = {(e,€') | e € X; },
it follows V (e, €'), (e, ") € X : €' #€" = (e,€') ~ (e,€"). By symmetry, a similar argument
holds for bundles satisfying X = { (e, €e') | ¢’ € X, }.

2.40. EXAMPLE. The definition of £] | for parallel composition is exemplified in Figure 2.7.

0
The semantics of E[P] where P := B is treated in Chapter 10.
2.41. THEOREM. VB € PA: £[B] € EBES.
PROOF. By induction on the structure of B. Routine and omitted. O

It appears that events in bundle sets of £] B are always equally labelled.

Causality-based semantics of PA 37
a
a c b c
o———® “ C &—® = c
b
a b b c a b c
o———® “ b e—®e@ = @ e L]
a a a a a
e lla o = l—a
b b
c c
a a
a b
” a &—e = b
a a
d d
a b b b
o o ll@an e = \o
Figure 2.7: Examples of the semantics for parallel composition.
2.42. LEMMA. For B € PA let £[B] = (E,~>,+,l). Then
VX CE,e,el,e" e E: (X —e NeeX NeeX) = I)=1(")
PROOF. Straightforward by induction on the structure of B. O

In Chapters 4, 6, 7, and 8 we use a slightly different version of £ |, denoted £'[|. The need

for this slight adaptation is explained in these chapters. Below we present the definition of

&'[] and prove that any function that satisfies this definition is equivalent to £]] in the sense

of having identical sets of Iposets. (The differences with £]]| are underlined.)

2.43. DEFINITION. (Alternative semantics)

E'[] is a function that satisfies

E'a; B,

I =

&' B, >> B,

$

I=—""1}

I=—""}

(1>

(E,~1,—,l1 U{(eq,a)}) where

E; U {e, } for some e, € Ey \ Ey

—1 U ({{es}} x E') where init(€,) C E' C E;
(E1 U Ey, ~>,—,1) where

w1 U vy U{(e,e) | e e €exit(&) N e#e'}

38 Chapter 2: Extended bundle event structures

= = = U =y U({exit(&)} x E') where
Iﬂlt(gz) g El g E2
I = (Lhuly)\ (exit(&) x {6})) U (exit(&r) x {T}).

For all other syntactic constructs let &[B] = £[B]. O

The only difference between £'[| and €[| concerns the definition of the bundles for action-
prefix and sequential composition. For instance, £'[By >> B,] introduces a new bundle from
exit(€1) to all events in a set E', init(€y;) C E' C E,, whereas £] | introduces such bundles
only to the initial events of £. From the following theorem it follows that this is equivalent
in terms of families of lposets.

2.44. THEOREM. VB € PA: L(E[B]) = L(E'[B]) for any &'[] satisfying Definition 2.43.

PROOF. The proof is by induction on the structure of B.

Base: For 0 and +/ we have that £[B] = £'[B] which proves the theorem.

Induction Step: By definition of &'[| it suffices to only consider action-prefix and enabling. We
only provide the proof for action-prefix; the proof for enabling is similar and omitted. Suppose the
theorem holds for B;. Let & = &[a; Bi], & = E[B1], & = €'[a; B,], and & = £'[B;]. For
init(€,) = E; the theorem trivially holds since £[| = £'[] in this case. Assume init(&;) # E;.
Consider &, and introduce a new bundle {e, } +— e with e a non-initial event in & pointed to by
X where X consists of initial events only. (Since init(£;) # E,; it is easy to see that such event
must exist.) According to the bundle transitivity rule (see Section 2.4) the resulting event structure
is Iposet equivalent to £. This procedure is repeated by each time introducing a bundle {e, } — e
where e is an event in E; \ A where A is the set of events in F; to which a bundle originating from
e, already exists. Obviously, such a procedure terminates when all events in E; have been ‘visited’
resulting in an event structure with { e, } — e for all events e € E;. As all intermediate structures
are lposet equivalent, this shows that introducing an additional bundle from e, to each event in E’
(init(€;) C E' C Ey) results in an event structure which is lposet-equivalent to £. Together with the
induction hypothesis this proves L(E') = L(£). O

As a result of this theorem we may safely interchange the use of £] | and any £'[] that satisfies
Definition 2.43 whenever appropriate.

2.5 Event-based operational semantics for PA

In this section we define a transition system (in the sense of [120]) in which we keep track
of the occurrence of actions, that is, events, in an expression of PA. This results in an event
transition system. In order to define an event transition system we decorate each occurrence
of an action-prefix or 4/ with an arbitrary but unique event occurrence identifier, denoted by
a Greek letter. These occurrence identifiers play the role of event names. For instance, an
expression like a ; b+ b becomes a, ; by + be and expression a; 4/ >> b becomes a, ; \/1/) >> be.

For parallel composition new event names can be created. If e is an event name of B and
¢/ an event name in B’; then possible new names for events in B||g B" are (e, *) and (x,€)

Event-based operational semantics for PA 39

for unsynchronized events where e (e') is independently performed by B (B') and (e,€’) for
synchronized events. The actual event names of the newly created events are in fact irrelevant
(though technically convenient); the important aspect is that they are unique.

2.45. DEFINITION. (Occurrence identifiers)

Let Occ be an infinite set of occurrence identifiers. The set of events Ev is now defined
as the smallest set satisfying

e Occ C Ev
e Vec FEv:(e,x) € Ev A (x,e) € Ev

e Ve,e' € Ev: (e,€e) € Ev. -

We present a set of inference rules that define set of transition relations (ea), C pAt x
Ev x Act™ x PAT, where PA* denotes PA augmented with occurrence identifiers. B (ea), pr
denotes that behaviour B can perform event e € Ewv, labelled with action a € Act™, and
subsequently evolve into B’. The transition relation (&9, is defined as the smallest relation

closed under all inference rules defined in Table 2.1.

Notice that by omitting the occurrence identifiers from the expressions and the transition
labels we obtain the standard interleaving inference rules of PA as presented in Chapter 1.

The relationship between the denotational semantics of PA in terms of event structures and the
event-based operational semantics is as follows. Let TS(B) be the transition system obtained
by applying the inference rules of Table 2.1 to B. We can also construct a transition system
for £[B] by having elements of EBES as states (€[B] being the initial state) and having a
transition from & to &' if &' = £[o] with | 0 | = 1. The transitions are labelled with the event
in o and its action label. Let this transition system be called ETS(E[B]). (For brevity, we do
not elaborate on the formal definitions of these transition systems; these definitions are quite
straightforward.)

2.46. THEOREM. VB € PA: TS(B) ~ ETS(E[B]).

PROOF. From [89, Theorem 7.5.3| it follows that TS(B) and ETS(E[B]) are event trace equivalent.
Since for each transition B —©2) B’ there is a unique way in which this transition is derived from
the inference rules it follows that TS(B) and ETS(E[B]) are strong bisimulation equivalent, see [89,
Theorem 7.3.2]. O

A similar result has been obtained by Baier & Majster-Cederbaum [10] in the context of
theoretical CSP (TCSP) and prime event structures. Due to the external choice operator in
TCSP they obtain weak bisimulation equivalence rather than strong bisimulation equivalence.

40 Chapter 2: Extended bundle event structures

Ve 9,0 ag; B o), B
B, &9, p! B, &9, B!
By + B, (&a), Bi B, + B, (&a), Bé

B, &2, p! B, &, gt

a#o
B, >> B, -£9, B! 5> B, () B, >> B, &1, B,
B ({70') B/ B (6;6) BI
: . (a # 6) : :

B, [> B, % B [> B, B\ [> B, &,

B, &4, B! B, -2, B!

— (a & G*) — (a & G
B, ||¢ By &9, B || . B, B ||¢ B, &89, B, || B

B (6,0)5 B! B (¢,a) B!

: %(s%a)? t (a€@)
By || B, —~*5 Bl || By

B (E’a)EBI B (&,a) B’
(a ¢ G) (a € @)
B\ G-, B\ @ B\ G-&7, B\ G

B (¢,0) B
B[H] (g’H(a))eB’[H]

Table 2.1: Event-based operational semantics for PA.

3 Disjunctive causality and interleaving

This chapter discusses two qualitative extensions of extended bundle event
structures. In the first extension the stability constraint on bundles is
dropped. The resulting model, called dual event structures, incorpo-
rates conjunctive causality—like all other event structures—and disjunctive
causality—unlike most other event structures. The second extension com-
prehends the incorporation of an (irreflexive and symmetric) interleaving
relation between events. We investigate for both models how Iposets can
be deduced and what transformation rules are supported. The expressive-
ness of the models is compared with the event structures of Chapter 2.

3.1 Introduction

Causal dependencies between events can be of different nature. The most basic notion is a
binary relation, < say, between events, where e, < e. means that e, enables e, (in process
algebra we would write a; ¢). When, in addition, we have e, < e. event e, is enabled once
both e, and e, have occurred (i.e., (a|||b) >> ¢). This type of causality is referred to as
conjunctive causality: an event is enabled once all of its causal predecessors have occurred.
Conjunctive causality is (in one form or the other) present in all types of event structures of
Chapter 2. The natural complementary construct, called disjunctive causality, is that e, is
enabled once either e, or e, has occurred (similar to (a +b) >> ¢). Using disjunctive causality
it can be expressed that an event is enabled once some event out of a number of potential
causal predecessors has happened. A similar terminology is adopted by Gunawardena [60].
He refers to conjunctive and disjunctive causality as AND and OR causality, respectively.

Extended bundle event structures support the following types of causalities (see Figure 3.1):

e conjunctive causality—if X + e and Y + e then (X ‘and’ V) — ¢;

e (exclusive) disjunctive causality—if {e, e’ } — ¢€” then e” is enabled once either e or €’
has occurred with the restriction that either e or ¢’ can occur but not both (this is due
to the stability constraint).

Since the combination of bundles pointing to the same event leads to a conjunction of enabling
constraints we might say that extended bundle event structures require the specification of
causalities in conjunctive normal form. For instance, if X = {e,,e;,} and Y = { e, } we have
that X + e and Y + e is an enabling condition which denotes ((e, ‘or’ e;) ‘and’ e.). An
overview of the types of causalities in event structure models is given in Table 3.1.

41

42 Chapter 3: Disjunctive causality and interleaving

a a\/b avb
b c c

.) (exclusive)
causality conjunctive disjunctive
causality causality

Figure 3.1: Types of causalities in extended bundle event structures.

types of causality
event basic ‘and’ ‘or’ normal
structure form

prime e<e + - C

stable XFe + exclusive D

flow e<c¢e + exclusive C
(extended) bundle | X —e 4+ exclusive C

dual X—e + + C

(‘+’ is present, ‘-’ is absent,
C = conjunctive, and D = disjunctive)

Table 3.1: Types of causalities in event structures.

As already pointed out by Gunawardena [60] it is interesting to observe that formal models
for concurrency mostly focus on conjunctive causality, while disjunctive causality has received
only scant attention. This does, for instance, also hold for Petri nets where the incorporation
of disjunctive causalities gives rise to unsafe nets (and the modelling of disablings ~~ gives rise
to self-loops or inhibitor arcs), see e.g., Katoen [81]. Due to the conflict inheritance property
prime event structures do not support disjunctive causality at all; other event structure models
do allow alternative enablings of events, but do not support disjunctive causality in its full
flavour—due to stability-like constraints alternative enablings are required to be in mutual
conflict, such that in a system run only one of these alternative enablings can happen. Using
Gunawardena’s jargon this is best described as XOR causality.

Besides this observation the relevance of disjunctive causality has been argued in different
application fields, such as the design of distributed systems [17, 46, 145], the design and analysis
of speed-independent circuits [157], and the specification of business processes such as workflow
management systems [41]. In the first (and main) part of this chapter we therefore drop the
stability constraint from extended bundle event structures such that disjunctive causality is no
longer restricted to be exclusive. Since the resulting model supports the dual conjunctive and
disjunctive causalities we baptized this model dual event structures. We investigate for this
new type of event structures how notions like event trace, remainder and families of lposets
are defined and consider several transformation rules that preserve correctness in terms of

Disjunctive causality 43

lposets. The expressiveness of this model is compared to the other event structure models of
Chapter 2.

Ferreira Pires et al. [46, 145] use a notation based on different types of causality to support the
design of distributed systems. They include a mechanism to express the interleaving of events
which is used to model that events can happen in any order but are not independent, i.e.,
they should not occur at the same time. Such scenarios typically appear in mutual exclusion
situations. Inspired by this work we equip in the second part of this chapter dual event
structures with a symmetric (irreflexive) interleaving relation between events, denoted by =.
The intuitive interpretation of e = €’ is that e and e’ are interleaved, e being caused by e’ when
e’ occurs before e, and vice versa when e occurs before e’. Using such relation interleaving of
events can be represented in dual event structures without having the need for copying events
while retaining the symmetric nature of interleaving. A similar concept is presented by Zwiers
and Janssen [159] and Wehrheim [151] who use a global symmetric dependency relation on
actions (rather than events).

3.2 Disjunctive causality

The principle of (and need for) disjunctive causality can best be illustrated by means of a
simple example. We consider a system called one-all (adopted from Verhoeff [146]), with
two inputs e, and e, and two outputs e, and eq, see Figure 3.2(a). In this system output
e. happens when one input has been received, whereas output e; occurs when all inputs are
received. Phrased otherwise, if e; happens then both e, and e; should have occurred, whereas
if e, happens either e, or e, or both have occurred. The obvious representation of the enabling

a c
a c
—> —>
b d
b d
() (b)

Figure 3.2: A simple system requiring disjunctive causality.

of e, in extended bundle event structures, {e,, e, } — e, requires e, and e, to be in mutual
conflict, which is obviously not the case. This problem can be solved by copying event e., one
copy for each alternative enabling, and putting these copies in mutual conflict. A drawback
of this solution is that it requires copying of events and leads to an explosion of the number of
events in general—if there are N alternative enablings of ¢ we need N copies of e, all mutually
in conflict. At a conceptual level we also prefer the representation of e. by a single event, not
distinguishing between whether it is enabled by e, or ey.

Dropping the stability constraint enables an event structure as depicted in Figure 3.2(b). This
entails that events in a bundle set X are no longer required to be in mutual conflict. The
intuitive interpretation of X +— e now becomes: when event e happens, at least one event in

44 Chapter 3: Disjunctive causality and interleaving

X has occurred. So, an event e is enabled when for each bundle X +— e some event in X has
happened.

3.2.1 What are dual event structures?

In this section we formally define dual event structures, the type of event structures one
obtains by dropping the stability constraint from extended bundle event structures. All other
ingredients remain as they were:

3.1. DEFINITION. (Dual event structure)

A dual event structure A is a quadruple (E,~>, 1) with

e F, a set of events
e ~» C FE X E, the (irreflexive) asymmetric conflict relation
e — C P(E) x E, the bundle relation

e |: E — A, the action-labelling function.
O

Dual event structures are represented in the same way as extended bundle event structures.
DES denotes the class of dual event structures and we use A, possibly subscripted and/or
primed, to denote members of this class.

The notions of event trace and configuration are defined in an analogous way as for extended
bundle event structures (see Definition 2.18). For convenience we recall this definition. Let
T(A) denote the set of event traces of A.

3.2. DEFINITION. en(0) £ {e|e€sat(c)\T A - (3e; €T e~ e)}. O

3.3. DEFINITION. (FEwvent trace of a dual event structure)

An event trace o of dual event structure A = (E,~»,+—,1) is a sequence of events e; . . . e,
with e; € E satisfying e; € en(o;), for all 0 < i < n.

A set C' C F is a configuration iff there is an event trace o such that C' =&. O

There is an important difference with extended bundle event structures that we like to point
out. Due to the stability constraint for extended bundle event structures the following holds
for each event trace ¢ = e;...¢, and bundle X — ¢;:

XNo,#2 = | X no;|=1.

Stated in words, if there is some event in X present in o; then there is precisely one such
event. A technically pleasant consequence of this property is that one can uniquely determine

Disjunctive causality 45

from o the direct causal predecessors of each event in ¢. This absence of causal ambiguity
property is lost for dual event structures, as shown in the following example.

3.4. ExaMPLE. Two example dual event structures are depicted in Figure 3.3. Figure 3.3(a)
has maximal configuration { e,, €5, €. } where e, is enabled by e, or e;,. Some of its event traces
are €4, €, ¢, €p €c, €4 €p €¢, €p €, €.. Event trace o = e, €, €. contains causal ambiguity since for
X = {es, e}, X NeEgep = {eq,ep}. As a result one cannot uniquely determine from o
whether event e, causally depends on e, or on e;. Figure 3.3(a) is known in the literature as
Winskel’s switch [155].

In Figure 3.3(b) two bundles { ey, e, } — eq and { e, e, } — e4 determine the enablings of e4.
Possible event traces of this dual event structure are: ey eq, €4 €. €4, €c €p €4 €q- O

a a b

C d C

@ (b)

Figure 3.3: Two example dual event structures.

3.2.2 Families of lposets

The semantics of dual event structures is defined using families of lposets, non-empty sets of
finite lposets ordered under the prefix relation. Like in Chapter 2 for extended bundle event
structures we provide two views on Iposets: an intensional one, denoted L°, which is deter-
mined by considering ~~ and +, and an operational one, denoted L®, which is derived from
system observations, i.e., event traces. We first consider L° and start with some observations.

Consider Figure 3.3(a). For this dual event structure we would expect e, to be causally
€a—€, €a

e and ep—re,
The reader might argue that it should also be possible for e. to be causally dependent on
€a

both e, and e, taking into account the lposet . >‘>e . We abandon this possibility because
b c

the occurrence of only e, or e, enables the occurrence of e.. When we would incorporate this
possibility it is not clear (to us) whether e, being dependent on either e, or e;, and e, being
dependent on both e, and e, should be modelled by the same event, or not.

dependent on either e, or e;,. So, we consider to be legitimate Iposets.

The general idea for the definition of L° is that for each bundle pointing to some event e there
must be precisely one event which is responsible for the satisfaction of this bundle.

In the rest of this section let A = (E, ~»,+—,1).

46 Chapter 3: Disjunctive causality and interleaving

3.5. DEFINITION. (Intensional lposets of a dual event structure)

The intensional Iposets of A, denoted L°(A), is the family of lposets (C,<&,l | C)
where <¢ C C x C is an acyclic relation! and C' C E is conflict-free (i.e., CF(C) holds),
satisfying for all e € C":

1.VeeeC:e'~e = € <¢e, and
2. 3F,:{X | X —e} — {€]|€ <¢c e} such that
(a) {e'|e <ce} C{F.(X)|X € dom(F,) }U{e|e ~e}), and

(b) VX € dom(F,) : F.(X) € X.
0

The first constraint requires that conflicting events are ordered in the right way; this is identical
to the case for extended bundle event structures (cf. Definition 2.19). Remark that, since C
is conflict-free, it cannot appear that e ~ ¢’ and e’ ~ e.

The second constraint ensures that for any bundle pointing to e there is precisely one event
in that bundle (set) that is responsible for the satisfaction of this bundle. It requires for each
e in C the existence of a (possibly empty) function F,, the bundle assignment function of
e, that associates with each bundle X pointing to e an event €' in X such that €' precedes
e. Constraint 2.(a) ensures a kind of minimality: event e’ can only precede e (under <¢) if
e/ ~ e, or if €' is responsible for the satisfaction of a bundle pointing to e. Constraint 2.(b) is
a consistency constraint saying that only events can be responsible for the satisfaction of X if
they are member of X .2

Two remarks are in order. First, it should be observed that it is not required for F, to be
injective, i.e., it is allowed for X — e and Y — e with X # Y that F,(X) = F.(Y) = €.
In this case €' is an event that belongs to both X and Y, and that is responsible for the
satisfaction of both bundles. Secondly, if X — e and X ~ ¢ it is not required that F.(X)
equals Fp(X). This means that e and €’ may be caused by different events in X.

The second constraint requires the existence of a function for each e in C' that satisfies some
conditions. The following lemma shows that such function always exists.

3.6. LEMMA. For C C E with CF(C) and <¢ an acyclic relation satisfying constraint 1. of
Definition 3.5 there exists for any e € C' a function F, : { X | X — e} — {€' | e <c e}
such that

1. { e <ce} C{F(X)| X € dom(F,)} U{e'|e ~e}), and
2. VX € dom(F,) : Fo.(X) € X.
PROOF. The proofis by contradiction. Let C' C E with CF(C) and < an acyclic relation satisfying

constraint 1. of Definition 3.5. Assume that for e € C all functions F, : {X | X — e} — {€' |
e’ <¢ e} do not satisfy the second constraint of Definition 3.5. This could only be because:

LA relation is acyclic if its transitive closure is irreflexive.
2Remark that the second constraint of Definition 3.5 implies that X — e = (Je' € X NC : €' <¢ e) as
required for the lposets of extended bundle event structures; see also Definition 2.19.

Disjunctive causality 47

1. {e'|e <%ce} Z {F(X)| X € dom(F,)} U{e' | & ~ e}). Then there exists an event e,
say, € <c e but €' ¥~ e and ' € { F.(X) | X € dom(F.)}, for all functions F,. This means
that there exists no bundle X — e with ¢’ € X. But then e’ <¢ e can only follow from e’ ~ e,
according to the first constraint of Definition 3.5. Contradiction.

2. 3X € dom(F,) : F.(X) ¢ X, for all functions F,. Then there is a bundle X — e such that
X Nn{e'|e <ce} =0a. This contradicts with constraint 2.(a) of Definition 3.5.
U

The next lemma shows that all elements in L°(A) are lposets.

3.7. LEMMA. Vp € L°(A) : p is an lposet.

PROOF. Let p = (E,,<,,lp) be an element in L°(A). It suffices to check whether <, is a
partial order. Since <, is the reflexive and transitive closure of <, (i.e., <p,) it remains to check
antisymmetry. Suppose e, e’ € E, such that e <, ¢’ and €' <, e. If e # €' then we would have

e < ¢ and e’ <} e, where <! denotes the transitive closure of <,. But then <, would be acyclic.

Contradiction, so e = ¢'. O
3.8. E Th imal intensional Iposets of Figure 3.4 €a™Ce| and |
.8. EXAMPLE. e maximal intensional lposets of Figure 3.4(a) are e and |o* . |-
a
a b c a b
b
Cc d d C
€Y (b) (c)

Figure 3.4: Three dual event structures.

Figure 3.4(b) has the following maximal intensional lposets:

€a—€c—€4| [€a €a—€c

€a _€Ec
ey , and

€p—€c€C4] |ep—¢€yq ep—eq :

Finally, Figure 3.4(c) has the following maximal intensional lposets:

e e e
€ Ca €a

e(l
, , , and |€p—€q].
N N N éo
€c—€4 €c €d €p €d

O

It is hot hard to check that for each event trace o of A there exists a (set of) corresponding
Iposet(s) that orders only the (possible) causal dependencies between events in o. Moreover,
each linearization of an lposet of A is an event trace of A. So,

48 Chapter 3: Disjunctive causality and interleaving

3.9. LEMMA. Vo € E*: (3pe L°(A) 1 E, =70 N <, C <) < o€ T(A).
PROOF. ‘=’ Let 0 =e¢;...¢e, and @ = E, such that <, C <*. The proof is by contradiction.
Suppose o € T(A). This could only be because one of the following reasons:

1. e; ~» e; and e; <} e;,. But e; ~ e; implies e; <, e;, and so e; <, e;. Since <, C < we have
e; < e;. From the antisymmetry of <} it follows e; = e;. But ~» is irreflexive. Contradiction.

2. X —» e and X No; = &. From X — e; it follows that (Je € X : e <, ¢;), and so
(Jee X :e <, e;). Since <, C <% then e <% e;, and so X N 7; # &. Contradiction.
‘«<": Straightforward and omitted. O
We sometimes let L°(7) denote the set of lposets corresponding to 7.

Dual event structures that have the same sets of intensional Iposets have the same set of event
traces.

3.10. THEOREM. VA,A" € DES: L°(A) = L°(A") = T(A) =T(A").

PROOF. Assume L°(A) = L°(A’'). Let 0 € T(A). From Lemma 3.9 it follows that for all o € T'(A)
there exists an lposet (7, <,l) in L°(A) with < C <*. Since L°(A) = L°(A") it follows that (7, <,!)
in L°(A"), and according to Lemma 3.9 we have o € T(A"). The proof for the opposite direction, i.e.,
o € T(A") = o € T(A), is obtained by reversing the arguments A and A’ in the above reasoning.

[l
The reverse implication does not hold. A counterexample is provided by
a a
c c
b b
d d
. . €a2€4d| |
These two dual event structures are event trace equivalent, but, for instance, . Z>e is a
b c

maximal intensional lposet of the right-hand dual event structure, but not of the other. This
entails that event traces are not sufficiently expressive as an underlying semantical model for
dual event structures.

We now concentrate on the definition of L*(A), the operational characterization of the lposets
of dual event structure A. Due to the possibility of causal ambiguity it is not possible to
generate the lposets of a dual event structure according to the same operational procedure as
for extended bundle event structures. For instance, the completed event traces for Figure 3.4(a)
are €g €p€c, €p €y €¢, €4 €. €y, and epe.e,. When we would follow the same procedure as in
Definition 2.24 we obtain a single lposet in which e, is completely causally independent. This
is undesirable.

Observe that the sets of events preceding e, in these event traces are { e, }, { ep } and { e,, e }
The minimal sets under C represent the alternative enablings of e, and are called the minimal
enablings of e.

Disjunctive causality 49

3.11. DEFINITION. (Minimal enablings of e in [o].)

For 0 € T(A) and e € F, the minimal enablings of e in [¢]. are defined as

men([o].,e) = {77 |Joy:01e0, € [o]w A = (ojedy € [o]. : 77 C 1)}

O

The Iposets of A are now constructed in the following way. For each event trace o of A we
construct lposets of the form (7, <, [@), where < is determined as follows. For each event e
in & we select a minimal enabling { €}, ..., e} } from the set of minimal enablings men([o].,€).
Since all events in such minimal enabling must precede e in order to enable it, these events
precede e under <: €] < e,...,e; < e. In order to ensure transitivity we require that if e is
part of a minimal enabling of €', say, and ¢’ is part of a minimal enabling of " then €’ is also
part of the minimal enabling of e”.

For technical convenience we introduce:

3.12. DEFINITION. For < CEx Eandec Elet |.e 2 { c E|e <e}. O

3.13. DEFINITION. (Operational lposets of a dual event structure)

The operational Iposets of A, denoted L*(A), is the family of Iposets

U {(7,<%117)|Ve,e €T:|.ecmen(@,e) A (¢ €lce =] Clee)}.
o€T(A)

<° denotes the reflexive closure of <.

3.14. LEMMA. Vp € L*(A) : p is an Iposet.

PROOF. Let p=(E,,<,,l,) an element of L*(A). We prove that <, is a partial order. From the
previous definition it follows that <,=<°, where <° is the reflexive closure of <. It remains to check
antisymmetry and transitivity.

1. To prove antisymmetry we derive:
e<’e ANe<°e
< { Definition 3.12 }
eclee Ne€Elcoe
& { <° is the reflexive closure of < }
(eclce Ne€le) Ve=e
= { Definition 3.13 }
(eclce’ Neelce N |ceClee A e Clee) Ve=e
< { calculus }
(eclce Ne€eloe N |ce=[c€)Ve=¢e

50 Chapter 3: Disjunctive causality and interleaving

= { calculus }
(e€lce Ne€Elce) Ve=e¢

= { lce€men([o],e) = e& | e}
e=¢e

2. We prove that < is transitive; this implies that <° is transitive.

e<e Ne<e

< { Definition 3.12 }
eclee Ne el e

= { Definition 3.13 }
e€lce’ N e Cloe”

= { calculus }
eclce

< { Definition 3.12 }

e<e'

O

3.15. ExXAMPLE. Consider again the dual event structures of Figure 3.4. The maximal

operational lposets of Figure 3.4(a) are Z‘Z_)ec and Z‘Z —e,|- Figure 3.4(b) has the following
maximal operational lposets:

€a—€.—€gq] [€a—€c €a _Cc

€p Y lep—eql’ and ey —eq|

Note that 2‘; _se,—e,| 18 nOt obtained as an operational Iposet while it is an intensional Iposet.

Finally, Figure 3.4(c) has the following maximal operational Iposets:

€p
e €q

“§ and gb_>ed .
€c €d

c

Also for this dual event structure some intensional lposets are not obtained operationally. [

The previous example shows that the operational and intensional characterizations of lposets
do not have to coincide. This is not that surprising, since the operational perspective is
constructed from event traces and we know from the above that having the same set of event
traces does not imply having the same set of intensional Iposets for dual event structures. The
Iposets that we do construct operationally are, however, correct lposets:

3.16. LEMMA. VA € DES : L*(A) C L°(A).

PROOF. Let p = (E,,<,,l,) an lposet of L*(A). We prove that p is an element of L°(C) by
contradiction. It can only not be an lposet in L°(C) because either

Disjunctive causality 51

1. de,e’ € E,: e~ e and e £, e'. If e ~» €' then e should precede €’ in each event trace o with
o = E,. So, e belongs to each minimal enabling of e in [o].. But thene € |- €', and so e <, €.
Contradiction.

2. There exists an event e for which one of the constraints for F, is not fulfilled.

(a) {' | e <, e} & {F(X)| X € dom(F.)} U{e | & ~ e}). Let e <, e, e # e,
and e 4 e. The above inequality of sets for all functions F, implies that there exists
no bundle X — e with ¢’ € X. Since ¢’ <, e and e # €' there is a minimal enabling
of e. Because there exists no bundle X — e with e, this can only be because e’ ~~ e.
Contradiction.

(b) 3X € dom(F,) : F.(X) ¢ X, for all functions F,. Then there is a bundle X +— e such
that X N{e' | ¢ <, e} = @. But if X — e then each minimal enabling of e should
contain some event in X. So, X N{e' | e <, e} # &. Contradiction.

O

The relationship between L° and L® can be identified in more detail. For deriving the oper-
ational lposets we have taken the minimal enablings of an event e as a starting-point. This
reflects the idea that any event in a minimal enabling should causally precede e in order to
let e happen. This perspective prevents, however, the generation of lposets with a bit more

ordering than strictly necessary. E.g., for Figure 3.4(b) the lposet g‘; —e,—sey| 18 DOt Obtained
e, @€
since there exists an lposet ¢ Ve °| that is less ordered.
€p—€4
3.17. DEFINITION. (Smoothening)
(E, <, 1) is smoother than (E', <", I'Y if E=FE', =1 and <' C <. O

That is, ¢ is smoother than p if it has the same labelled events as p, but contains more ordering
among the events; i.e., ¢ is closer to being linear. Evidently, ‘smoother than’ is a partial order
on lposets.

The operational Iposets are the intentional ones that are minimal under the ‘smoother than’
relation.

3.18. THEOREM.VA € DES : L*(A) = {p € L°(A) |=(3¢q € L°(A) : p is smoother than ¢)}.

Proor. ‘C’: Let p € L*(A). From Lemma 3.16 it follows that p € L°(A). The proof is by
contradiction. Let p = (E,,<,,[,) and ¢ = (E,, <,,[;). Assume g € L°(A) such that p is smoother
than g, i.e., p contains more ordering than ¢q. Suppose e <, €', but e £, €'. If e £, €’ then we can
construct an event trace o with @ = E, = E, where €' precedes e. But then e ¢ men([o].,e') and so
e £, €. Contradiction.

‘D% Let p € L°(A) such that p is minimal under smoothening. Let p = (E,,<,,[,) and E, =
{ei,...,en}. For each e; € E, we construct a sequence o’ such that e; is only preceded in o' by
those events in p that precede e; under <,. Lemma 3.9 guarantees that o* € T'(A). Repeating this
process for each e; € F, thus results in a set of event traces ¢*,...,0" with o; = E,, and thus 0% ~ o7
for all 0 < 4,5 < n. From Definition 3.11 and the construction of ¢* it follows immediately for each

52 Chapter 3: Disjunctive causality and interleaving

e; € E, that men([o?].,e;) consists of the set of events that precede e; under <,. Since o' € T(A)
this implies that p € L*(A). O

3.19. THEOREM. VA, A’ € DES: L*(A) = L*(A") < T(A) =T (4’).

PrOOF. ‘=’ It follows from Lemma 3.9 that every linearization of an lposet of A and A’ is

an event trace. In a similar way as in the proof of Theorem 3.10 it can be proven that L*(A) =
L*(A") = T(A)=T(A).

‘<" If T(A) = T(A’) it means that the minimal enablings of all events are identical, and consequently
that all operational Iposets are identical. [l

3.2.3 Remainder

The remainder of a dual event structure after the execution of a sequence of events is defined
analogously as for extended bundle event structures.

3.20. DEFINITION. (Remainder of a dual event structure)
A" = (E',~',="1") is a remainder of A after o € T(A), denoted A’ = Afo], iff
e E'=FE\7T
e =~ N(E'"xE")
e »'=(\{(X,e)| X—e ANXNTA£T}HU{(D,e)| e €T,ec E':e~€'}
o« I'=IE.
U

Each bundle X +— e such that X N & # & is removed, because the enabling condition that
this bundle poses, namely that some event in X should have happened before e can happen,
is now fulfilled. This is according to the principle that the first possible cause of an event e
that happens will cause e.

3.21. EXAMPLE. Let dual event structure A be depicted in Figure 3.5(a). Figure 3.5(b)
depicts Ale,] and Figure 3.5(c) depicts Aley]. Remark that e, is enabled once e, occurs.
Similarly, e. and e; are enabled once e;, occurs. O

As a prerequisite for the next theorem we need to lift the notion of prefix on lposets to families
of lposets. This is done in the following way:

3.22. DEFINITION. For P and Q families of Iposets let

Pis aprefix of Q< (VpeP: (g€ Q: pis a prefix of q))

Disjunctive causality 53

d d e d
() (b) (c)

Figure 3.5: Remainders of dual event structures.

Phrased in words, P is considered to be a prefix of Q iff for each lposet p € P there exists an
Iposet ¢ € Q such that p is a prefix (in the sense of lposets) of ¢. Note that we do not require
the reverse, i.e., that for each ¢ € O there exists a p € P such that p is a prefix of q. So, Q
may contain lposets that have no prefix in P.

We now have the following correctness result for the remainder of A. (This seems identical
to Theorem 2.30 but it should be reminded that L°(7) is now a set of lposets rather than a
single lposet, and that the notion of prefix is generalized to sets of lposets.)

3.23. THEOREM. Correctness of remainder

For 0 € T(A) and o’ a sequence of events:

1. o' € T(Ao]) <= oo’ € T(A)
2. o' € T(Alg]) = L°(0) is a prefix of L°(0").

PROOF. Since the definitions of event trace and remainder for a dual event structure are identical
to that of an extended bundle event structure, the first theorem follows directly from Theorem 2.30.
We prove that L°(7) is a prefix of L°(gd') given that o € T(A) and ¢’ € T(Alo]) witho N7 = @.
Let Alo] = (E',~',—",l'). Let p = (E,,<,,l,) be an lposet in L°(7) and r = (E,, <,,l.) be an
Iposet in L°(7") of A[s]. We prove that there exists an lposet ¢ € L°(d ') such that p is a prefix
of ¢ by constructing an lposet ¢ = (E,, <,,l,) and then show that (i) p is a prefix of ¢ and that (ii)
g € L°(6a'). Let E, = E,UE,, [, =1,Ul, and <,= (<, U <, U <)* where < is an acyclic
relation satisfying:

l.Ve€ E, e €FE,:ewe = e<e¢

22.VXCE,e€E,: X—e AN 2(X'e)= FeecXNE,:e<¢)

where the constraints on the bundle assignment functions are respected. The fact that p is a prefix of
q follows immediately from the fact that no event in E, \ E,, i.e., E,, precedes under <, an event in
E,. The proof that ¢ € L°(g ") is rather straightforward (but elaborate) by checking the conditions
of Definition 3.5 and is omitted here. O

A few remarks are in order. To define the notion of remainder for dual event structures we
have adopted the principle that in case of disjunctive causality the first possible cause of e that
happens will actually cause e. For instance, in Figure 3.5(b) the possibility that e. causally

54 Chapter 3: Disjunctive causality and interleaving

depends on e, is lost, since bundle {e,,e,} — e is satisfied as soon as e, has occurred.
When considering bundles as enablings this is a defensible decision: once an event in a bundle
occurs, the event pointed to by this bundle is enabled, and so can occur. The same choice is
made by Gunawardena in his timed {AND, OR} automata when relating temporal and causal
ordering in case of OR causality [61, 62]. Another justifiable perspective is, referring again
to Figure 3.5(b), that when e, has occurred there is still a possibility for e. to be causally
dependent on ey (if e, happens). This requires a more involved notion of remainder, since
we need to keep track of events that have occurred. The study of this alternative notion of
remainder is left for further study.

For dual event structures we have, according to Theorem 3.10, that event traces are not suffi-
ciently expressive as an underlying semantical model, unlike extended bundle event structures.
It would therefore be interesting to consider remainders after Iposets, rather than event traces,
like we did in this section.

3.2.4 Transformation rules

This section presents some transformation rules for dual event structures that can be used to
transform A into A’ such that L°(A) = L°(A’). We take the same approach as in Section 2.3.4.
Each rule is presented in pictorial form and in formal terms. To illustrate how correctness
proofs of rules are conducted we provide the proofs of some non-trivial rules.

3.24. THEOREM. (E,~>, 1) is lposet equivalent with

(E,~,—\{(X,e) ,)if X —»e ANY—e AN X—Y.
(E,~\{(e,e) }, >,)if X ~e Ne~»X AN Xise ANewe.
(E,~\{(e,e) }, =,)if e~ X AN Xise A e ~e.
(E,~,(—\{(X,e)HUu{(X\ee)},)ifec X N X —e.
(E,~,(—\{(X,hY HU{ (X \e,e)},1)ife' e NeeX N X —e€.
(B, (X,e')}

(

(

(

99

Y

)})
>\ {(X,) HU{ (X \e,e) DX —e ANeeX AN T—e.
E,~—\{(X,e)},)ifg—e AN X —e.
E,~\{(¢e)
)

E,~\{(e,¢

ifgr—e A e ~e.

}’ }_)’
}’ }_)’ l
PROOF. We only provide the proofs for the first two rules. The proofs for the other rules are

similar and omitted. For each rule let A; and A, denote the left-hand and right-hand dual event
structure, respectively.

© 0N oA =

fg—e A e~ e.

)
)

1. The only difference between these two dual event structures is that A, does require e to be
preceded in any lposet by some event in X. The proof is by contradiction. Suppose A; has
an lposet p that contains e but where e is not preceded (under <,) by an event in X. By
definition, e is preceded by event €', say, in Y. So, e’ <, e. For ¢ we have that X — ¢’ and
so there should be some event e” in X with e” <, e’. But then, by transitivity of <, we have

" < e. Contradiction. So, both dual event structures have the same set of lposets.

Disjunctive causality 55

2. The only difference between these two dual event structures is that A; does not allow an lposet
in which e’ is preceded by e. The proof is by contradiction. Suppose A, has an lposet p for
which e’ is preceded by e, ie., e <, €. If e € E, then there is some event e”, say, in X
such that e” <, e. But, since e¢” # €' this means that both e” and e’ occur in a system run.
Contradiction. So, both dual event structures have the same set of lposets.

O

The transformation rules of Theorem 3.24 are pictorially represented in Figure 3.6. The first
three rules and last three rules do also hold for extended bundle event structures, see Figure 2.4.
Remark that there is no transformation rule that allows for the removal of sub-bundles, like
we had for extended bundle event structures. For instance,

b

a

cannot be simplified because removal of { e, } — e, would lead to a dual event structure in
€
which the Iposet ea>>€ becomes impossible. The same applies for the removal of { e,, e, } —
b c
e.. It is interesting to observe that for the operational characterization of Iposets we have that

the above dual event structure can be simplified to
be

N

since these two dual event structures are event trace equivalent.

Impossible events in extended bundle event structures have the pleasant property that they
can always be eliminated while preserving the underlying lposet semantics. Fortunately, such a
result also holds for dual event structures as shown below. The rules of Theorem 3.24 facilitate
the separation of all impossible events in a dual event structure. The following theorem shows
that all the isolated impossible events can be safely eliminated.

3.25. THEOREM. Removal of impossible events
Let A = (E,~,—,l) with e ¢ E, and let a € A. Then A is lposet equivalent with
(BEu{e},~,—U{(g,e)},lU{(e,a)}).

PROOF. Straightforward and omitted. O

The following theorem shows that impossible events do not extend the expressiveness of dual
event structures. This is opposed to flow event structures where self-conflicting events, which
are also impossible, cannot always be removed without affecting the underlying semantics.

56

Chapter 3: Disjunctive causality and interleaving

Bundle transitivity

Asymmetric conflict
inheritance |

Asymmetric conflict
inheritance Il

Bundle redundancy |

Bundle redundancy Il

Bundle redundancy Il

Superfluous bundles
Superfluous asymmetrig
conflicts |

Superfluous asymmetrig
conflicts Il

Figure 3.6: Transformation rules for dual event structures.

Disjunctive causality o7

3.26. THEOREM. A € DES can be transformed into A’ = (E’,~',+—='/1") such that L°(A) =
L°(A') and (V(X,e) e =" X # @).

PROOF. Analogous to [89, Theorem 5.5.4]. O
3.27. EXAMPLE. The transformation rules of this section can, for instance, be used to
eliminate cyclic bundles such as X — ... — X. Consider, for example, the dual event

structure depicted in Figure 3.7(a). By applying the rule of bundle transitivity Figure 3.7(b)
is obtained which can be proven to be lposet equivalent with Figure 3.7(c) by applying the
rule bundle redundancy I. By the rule superfluous bundles we obtain Figure 3.7(d). Finally,
using Theorem 3.25 this dual event structure is proven to be lposet equivalent with the empty

dual event structure. O
b
a a\‘v‘/b a\o o‘/b
C (&) i o
(a) (b) (c) (d)

Figure 3.7: Transformations of a cyclic event structure.

We conclude this section by stating that redundant bundles can always be simplified, i.e., for
X — e impossible events in X can be removed from X (bundle redundancy III), events in X in
conflict with e can be removed from X (bundle redundancy II), and in case e € X, e can also
be removed from X (bundle redundancy I). To our opinion this proves that the transformation
rules, although not complete, are useful to eliminate undesired phenomena from dual event
structures.

3.2.5 Expressiveness of dual event structures

By definition dual event structures are strictly more expressive than extended bundle event
structures, and thus than prime event structures. This also holds at the level of sets of
configurations, since, for example, there does not exist an extended bundle event structure
with the same set of configurations as the dual event structure of Figure 3.4(a).

On the level of sets of configurations extended bundle event structures are incomparable with
stable and flow event structures. That is, there is an extended bundle event structure with a
set of configurations that cannot be generated by any flow or stable event structure, and vice
versa [89, Chapter 6]. This section shows that on the level of sets of configurations dual event
structures are strictly more expressive than stable event structures and flow event structures.

We provide a recipe for transforming a (labelled) stable event structure S into a corresponding
dual event structure A(S). This recipe is proven to be correct on the level of event traces and
indicates that dual event structures are at least as expressive as stable event structures on

58 Chapter 3: Disjunctive causality and interleaving

the level of event traces, and thus on the level of sets of configurations. By providing a dual
event structure for which it is impossible to construct a corresponding stable event structure
with the same set of configurations it is shown that dual event structures are strictly more
expressive than stable event structures.

(Labelled) stable event structure S = (E, #,+,1) is transformed into a dual event structure
A(S) in the following way. The symmetric conflict relation between events e and e’ is turned
into the equivalent asymmetric conflicts e ~» ¢’ and €' ~» e. As a result e ~ €' in A(S) iff
¢ ~» e in A(S). The definition of the bundle relation — is somewhat more complex. Consider
event e with enablings X; e and X, F e in S. Thus, if e happens either all events in X; or in
X, have happened. We now obtain +— by taking all pairs of events (e;,es) with e; € X; and
ey € X5 and introduce a bundle {eq,es } — e for all such pairs. Using this construction it is
ensured that enabling X; - e (for i=1,2) is satisfied iff all bundles in A(S) are satisfied (see
proof of Theorem 3.32). Generalizing this approach to the case of k bundles (k > 0) results
in the following construction.

3.28. DEFINITION. (From stable to dual event structures)

Let S = (E,#,,1) be a (labelled) stable event structure. A(S) = (E,~,,1) with

eecewe Newesefe
e {e,...,ep e VO<i<k:e€X; AN X;Fe,

where k is the number of (non-empty) enablings of e in S.
O

3.29. EXAMPLE. Let S be a stable event structure with set of events { e,, ep, ez, €y, €5 },
er# ey, {€s, e} - ey and {ez,e,} - ey and the other events having empty enablings, see
Figure 3.8(a). The corresponding dual event structure A(S) is depicted in Figure 3.8(Db).
Conform Definition 3.28 this dual event structure has bundles {e,, e, } — ef, {es, €, } — ey,

{ea, ey} — es and {ep, e, } — ey. O
a X
a X
f f
b y y b
(a) (b)

Figure 3.8: A stable event structure (a) and its corresponding dual event structure (b).

In order to prove the correctness of Definition 3.28 we need to define the Iposets of a stable
event structure. This can be done in the following way.

Disjunctive causality 59

3.30. DEFINITION. (Lposets of a stable event structure)

The Iposets of labelled stable event structure S, denoted L(S), is the family of lposets
(C,<E,1] C) where <¢ C C xC is a minimal acyclic relation and C' C F is conflict-free,
satisfying for all e € C"

IXCC:XkFe AN (Ve eX e <ce)

]
It directly follows that each p € L(S) is an lposet. Moreover,
3.31. LEMMA. For all stable event structures S, §': L(S) = L(S') < T(S) =T(S").
PROOF. Straightforward and omitted. O

We now have the following correctness result:

3.32. THEOREM. For all stable event structures S: L(S) = L°(A(S)).

PROOF. ‘C: Let p = (E,,<p,l,) be an lposet in L(S). Suppose X; Fe,...,X; - ein S.
Since p € L(S) it follows from Definition 3.30 that there exists an X,,, for 0 < m < k, such that
X, CE,and (Ve' € X,, : € <, e). According to Definition 3.28 all bundles in A(S) are of the form
{el,--- e, } — e with €} € X, for 0 < j < k. Since all events in X,, precede (under <,) event e we
take for each bundle Y pointing to e the event in X,,, i.e., F.(Y) = e/,. In this way each bundle in
A(S) pointing to e is satisfied by precisely one event. This implies that p satisfies the constraints of
Definition 3.5 and is an (intensional) Iposet of A(S).

‘D’ Let p = (E,,<p,l,) be an Iposet in L°(A(S)). The proof that p € L(S) is by contradiction.
Suppose p € L(S). This can only be because no enabling X; of e in S satisfies (Ve; € X; : e; <, e).
Assume X; Fe,..., X} Fein S. Since p ¢ L(S) it means that for all j we have (Je; € X : e} £, e).
From Definition 3.28 it now follows that for bundle {e},...,e} } — e there is no event preceding
e under <,. But then there is no bundle assignment function for e satisfying the constraints of

Definition 3.5, so p ¢ L°(A(S)). Contradiction. O

The following example shows that dual event structures are strictly more expressive than
stable event structures.

3.33. ExaAMPLE. Consider the dual event structure with events e,, e, and e, with { e,, e } —
e. (i-e., Winskel’s switch [155]). This event structure has the following set of configurations
g {e.},{ev}, {earect,{enec},{€asen}, and { €4, ep,e.}. In a corresponding stable event
structure there should be an enabling {e, } F e. and {e,} F e., but due to the stability
constraint there should be a conflict between e, and e;, making the maximal configuration
{ ea,€p, €. } impossible. So, it is impossible to construct a stable event structure with this set
of configurations. O

So, on the level of sets of configurations dual event structures are strictly more expressive
than stable event structures, and since stable event structures are strictly more expressive
than flow event structures it follows that dual event structures are more expressive than flow
event structures. The realm of event structures indicating the hierarchy at the level of sets

60 Chapter 3: Disjunctive causality and interleaving

of configurations is presented in Figure 3.9. (Expressiveness increases when going from left
to right.) A similar hierarchy of event structure models has recently been published by Van
Glabbeek & Plotkin [52]. It is an interesting result that dual event structures are an ‘upper
bound’ of extended bundle and stable event structures. This is not to say that is the least
upper bound; it would be interesting to consider stable event structures equipped with an
asymmetric conflict relation for this purpose.

extended bundle

event structure
prime bundle / \

event —— event dual event
structures structures structures

\ flowevent___, stableeven/v

structures structures

Figure 3.9: The realm of event structures.

The connection between dual and stable event structures has other important consequences.
From Rensink [127] it is known that prime, bundle, flow and extended bundle event structures
do respect a global relation <p C Ep X Ep (if it exists) on the level of a family P of lposets,
called the causal flow relation. The existence of a causal flow relation is based on the intuition
that there is a fized cause-and-effect relation between the events. We recall from [127]:

3.34. DEFINITION. (Causal flow relation)

For P a family of Iposets a binary relation <p is a (causal) flow relation on P if it is
irreflexive and for all p € P and e, e’ € E,:

e <, e < (e,e) € (<p N(E, X Ep))* .

P is said to reflect causal flow if there exists a causal flow relation on P. Events related under
<p should in every possible run of the system be causally related according to the causal flow
relation—if e, e’ € E, for some p € P such that e <p €' then also e <, €. In addition, the
ordering relations of the posets should be backed up by chains of causal relations: if e <, €
then (e,e') € (<p N(E, X Ep))*.

Stable event structures do not respect causal flow. The following example is taken from [127,
Chapter 2|. Consider stable event structure S with events { ey, ey, €., €4 }, €, # €, and enablings
Ftey, Pt ey, {e.}Fec,{ea,ectFeq,{er}eqand {eyes} F e.. The corresponding dual
event structure A(S) consists of e, ~ ey, e, ~» €, and bundles {e,, ey } — e, {eq,eq4} — ey
{€ea, €} — €4, and {ep,e.} — €4, see Figure 3.10. Two (operational) lposets of this dual
event structure are [es—€4—€¢] and [€a—€.—€4]. Here we see that e; is enabled by e, in one
run of the system, while in another run it is just the other way around! This means that, in
general, for dual event structures, there is no fixed cause-and-effect relation between events.

So, relaxing the stability constraint in extended bundle event structures, a model that respects
causal flow, results in dual event structures, a model that does not respect causal flow.

Interleaving 61

b e L3
c

Figure 3.10: A dual event structure that does not respect causal flow.

3.3 Interleaving

Inspired by the work of Ferreira Pires et al. [46, 145] we equip in this section dual event
structures with a symmetric interleaving relation between events. Such a relation can be used
to model that events can happen in any order but are not independent, i.e., they may not
occur at the same time. Such scenarios typically appear in mutual exclusion situations.?

Interleaving of events can be represented using the basic ingredients of event structures by
explicitly modelling each possible interleaving. For instance, three events e,, €5, and e. that
are mutually interleaved can be modelled as depicted in Figure 3.11(a). The benefits of such
a representation are that no extensions of the basic machinery of event structures are needed
(conflict and causality suffice), and that the different causal orderings between events are
explicitly shown. The main drawback of this representation is that it leads to an explosion of

(b)

Figure 3.11: Modelling the interleaving of events.

the number of events.? In addition, the symmetric nature of interleaving—if e is interleaved
with €', then €’ is interleaved with e—is no longer explicitly represented as a symmetric
relationship.

3We like to point out that in a process algebraic framework, which is not present in [46, 145], the interleaving
of (observable) events of processes P and @), say, can always be established by synchronizing P and @ with a
third process, R say, that forces this interleaving explicitly.

“More precisely, if k, denotes the number of copies of an event in case of n interleaved events it follows
that k&, =1 and kyy1 =n-k,+ 1, forn > 0.

62 Chapter 3: Disjunctive causality and interleaving

We, therefore, propose a different route and introduce a (symmetric) interleaving relation,
denoted =, between events. The interpretation of e = €' is that e and ¢’ are interleaved, e
being caused by e’ when e occurs before €', or vice versa. Using this relation we obtain for
the above example the (concise) event structure as depicted in Figure 3.11(b) where the grey
line between events means that the connected events are interleaved. = strongly resembles
the global dependency relation introduced in [159] and [151]; the main difference is that =
concerns events rather than actions.

3.35. DEFINITION. (Eztended dual event structure)

An extended dual event structure © is a tuple (A, =) with

e A, a dual event structure (E,~>, 1)

e = C F x E, the (irreflexive and symmetric) interleaving relation.
0

Since several mechanisms to model impossible events (either by @ +— e or {e} +— e) exist
we do not allow = to be reflexive. e = €’ is represented by a thick solid grey line between
e and e'. EDES denotes the class of extended dual event structures and we use ©, possibly
subscripted and/or primed, for elements of EDES.

The notions of event trace and configurations are identical to dual event structures. The
Iposets of an extended dual event structure are defined in an intensional way as follows:

3.36. DEFINITION. (Lposets of an extended dual event structure)

The Iposets of O, denoted L(©), is the family of Iposets (C, <%, [C') where <¢ C CxC
is an acyclic relation and C' C F is conflict-free, satisfying for all e € C:

1.VeeC:e'~e = € <¢e, and
2.V elC:ef=e = (¢! <ce Ve<ce€)
3. dF.:{X | X —e} — {€|€ <c e} such that
(a) {e'|e <ce} C{F(X)| X €edom(F,)}u{e|e ~eV e =¢e})and

(b) VX € dom(F,) : F.(X) € X.
O

The difference with Definition 3.5 is the second constraint that takes care of interleaved events.
In addition, constraint 3.(a) is adapted by the incorporation of interleaved events. It can be
verified along the same lines as for dual event structures that for each event e € C' a bundle
assignment function F, exists satisfying constraints 3.(a) and 3.(b). This is left to the diligent
reader.

The following result indicates that all linearizations of an lposet of © that respect the ordering
of the lposet are event traces of ©.

Interleaving 63

3.37. LEMMA. Vo€ E*: (3p€e L(O®):E,=7 N <, C<}

o

) <= o €T(0).

PROOF. Similar to the proof of Lemma 3.9. O

3.38. LEMMA. V©,0' € EDES : L(©) = L(©') = T(©)=T(O).

PROOF. Similar to the proof of Theorem 3.10 O

Notice that the reverse implication does not hold. A counterexample is provided by the
extended dual event structures

ae eb a ¢———————@ b

(@) (b)
They have the same set of event traces, but (a) has one maximal lposet | .*| whereas (b) has

maximal lposets [ea—€p] and [és—€4]. This example also shows that it makes not much sense
to deduce lposets for extended dual event structures in an operational way, i.e., from event
traces, since interleaving and independence of events can never be distinguished.

3.39. DEFINITION. (Remainder of an extended dual event structure)
©' = (A’,=') is a remainder of O after ¢ € T(0O), denoted ©' = O[o], iff A’ = Afo] =
(E',~', =" l'") and ='== N(E' x E'). O

We have the following correctness result on remainders of extended dual event structures.

3.40. THEOREM. Correctness of remainder

For 0 € T(©) and o’ a sequence of events:

1. ' € T(Olo]) <= 00’ € T(O)
2. ¢/ € T(O[o]) = L(7) is a prefix of L(zd’).

PROOF. Similar to the proof of Theorem 3.23. O

Figure 3.12 presents some transformation rules on extended dual event structures. The trans-
formation rules of Figure 3.6 do also apply in this setting. The first rule facilitates the isolation
of impossible events in presence of interleavings. The second and third rule provide a means
to remove redundant interleavings.

3.41. THEOREM. ((E,~>,—,1),=) is lposet equivalent with ((E,~>,—,l),= \{(e,€)})
ife=e¢ AN (@—e Vewe V{e}—e).

PROOF. Straightforward and omitted. O

64 Chapter 3: Disjunctive causality and interleaving

e \4 e Superfluous interleavings |

*—0
eg e - e e Superfluous interleavings I
o———re

e e Superfluous interleavings Il

Figure 3.12: Transformation rules for eliminating interleavings.

3.4 Conclusions

In this chapter we have presented two qualitative extensions of extended bundle event struc-
tures. The main part of this chapter was devoted to a novel type of event structures, called
dual event structures, which are obtained from extended bundle event structures by dropping
the stability constraint. Dual event structures support disjunctive causality, i.e., they allow to
express that an event is enabled once some causal predecessor has happened. The main con-
sequences of dropping the stability constraint are that having the same set of Iposets implies
having the same set of event traces, but the reverse implication does no longer hold. This
entails that event traces are not sufficiently expressive as an underlying semantical model for
dual event structures—Iposets can only be partly recovered from event traces; this is illustrated
by presenting a novel recipe to generate lposets from event traces.

Dual event structures were shown to be strictly more expressive than stable event structures
and, as a result, they do not respect a global causal flow relation between events (in contrast
with prime, flow, bundle, and extended bundle event structures). This means that the causal
dependencies between events in different runs of the system may be reversed. So, for dual
event structures there does not need to be a fixed cause-and-effect relation between events.

In the same style as for extended bundle event structure transformation rules were presented
that allow for the elimination of undesired phenomena in dual event structures, such as cyclic
bundles, redundancy in bundles and impossible events. Due to the presence of disjunctive
causality there is no rule for eliminating sub-bundles.

In the second part of this chapter we extended dual event structures with a symmetric (and
irreflexive) interleaving relation between events. This relation provides an explicit mechanism
to state that either e causes €’ or €' causes e in a system run.

We consider the work presented in this chapter as a first investigation on the incorporation of
disjunctive causality in event structures. Some issues deserve further attention. For instance,
it would be interesting to see whether the recipe to generate Iposets from event traces can be
refined (without equipping traces with extra causality information) such that the intensional
Iposets can be better ‘approximated’, and to study other types of remainders, such as remain-
ders after lposets, and remainders for which the principle that the first potential cause of an
event that happens is the actual cause, is dropped.

4 A simple timing module

This chapter describes a simple timed variant of extended bundle event
structures. We equip events and bundles with a time attribute. An event e
with time ¢ denotes that e is enabled from ¢ time units on since the system
is started, usually assumed to be time 0. ¢ associated with bundle X — e
denotes that the time between the occurrence of an event in X and the
appearance of e should be at least ¢ time units. The result is a causality-
based model allowing the specification of minimal time constraints. The
timing extension is a conservative extension of the untimed causality-based
model, is suitable for discrete and continuous time, and does not include
notions to explicitly force the passage of time. A temporal process algebra
is defined that includes a delay function which constrains the occurrence
time of actions. The suitability of timed event structures for providing a
compositional causality-based semantics to this algebra is studied.

4.1 Introduction

Extended bundle event structures allow for the modelling of systems by specifying their branch-
ing structure (conflicts) and causal ordering (bundles). This facilitates the specification of the
relative ordering of events. The need for describing time constraints is well recognized. The
specification of time-related properties is essential to describe, for instance, the time lapse
between causally dependent events and to specify that a confirmation should be delivered
within a certain time after issuing a request. In addition, the fact that events can only occur
in a certain period of time cannot be described without information about time lapses.

This chapter considers a (simple) timed extension of extended bundle event structures. Sec-
tion 4.2 introduces and justifies the timed causality-based model. Several notions that were
defined for EBES are carried over to the timed case: timed event traces, timed remainders
and the generation of (timed) Iposets. The suitability of the resulting timed model for pro-
viding a causality-based semantics to a timed process algebra is investigated in Section 4.3.
We prove that this semantics is a conservative extension of £] |, the denotational semantics
of PA. We investigate under which syntactical constraints the timed event structure model
could be simplified. Finally, Section 4.4 draws some conclusions of this chapter.

65

66 Chapter 4: A simple timing module

4.2 Timed event structures

This section introduces our basic timed model, which we call timed event structures. Sec-
tion 4.2.1 introduces the basic ideas and the notion of timed event structure. Section 4.2.2
deals with the notion of timed event trace, a generalization of event trace. A lattice of traces,
in fact of equivalence classes of traces, is proposed in Section 4.2.3; this section is not essential
for the rest of this chapter, and can be skipped if desired. Section 4.2.4 defines how to obtain
Iposets from timed event structures and relates this approach to the untimed case. The sta-
tus of a timed event structure after the execution of a sequence of timed events is defined in
Section 4.2.5. Finally, Section 4.2.6 presents some transformation rules.

4.2.1 What are timed event structures?

Let Time denote an arbitrary time domain with a total ordering relation <. We use ¢, possibly
subscripted and/or primed, to range over Time.

The idea is to add time delays to event structures by associating time with bundles. Suppose
we have an event e, with a bundle {e, } — e, and we associate a time delay ¢ to this bundle.
The intuitive interpretation is that if e, happens at a certain time, then e, is enabled ¢ time
units later. That is, if e, happens at time t,, then e, is enabled at time t, + t. Event e,
does not have to happen immediately, so it may happen at any time from ¢, + ¢ on. ¢ is thus
the minimal delay between e, and e;. In Chapter 7 we introduce a timed model which also
supports the specification of time constraints that specify the last moment at which an event
may happen.

The reason for not requiring what is often referred to as mazimal progress, i.e., an event
happens as soon as it is enabled, is that in general an event may be subject to interaction
with the environment which may introduce further delays. Since we consider multi-party
synchronization this also applies to events resulting from interaction between two components,
unlike the case for binary synchronization (as in CCS) where synchronizations can be required
to happen as soon as both (= all) participants are ready for it since no further interaction can
take place.

We assume function 7 to associate a value of Time, the time domain, to bundles. A bundle
(X,e) with 7((X,e)) = t is denoted by X 5 e.

Events may have several bundles pointing to them. Suppose we have an event e, with bundles

{e.} 5 e and {ey} s e.. The interpretation that we choose for this construct is that an
event can happen as soon as all timing constraints on it have been met. This means that
a synchronization is enabled once all participants are ready to engage in it. For the above
example, this means that if e, happens at time ¢, and e, happens at time ¢, then e, is enabled
at time max(t, +t,t, +t'). So, in case t, +t < t, + t' the component that performs e, has to
wait until the other component is ready for synchronization, after which it may continue (by
performing e.).

Summarizing, by associating time to bundles relative minimal time delays between events, or
more precisely, between a set of events and an event, can be specified. We also would like to

Timed event structures 67

be able to specify time constraints for events that have no bundle pointing to them (i.e., the
initial events). Such constraints specify the delay of an event with respect to the time at which
the ‘execution’ began, normally assumed to be time 0. One might consider such constraints
to be absolute time constraints.

There are basically two ways to support the specification of such time constraints: (i) as-
sociating time to events, or (ii) introducing a fictitious event, w say, modelling the start of
the system with a bundle pointing to the initial events equipped with the appropriate time
delay. The second possibility, used in different contexts by, for instance, Murphy [106, 108]
and Zic [158], has the main advantage that time is only associated to bundles, so—at first
sight—keeping the model conceptually simple. The main drawback of this approach, however,
is that definitions become more complex (event w has to be treated quite differently from other
‘normal’ events; for instance, in the remainder of a timed event structure a new start event
must be created in order to record the absolute time constraints of the remaining events) and
proof obligations become more severe (e.g., one has to prove that bundles X — e satisfy e # w
and X = {w} or w ¢ X, and that asymmetric conflicts e ~» €’ satisfy e # w and €’ # w).

In order not to complicate the theory, which could easily distract the reader from the essential
points of the model, we consider possibility (i) of above, delays associated to events. We
assume a function D that associates a value in Time to an event. Due to synchronization it
does not suffice to only associate time values to initial events, but also non-initial events can
be delayed. Consider, for example,

a 5 b b a 5 b
o— |, ¢ = eoe——e
1 27 1 27

where the result specifies that if e, occurs at t, then e, is enabled from max(t,+5,27). The
interpretation is that an event e with D(e) = t is enabled from ¢ time units on since the start
of the system.

Concluding, we propose the following notion of timed event structure.

4.1. DEFINITION. (Timed event structure)
A timed event structure is a triple (£, D, 7T) with

e &, an (extended bundle) event structure (E,~>, 1)
e D: E — Time, the event delay function

e 7 :— — Time, the bundle delay function.
0

For depicting timed event structures we use the following conventions. The time associated
with a bundle or an event is a non-negative real number! and is depicted near to a bundle or
an event, respectively. For convenience, we often omit delays equal to 0. We use I' to denote

! This choice for Time allows for zero separation of time between causally dependent events. For instance

{e.} N ep allows e, and e, to occur at the same time instant. Other choices for Time could prevent this, if
desired.

68 Chapter 4: A simple timing module

a timed event structure and EBES7 to denote the class of timed event structures. Recall that
£ is considered to have a finite number of events; infinite event structures are dealt with in
Chapter 10.

4.2. EXAMPLE. Some example timed event structures are depicted in Figure 4.1. Fig-

ure 4.1(a) has bundles { e, } LA e, {ev} LN e, {ep} EN eq, and a symmetric conflict between
e. and eg. In Figure 4.1(b) we have D(e,) = 2, D(e;) = 3 and D(e.) = 7. Note that e; is a

non-initial event having a non-zero delay associated with it. O
b
a b 2 1 3 b 2
@ >
a

5 a

3 2 c
1

c d 7 c d

(a) (b) (©)

Figure 4.1: Some example timed event structures.

4.2.2 Timed event traces

We define the notion of timed event trace as a generalization of the notion of event trace. A
timed event (e,t) denotes that e happened at time t.

4.3. NOTATION. For sequences of timed events o = (ey,%1)...(en,ts) let (o] denote the
sequence of events of 7, i.e., [7] = e;...e, forn > 1 and [¢] £ . Note that [o] denotes the
set of events in o, while @ denotes the set of timed events in o. O

Given a sequence o of timed events (e1,t1)...(en,t,) and an event e that is enabled after o,
that is e € en([o]), let time(o,e) denote the minimal time instant from which e can occur.
Event e can occur if (i) its absolute delay D(e) is respected, (ii) the time relative to all its
immediate causal predecessors is respected, and (iii) for each event e; with e; ~» e we have
that e occurs at at least ;.

4.4. DEFINITION. For o a sequence of timed events (e, t1) ... (en,t,) with e; € E, t; € Time
for 0 < i < n, and e € en([o]), let

time(o,e) = Max({D(e) } U H; U H,) where
Hi={t+t;|3IXCE:X5e A XNJo]={e;}}
sz{tj|ﬂej€m:ejwe} .
0

When e; ~» e and e; has occurred, then e; should temporally precede e. This is a natural
extension of the untimed case in which e; causally precedes e if both events occur. Since events
cannot happen before their causes, causal ordering implies temporal ordering.

Timed event structures 69

A timed sequential observation of the system is now defined as an untimed sequential obser-
vation where each event has a correct timing associated with it.

4.5. DEFINITION. (Timed event trace)
A timed event trace of timed event structure I' = (£,D,7) is a sequence o of timed
events (er,t1)...(en,t,) with e; € E| t; € Time, for all 0 < i < n, satisfying
1. €1...p € T(g)
2. Vi: tz 2 time(ai,ei).
[

Note that, according to the last constraint, an event can happen at any time from the moment
it is enabled. Let Tr(I") denote the set of timed event traces of T

4.6. EXAMPLE. For the following sequences of timed events we give the conditions under
which they are timed event traces of Figure 4.1(a):

(€arta) (en;ts) (€a,ta) if tg > tp+2, and
(€asta) (€nyty) (€cyte) if t. > max(t,+3,ty+5)

[
4.7. DEFINITION. o,0' € Tp(T') are timed configuration equivalent, denoted o ~¢ o', iff
c=7. O

Note that ~p C ~, where o ~ o' iff [o] = [o].

Timed event traces do respect causality, but not necessarily time. That is, two (or more)
independent events can occur in a trace in either order regardless of their timing. For example,
(ep, 1)(€q,3) and (e,,3)(ep, 1) are timed event traces of Figure 4.1(a). The possible choices
correspond to the possible interleavings of the causally independent events. Although it may
at first sight be counterintuitive to allow traces that do not respect time, their appearance
can be understood from the fact that event traces are linearizations of (timed) partial orders.
Since the causal ordering between events implies their temporal ordering the causal ordering
can never contradict the temporal order.

4.8. DEFINITION. Timed event trace o is tume-consistent iff Vi, j :i <j = t; <t;. O

Predicate tc(o) is true iff o is time-consistent. A timed event trace that is not time-consistent is
called #ll-timed. The fact that ill-timed traces can only appear due to the possible interleavings
of independent events follows from the following result.

4.9. THEOREM. I[ll-timed theorem
For t' < t: o(e,t) (¢/,t') o' € Tr(T') = o (e,t) (e, t)o’ € Tr(T).

PROOF. Let o' =0 (e, t)(¢/,t') 0" and o® = (e',t')(e,t)o’. Let t' < t and o' € Tr(T"). The proof
is by contradiction. Suppose o> € T(T"). This can only be because one of the following reasons:

70 Chapter 4: A simple timing module

1. [0?] is not an event trace of £. This can only be because one of the following reasons:

(a) There exists a bundle X — ¢’ with e € X. But then, according to the second constraint
of Definition 4.5, t' > t. Contradiction.

(b) e ~» €' (i.e., e disables e¢). According to the second constraint of Definition 4.5 then
t' > t. Contradiction.

This proves that [0?] is an event trace of £.
2. 3j:t; < time(o?,e;). This can only be because of one of the following reasons:

(a) (i) t < D(e), or (") t' < D(e'). These cases contradict with the fact o* € Tr(T).

(b) (i) there exists a bundle X 5 ¢’ with e; € X and t' < t;4+t. This contradicts with
o' € Ty(T). (i) there exists a bundle X +> e with e; € X and t < t;+t. For this
case we distinguish between e; # e’ and e; = €'. For e; # €' we have that ¢t > t,;4¢,
otherwise o' ¢ Tr(T'). Consider e; = ¢’. This is impossible, since e precedes e’ in ' and
o' € Tr(T). Contradiction.

(c) i) e~ € and t > t', or (i’) € ~» e and t' > t. Case (i) cannot occur (similar to case
1.(b)) and (i’) contradicts with the assumption that ¢’ < .

O

This theorem implies that for any ill-timed event trace o there exists a corresponding time-
consistent event trace o', that can be obtained from o by swapping repeatedly ill-timed pairs
of timed events, yielding & = @'. Note that the reverse implication of Theorem 4.9 does not
hold; for instance, if e causally depends on €’ then the order of events €’ e in a trace cannot
be reversed since this would contradict their causal ordering.

For a more extensive discussion on ill-timed traces we refer to Aceto & Murphy [1, 2].

4.2.3 A lattice of timed traces

The timed model only allows for the specification of minimal time constraints. That is, only
lower bounds on the occurrence time of events can be dealt with. In this section we show that
all timed event traces that contain the same events but possibly with different timing can be
considered as a lattice (ordered under a ‘faster than’ relation) with as a least element a trace
in this class with the minimal correct timing.

o is called a fast trace iff all events in ¢ have a minimal correct timing, i.e., they all occur
as soon as possible. E.g. (e4,0)(es,0), (ep,0)(eq,0), (ep,0)(eq,2) and(ep, 0)(eq,0)(ec, 5) are fast
traces of Figure 4.1(a).

4.10. DEFINITION. o € Tp(T) is fast iff Vi : ¢; = time(oy, €;). O

In the rest of this section we assume that o and o’ are representers of equivalence classes
under ~rp, i.e., o and o’ represent classes of timed traces that all have the same timed events,
but possibly in a different order. The following is relative to I' with 0,0’ € Tp(T"). Let
o= (e, t1)...(en,ty) and o' = (e1,t]) ... (en,t).

Timed event structures 71

4.11. DEFINITION. For 0,0’ with o ~cd'let o o' iff Vi:¢; <t O

)

It can easily be verified that < (pronounced faster than) is a partial order on event equivalent
classes of configuration equivalent timed event traces.

4.12. LEMMA. o is a fast timed event trace iff (Vo' € [o].: 0 < o).

PROOF. ‘=’: Let o be a fast timed event trace of I'. For ¢ = ¢’ the lemma trivially holds. Consider
o # o' and o ~ ¢'. The proof for this case is by contradiction, distinguishing between (1) ¢’ X o,

and (2) o Ao’ A o' £o.

1. Suppose o' < . Then, there exists e;, say, such that ¢, < ¢;. Since o is a fast timed trace we
have t; = Max({ D(e;) } U H; U Hs), cf. Definition 4.10. Suppose there are K (K > 0) bundles
X% e;inT (0<k<K)and X, N [o] = {ejr }- Then we have Hy = {t;1+t1,...,t;x+tx }-
For N (N > 0) events e;, ~» e; in I with e, in [o] we have H, = {t;1,...,t;5 }. Now consider
t! < t;. Then either (a) t; < Max(H;) or (b) t, < Max(H,).

(a) Suppose t. < Max(H;). As 0 ~ ¢' and for each bundle X — e; in I, e; has a unique
causal predecessor in o, e; is enabled in o and ¢’ by the same set of events:

X—e; AN XNjol={e} = Vo' €lo]l.: X Nn[o]={e})
But then it immediately follows ¢ > Max(H,). Contradiction.
(b) Suppose t; < Max(H,). As o ~ o' we also have that

{eclollewe}={eclo]le~e}

But then it immediately follows ¢, > Max(H,). Contradiction.

2. Suppose o £ o' A o' £ 0. By definition of < this equals (Je; : ¢; > t) A (Je; :) > t,).
Using an analogous argument as for case 1. we can prove that the first conjunct does not hold.

‘«<": Straightforward by contradiction and omitted. O

4.13. LEMMA. ([o]., <) is a poset with a least element.

PROOF. Straightforward from the previous lemma and the fact that for each o class [0]. contains
a fast timed event trace. O

4.14. ExAMPLE. Consider the timed event structure of Figure 4.1(c) and some of its timed
event traces:

o1 = (ea’ 0) (ed’) (ec’ 4)
0y = (eaa) (eda 10) (Bc, 4)
o3 = (eq,3)(eq,12) (e, 7)

o5 is a fast timed event trace. < is the reflexive and transitive closure of o5 < 01, 01 < 04,
01 X 03, 03 X 03, and 04 X 03. 0

o, = (eq,3)(eq,5) (ec,7)
05 = (ea, 0) (eda 1) (ec’ 4)

For o,0' such that o ~ o', let lub(o, ") be the sequence of slowest timed events faster than
both o and ¢'. Similarly, glb(co,o’) is defined as the sequence of fastest events slower than
both ¢ and o’.

72 Chapter 4: A simple timing module

4.15. DEFINITION. For o = (ey,t1) ... (en,tn) and o' = (e1,t}) ... (en,t,) let

o Iub(o,0') £ (ey, min(t;,t))) ... (e,, min(t,,t))
e glb(o,0’) £ (e1, max(t,t))) ... (en, max(t,,t))

4.16. LEMMA. Vo,0' € Tr(T) : lub(o,0") € Tr(T') A glb(c,d") € Tr(T).

PROOF. By contradiction. We provide the proof for lub, the proof for glb is similar. Let
o,0' € Tr(T') and suppose ¢” = lub(c,¢') ¢ Tr(T'). This can only be because of one of the following
reasons:

1. [¢"] € T(E). Then [o],[0'] ¢ T(E). Contradiction.
2. Je; : t] < time(o!,e;). This can only be because one of the following reasons:

(a) t! < D(e;), i-e., min(t;,t,) < D(e;). Then t; < D(e;) or t; < D(e;). Contradiction.

(b) e; ~ e; and t > t7. Then, by definition of Iub, min(t;,t;) > min(t;,}).
min(t;, t;) > min(t;,t})
< { definition of min }
(t: <t A t; > min(t;,) V (8 <t; At > min(t;,)
< { definition of min }
(i<t A (Gt VESE) YV (<t A (> Vit > 1)
& {oeTr(l) = t; <t; (idem for ¢') }
(b <t A >tV (<t At >t)
& {oeTr(l) = t; <t; (idem for ¢') }

false

(¢) 3X : X & ¢; and e; € X and t{ < tf+t. Then by definition of lub, min(t;,t;) <
min(t;, ") +t. In a similar way as the previous case it can be proven that this leads to a

VR
contradiction.
U
4.17. THEOREM. (([o]., =), lub, gIb) is a lattice with a least element.
PROOF. Directly from Lemma 4.13 and 4.16. O

This lattice construction is possible since timed event structures allow for the specification of
minimal time constraints only. Later on we will encounter models which do also allow the
specification of mazimal time constraints, and we will see that for those models the above
lattice construction does not work.

Timed event structures 73

4.2.4 Families of lposets

The semantics of a timed event structure is defined by means of its family of labelled partially
ordered sets (lposets). In this section we define how to obtain these lposets and investigate
the relation between the lposets of I" and the lposets of its corresponding untimed counterpart
&. For simplicity we only define lposets in an operational way, i.e., starting from timed event
traces. The intensional characterization as provided in Chapter 6 for urgent event structures
can be applied in a similar way to the model of this chapter.

4.18. DEFINITION. (Lposets of a timed event structure)

For T € EBESy : Ly(T) £ {(7,Nyrepo., <4l 17) |0 € Tr(T)}. O

o'

Here [is the labelling function of I and I((e, t)) = I(e). We consider all ¢ € Tr(T") and consider
its class of timed configuration-equivalent timed traces, [o]|.,. With each ¢’ € [o]., an
ordering on timed events <7, is associated which reflects the precedence of timed events in o’.
More specifically, if o' = (e},t}) ... (el,t,) then <% is defined as (the reflexive and transitive

n’'n
closure of) (e1,t1) <o (€3,13) <or ... <o (€p,t,). It is easy to verify that Nyicp. <5 is a

o
partial order on @.

For o € Tr(I') we sometimes use Ly (o) as an abbreviation for (7, Nyrcp)., <5,! [7).

o'

4.19. THEOREM. VI, IV € EBESy : T7(T') = Tr(I'") <= Lr(T') = Ly (TV).

PROOF. Similar to the untimed case [89, Theorem 6.3.12] and omitted here. O

The untimed lposets of I are now deduced from Ly (T') as follows:
4.20. DEFINITION. For I' € EBESt the untimed lposets of I' are defined as

L(T) 2 {{Bl,<I[BLY) | (B,<,0) € Lr(D) }.
O

Here, [E] denotes the set of events in E. That is, for E = {(eq,t1),..., (én,ts) } we have that
[E] £ {e1,...,en}. <[[E] denotes { (e,e') € [E] | I, 1" : (e,t) < (¢/,) }.

The following theorem shows that the inclusion of minimal time constraints into event struc-
tures retains the causal dependencies as present in the untimed case. Suppose we remove the
timed components of I' and determine the lposets of this untimed structure, then this yields
the same result as if we would first calculate the Iposets of ' and then abstract from time.
We denote the removal of timed components from I" by ¢. For I' = (£, D, T) we simply have
p(l) £ €.

4.21. THEOREM. VI € EBESy : L(T") = L(4(T)).

PROOF.
L(T)

74 Chapter 4: A simple timing module

= { Definition 4.20 }
{((E], <T[E],D) [(B, 1) € Le(T) }
— { Definition 4.18 }
{([EL<TELY (B, 1) € {0, Norepo), <501 1) [0 € Tr(T) } }

= {}
{{Io], ottty <trppl 110l |0 € Tr(T) }
= {oeTr(T) & [o] € T(p(I)) }
{ (o], Norefog.. <orsl o] | [o] € T(o(T)) }
= { Definition 2.24 }
L(p(T)) . O

4.2.5 Timed remainder

Like for the untimed case we are interested in the status of a timed event structure after
the execution of a sequence of timed events. In this section we define the notion of timed
remainder and prove its correctness.

4.22. DEFINITION. (Timed remainder)

The timed remainder of timed event structure I' = (£, D, T) after timed event trace o,
is ['[o] = (€', D', T") where

o &'=C&]o]] = (E',~',="1")

e Vec E':D'(e) = Max({D(e) } U H; U H,) with
Hy={t+t;|3IXCE:X5e A XNJo]={e;}} and
Hy={t;|de;clo]:e;~e}

o 7' =(T =")YU{((9,e),x) | @ —"e} for some x € Time.

U

The first component is equal to the remainder of £. The timings associated with the retained
bundles are unaffected and since 7' is a total function the introduced bundles (cf. Defini-
tion 2.28) are associated a time value. Since the events pointed to by these bundles will never
happen, this time value is arbitrary.

In addition, the delay of an event e which has a bundle pointing to it originating from some
event e; in o has to be checked: if ¢; plus the required relative time, ¢ say, between e; and e is
larger than the delay of e, e should be postponed to (at least) ¢+¢;. Because this should hold
for all bundles pointing to e originating from some event in ¢, the maximum is taken such
that all required relative delays are satisfied.

Finally, in order to enforce that the causal relation between e; and e induces a temporal
precedence, the delay of e becomes at least ¢; in case e; ~» e. Again, this should hold for all
asymmetric conflicts to e originating from some event in o, resulting in the max-construction
above.

Timed event structures 75

It is quite straightforward to check that for all I' € EBESy and o € Tr(I") we have T'[o] €
EBESr, since &][[o]] € EBES and all events and bundles in I'[o] are assigned a time value.

4.23. EXAMPLE. The remainder of a timed event structure is exemplified in Figure 4.2 and
Figure 4.3. Figure 4.2 shows how event delays are updated due to the presence of bundles
originating from events in the configuration, whereas Figure 4.3 shows how this procedure

works when asymmetric conflicts cause the update. O
b b b
8 13
: f
a (a,6) (c,13)
—
3
> 12 18 18
13 [)
c 3 d c 3 d d

Figure 4.2: Example remainder of a timed event structure (I).

1 7 7

(a,8) (b,7)

Figure 4.3: Example remainder of a timed event structure (II).

We have the following correctness result concerning the definition of timed remainder. It says
that if I" can evolve into I'' by executing o then ¢’ is a trace of IV iff 0 ¢’ is a trace of I". In
addition, it states that the lposet induced by o ¢’ is an extension of the lposet induced by o.

4.24. THEOREM. Correctness of timed remainder
For o € Tr(T') and ¢’ a sequence of timed events:
1. o' € Tp(T[o]) <= oo’ € Tr(T)
2. o' € Tr(T[o]) = Lr(o) is a prefix of Ly(o o).

PROOF.

1. Let T = (£,D,T) and ['[o] =" = (', T", D').

‘=" : Assume o € Tr(T') and o' € Tr(T"). We prove that ¢” = oo’ € Tr(T') by contradiction.
So, suppose ¢" € Tr(I'). From the untimed case (cf. Theorem 2.30) we know that if [¢] € T'(E)

76 Chapter 4: A simple timing module

and [o'] € T(E') then [0"] € T(£). Thus there can only be one reason for ¢” not being a timed
event trace of I', viz. violation of constraint 2 of Definition 4.5: 317 : ¢; < time(o?, e;). This can
only have the following causes:

(a) t; < D(e;). If e; € [o] this is impossible, since o € Tr(T'), requiring ¢; > D(e;). Suppose
e; € [0']. For I" it follows directly from Definition 4.22 that for all e € E' : D(e) < D'(e).
As ¢’ € Tr(T") we have t; > D'(e;), and thus, t; > D(e;). Contradiction.

(b) IXCE:X+5e; A ej € X andt; < t;+t. The interesting case is when X N [o] # @ and
e; € [0']. Since X N [o] # @ the bundle X > e; cannot be in I, so it has been removed
according to Definition 2.28. But then D’(e;) has been updated (cf. Definition 4.22)
such that D'(e;) > t; +t. As o' € Tp(I") we have t; > D'(e;), and thus t; > t; + t.
Contradiction.

(c) Jei,e;:e; ~e; A t; <t;. The interesting case is when e; € [0] and e; € [0']. Suppose
e; happens at ;. Then, according to Definition 4.22, D(e;) has been updated such
that D'(e;) > t;. Since o' € Tr(I') we have t; > D'(e;), and consequently, t; > t,.
Contradiction.

‘“=’: Assume o € Tr(I') and o ¢’ € Tr(I'). We prove that ¢’ € Tr(I") by contradiction. So,
suppose ¢’ & Tr(I'"). From the untimed case we know that [o'] € T'(£'), so if ¢’ is not a timed
event trace of I this can only be because Je; : t; < time(cl,e;). That is, either

(a) t; < D'(e;). From the fact that oo’ € Tr(I') we know that ¢; > D(e;). t; < D'(e;) and
t; > D(e;) means that the delay of e; is updated by the execution of . There are two
possibilities for doing so:

i. Je; € [0] : ej ~ e;. Then D'(e;) = t; and t; > D(e;). As 0o’ € Tr(T) we have
t; > t;, and consequently, t; > D'(e;). Contradiction.

ii. Je; : X v> e; A XN[o] = {e;}. Then D'(e;) = t; + ¢ and t; +¢ > D(e;). As
oo’ € Tr(T') we have t; > t; + ¢, and thus, ¢t; > D'(e;). Contradiction.

(b) X v»'e; with e; € X and t; < t; +¢. But then this bundle is either already present in
I’ or is a newly created bundle. For the first case it immediately follows from the fact
that o o' € Tr(T') that ¢; > ¢; + t. Contradiction. For the second case we have that (cf.
Definition 2.28) X = @& and that there is an e € [o] such that e; ~ e. Since [o] C [0 07]
this would mean that o ¢’ & Tr(T"). Contradiction.

(c) dei,ej:e; ~"e; A t; <t;. Since ~' C ~» this implies that e; ~> e;. As o0’ € Tr(T') we
have t; < t;. Contradiction.

2. From 1. it follows that o o' € Tr(I'), so Ly(oo') is defined. Clearly ¢ C ¢’ and <;C<% .
Besides, since no event in ¢’ precedes an event in ¢ under <, . it follows that

< NS U <) x <) =<t N(<E x <) =<t

This proves that Ly(o) is a prefix of Ly(o o).

Timed event structures 77

4.2.6 Some transformation rules

Figure 4.4 presents some transformation rules for timed event structures that preserve lposets.
We use the same notational conventions as in Section 2.3.4. The first rule gives a recipe for
removing redundant bundles. Since t"” < ¢+t the relative time between X and e does not
contribute to the delay of e, and hence can be safely removed. The fact that the bundle
may be removed follows from the rule for the untimed case obtained by omitting all timing
information in the depicted rule. In the second rule delay d of X indicates the minimal delay
of some event in X. Since X > e event e has at least delay t+d. In case d’' < t+d the event
delay d' of e is superfluous and may be replaced by 0. The third rule allows for the removal
of sub-bundles and is a straightforward generalization of a similar rule for the untimed case.

e ¢ . Bundle transitivity
t
d d d 0 Event delay redundancy

t _ t
@—n e - @—» e (d'<=t+d)
t - @ Sub-bundle removal
(;? ——e €
.
e

° max(t, t')

Figure 4.4: Some transformation rules for timed event structures.

The formal representation of the transformation rules is as follows:

4.25. THEOREM. Timed event structure (£,D,7) is lposet equivalent with

L A(By = \{(X,e) K1), D, TA{ (X, e),8) })
fYSe A XSY A XSe At <t+t.
2. (E,~,—,1),(D\{(e,d) }) U{(e,0) },T)
if X+he A D(e)=d A d <t+Min{D(e) | € X }.
3. (B, ~,— \{(X,e) 1,),D,(T \ {((Y,e),1),((X,e),t") }) U{((Y,e),d) })

fYCX A XSeAYibe A d=max(tt).

PROOF. We only prove rules 2. and 3. as an example; the proof for rule 1. is similar. For each rule
let T'; and T', denote the left-hand and right-hand timed event structure, respectively.

78 Chapter 4: A simple timing module

2. The only difference between these two timed event structures is that I'; requires e to happen
after time d'. The proof is by contradiction. Suppose that I, has a timed event trace o (e, t')
for which t' < d’ and d’' < t+d where d = Min{D(e') | ¢ € X }. Since X points to e, event
e must be preceded by some event e; in X. We have ¢; > d. But then, since X % e we have
t' > t+d, and since t+d > d', it follows t' > d'. Contradiction. So, the timed event structures
have the same set of timed event traces, and by Theorem 4.19, also the same family of Iposets.

3. Suppose I'; has timed trace o (e,t') o’. Event e can only occur if both bundles X and Y are
satisfied. Since Y C X and all events in X are in mutual conflict there is one event, e; say, in m
which belongs to Y. As time(o,e) = Max{...,t;+t,t;+t',...} = Max{...,t;+max(t,t'),...}
it follows that o (e,t') o' is a trace of I',. Obviously, for traces not involving e we also have
that I'; and T', are event trace equivalent. So, the timed event structures have the same set of

timed traces, and by Theorem 4.19, also the same family of lposets.

0

4.3 A timed process algebra

This section introduces a simple timed process algebra and provides a causality-based se-
mantics using timed event structures. Section 4.3.1 introduces the temporal process algebra,
Section 4.3.2 provides the semantics and Section 4.3.3 provides some syntactical constraints
that aim at a simplification of the timed event structures model.

4.3.1 Syntax

For t € Time the syntax of PAr of finite simple timed behaviours is defined as:

4.26. DEFINITION. (Simple timed process algebra PA7)

B:=0||(t)a;B|B+B|B|cB|B[H] | B\G|B>B|B[>B. O

PAr is a timed extension of PA, the process algebra introduced in Chapter 1. Actions are
considered to be atomic and occur instantaneously. The elementary timing construct of our
language is a delay function that expresses the relative delay of an action. Behaviour a; (¢)b; 0
behaves identically to a; b; 0, except that it is able to engage in b from ¢ time units after the
occurrence of a. For initial actions the time is related to the beginning of the system at
hand. We abbreviate (0) a by a. We also allow arithmetic expressions and consider syntactic
equivalence to be modulo equal arithmetic expressions, identifying for example (2+5) a; B
and (7) a; B.

Behaviours may synchronize on a common action as soon as all participants are ready to
engage in it, i.e., when all individual timing constraints on such action are met. This choice
has been inspired by the constraint-oriented specification style of Vissers et al. [148], where
global constraints (on the ordering of events) are expressed by conjunction (using parallel
composition) of individual (or local) constraints. One may thus consider that the enabling of

A timed process algebra 79

a common action is constrained by the various individual timing requirements. For example,
ina; (3)c; 0andb; (7)c; 0, action ¢ is enabled in the composite behaviour

a; (3)c; 0lcb; (7)e; 0,

if both a has occurred at least 3 time units before and b has occurred at least 7 time units
before, that is, t. > t,+3 A t. > t,+7 which is equivalent to t. > max(t,+3,t,+7). Using a
similar reasoning, in behaviour

a; (t1)b; 0|[gapya; (t2)b;0

b is enabled after max(t,+t1,t,+ts) = t, + max(tq,ts).

Intuitively it means that a system which is willing to participate in some action a from time
t say, has to wait until the environment is ready for participation. The integrated behaviour
of the system and the environment may then execute a from the moment on that both the
system and the environment are willing to perform a.

4.3.2 Causality-based semantics
We now show how the timed event structures of Section 4.2 can be used as a vehicle to provide
a true concurrency semantics to PAr in a compositional way. We do so by defining a mapping

Er[] : PAr — EBESy. In addition we use:

4.27. DEFINITION. ®7 : PAy — PA is defined as follows:

<I>T(0) 20
(\/) 2
or((t)a; B) £ a; $r(B)
d (Blosz) 2 &p(By)op &r(B;) for op € {+, ||a,>>, [>}
) 2

®r(op B op &7(B) for op € {\,[]}.

O

So, ®r associates to a timed behaviour B its corresponding untimed behaviour ®r(B) by
simply omitting all time annotations in B.

The positive events of I' are the events in I' with a non-zero delay.

4.28. DEFINITION. For I' = (£, D, T) the set pos(T') of positive events is defined by

pos(l) = {e€ E|D(e) #0}

80 Chapter 4: A simple timing module

In the rest of this section let E7[B; | =T'; = (&, D;, T;), for i = 1,2, with &; = (E;, ~, 4, ;)
and E; N Ey = &. The functions init and exit which denote the set of initial and successful
termination events, respectively, are defined in Chapter 2 for event structures and are used for
timed event structures in the same way. Let pin(T') 2 pos(T) U init(T') and Ey the universe
of events. For convenience we use the denotational semantics £'[| for the untimed case which
is defined in Chapter 2. This becomes explicit for timed action-prefix and enabling; for these
constructs it is indicated which instantiation of £'[| is chosen.

4.29. DEFINITION. (Timed semantics of 0, v/, and (t) a;)

&r[0] = (E£'%1(0)],2,9)
E&rlv] = (€12r(V)],{(es0)},)
Er[(t)a; Bi] 2 ((E,~1,—,1; U{(eq,a)}),D,T) where

E; U {e, } for some e, € Ey \ Ey

=1 U({{ea}} x pin(T))

{ (e,) } U (Ex x {0})
TiU{(({ea},€),Di(e)) | e € pin(Ty) }-

ND ! =
[

O

The semantics of 0 and 4/ is self-explanatory. In £7[(t) a; B;] a bundle is introduced from
a new event e, (labelled a) to all initial events in I'; and, in addition, to all events in I'; that
have a non-zero delay. The delay of these events e becomes relative to e,, so each bundle
{es } — e is associated with a time delay D;(e), and D(e) is made zero. Delay D(e,) is set to
t. In the untimed case it suffices to only introduce bundles from e to the initial events of I'y,
cf. Definition 2.35. The additional bundles to the positive events of I'; that are introduced in
the timed case are used for the sole purpose of making delays relative to e,. For events that
have a zero delay this is not necessary; they can happen from any moment since the start of
the system.

4.30. ExamMPLE. Figure 4.5 depicts (a) E7[B], and (b) £7[(2) a; B]. The reader is invited

to compare these figures with Figure 2.5. O
d d
5
e
b c 3
1 47
(a):B (b):(2)a;B

Figure 4.5: Example of semantics for timed action prefix.

A timed process algebra 81
4.31. DEFINITION. (Timed semantics of \, [|, +, >> and [>)
Er[BiopBy] 2 (E'[®7(BiopBy)],D1UDy,,TTUT), op € {+, [>}
Er[op Bi] £ (£'[®r(op B1)], Dy, Ti) for op € {\,[]}
Er[By >> By] = ((Ey U Ey,~,+,1),D,T) where
= U g U{(e,€) | e,e €exit(Ty) A e#e€}
— = 1 U =y U ({exit(Ty)} x pin(Ty))
I = ((IhUly)\ (exit(Ty) x {6})) U (exit(T'y) x {7})
D = DU(Ex{0})
T = T UTU{((exit(T'y),e),D2(e)) | e € pin(Ty) }.
U

For op equal to choice or disrupt 7] By op By] is the untimed event structure of the corre-
sponding expression in PA, '] &1 (B op B:) |, where the timings of events and bundles in T’y
and T’y are unaffected. Similarly, [| is defined for relabelling and hiding.

Er[B; >> B] is equal to I'y UT; where bundles are introduced between the successful
termination events of I'y and the initial and positive events in I's. The reason for introducing
bundles to the positive events of I'y is to make the event delays in I's relative to the termination
of I';. This is similar as for timed action-prefix. The timing of the introduced bundles and
the positive events in I'y are treated in a similar way as for timed action-prefix.

4.32. EXAMPLE. Let Figure 4.6(a) and (b) depict Er[B:] and &r[B:], respectively.
Er[B1 >> By] and &r[By [> Bs] are depicted in Figure 4.6(c) and (d), respectively. The

reader is invited to compare this figure with Figure 2.6. O
d 1 e
2 7
a 1 b o)
® »® >»® 4
° (a; B ¢
ot (b): By
a 1 b
[»®
3 4

(c): By >>B>

(d):B, [> B,

Figure 4.6: Example of semantics for enable and disrupt.

Finally, we explain the timed components of the semantics of the parallel composition operator.
Recall that events are pairs of events of I'; and I'y, or with one component equal to *. The

82 Chapter 4: A simple timing module

delay of an event is the maximum of the delays of its components that are different from x.
The time associated with a bundle is equal to the maximum of the times associated with the
bundles we get by projecting on the i-th components (i=1,2) of the events in the bundle, if
this projection yields a bundle in T;.

As a subsidiary notion we define projection of bundles as follows:

4.33. DEFINITION. Let E = (E; U {x}) x (B, U{%}),(e1,e2) € E and X C E. Let

o pr;((e1,e2)) £ e if e # %, for 1=1,2
o pr;(X) 2 {pr;(e) | e € X N dom(pr;) }, for i=1, 2.

U
4.34. DEFINITION. (Timed semantics of ||g)
STIIBl ||GBQ]] é <g,[[(I)T(Bl||GBz)]I,D,T> where
D((e1,e2)) = max(Di(er),D2(es)) with D;(x) = 0.
T((X,(e1,e2))) = max(Ti((pri(X),er)), Ta((pry(X), e2)))
with 7;((2,e;)) = 0, for i=1,2.
U

4.35. EXAMPLE. Consider the following timed behaviours
Bi = (1)a;(5)b;0]ls(4) c; (7) b;0
B, = (4)a;(2)b;0](/,((4) b;0+(3) d; 0)

Figure 4.7 shows how £r[By [|{a} B2] is constructed from £[By | and &7 B, |. For example,
D(e,) = max(1,4), T(({ eq },€p)) = max(5,2), and 7T (({e. },ep)) = max(7,0).

a b a 2 b a b
5 _ 5
|ka,b} 4 = 4
1 4 4
7 7
3 3
4 ¢ d 4 ¢ d

Figure 4.7: Example of semantics for parallel composition (I).

Figure 4.8 shows the timed event structures corresponding to the following behaviours:

(@) ((2)a;(3)d;0+(1)b;(2)e;0)[[[(27) c; 0
() ((2)a;(7) c;04(4) a; (11) d; 0) |4 ((5) a; (2) b; 0)
() (2)a;(1)b;0]|(apy(7) 050 .

A timed process algebra 83

5 7 c
2 1 27 a .
\. ,
3 2
d e a
5 11 d
@ (b) (c)

Figure 4.8: Example of semantics for parallel composition (II).

The definition of Er[P] where P := B can be defined by an extension of the untimed case
and is fully treated in Chapter 10 of this dissertation.

The timed extension of behaviours is “backward compatible” with the untimed case, in the
following sense. For an expression B € PAr the lposets that are obtained by removing the
times from Ly (I") where I is the denotational semantics of B, i.e., ' = &r[B], are equal to the
Iposets obtained from the event structure corresponding to ®7(B), the untimed counterpart
of B. This means that causal dependencies are unaffected by the timed components in PA7.

4.36. THEOREM. Compatibility theorem
VB e PAr: L(Er[B]) = L(E[®7r(B)]).
PROOF. We derive:
L& B])
= { Theorem 4.21 }

L(p(&r[B]))
= {&[B]=('[2r(B)],D,T)}
L&' 2r(B)])
= { Theorem 2.44 }
LE[®r(B)]) - O

4.37. THEOREM. V B € PAr : 7] B] € EBESy.

PrROOF. Simply by the fact that Er[B] = (£'[®r(B)],D,T) and the fact that £'[Pr(B)]
€ EBES. It is easy to check from the definition of £7[| that 7 and D associate time values to all
bundles and events, respectively, in Er[B]. O

Er[B] can successfully terminate as soon as all events causally preceding a successful termi-
nation event have happened.

4.38. LEMMA. For B € PAr let Er[B] =T = (€,D,T). Then
1. Ve € exit(I") : D(e) =0
2.VXCE: X e A ecexit(l) = t=0.

PROOF. Straightforward by induction on the structure of B. Routine and omitted. U

84 Chapter 4: A simple timing module

4.3.3 Syntactic conditions for simplification

In this section we investigate under which syntactic conditions the timed event structure model
can be simplified. More specifically we aim at a constraint on behaviour expressions such that
event delays become superfluous and thus can be omitted from the model.

As an auxiliary notion we define (syntactically) the set of initial actions of B which B cannot
perform immediately.
4.39. DEFINITION. (Non-immediate initial actions)

nii : PAp — P(Act™) is defined as follows:

ni(0) £ @
nii(y/) £ o
nii((¢) a; B) 2 {é‘l} iiig
nii(B; + B,) £ nii(B;) U nii(By)
ni(B\G) = (ii(B)\G)U{7|nii(B)NG # 2}
nii(B[H]) 2 {H(a)|acnii(B)}
ni(B; >> By) 2 (nii(B)\{6})U{r]|6¢cnii(B)}
nii(B; [> By) 2 nii(By) U nii(By)
nii(By ||¢ By) 2= (nii(By) U nii(By)) \ G° U (nii(By) N nii(By) N GY).

O

Note that successful termination events can always be executed immediately, so § & nii(B),
for all B € PAr.

The following lemma shows that nii(B) indeed characterizes the set of initial actions of B that
cannot be performed immediately.

4.40. LEMMA. For B € PAy with ' = &r[B] = (£,D,T):
nii(B) = {l(e) | e € init(I') A D(e) #0}.
PROOF. By induction on the structure of B; the proof is quite straightforward but somewhat

elaborative. O

We now concentrate on a syntactic constraint under which event delays become superflu-
ous, for instance, by enforcing that all event delays are 0. At first sight it seems that all
events in Er[B] have delay 0 iff all initial actions of the corresponding behaviour, B, have
delay 0 (i.e., nii(B) = @). Due to the fact that synchronization can give rise to empty bun-
dles pointing to events (see also Chapter 2) this conjecture is, however, not true. Consider

ae 5eb

A timed process algebra 85

which corresponds to a ||| (c; (2) D) ||pe} (5) b. Obviously, this structure violates the afore-
mentioned conjecture—initial actions a and ¢ have delay 0 but event e;, in the resulting timed
event structure has a non-zero delay. The problem is that synchronization is required on an
initial action (i.e., ¢) of one of the components in ||¢ which does not succeed.

To avoid such cases we require that all parallel compositions B ||g By occurring as subex-
pression in B satisfy nii(B;) N G® = nii(B,) N G®. This guarantees that B; and B, are both
able to participate on the same initial actions in G?. Let PA% denote the set of expressions
in PA7 that satisfy this syntactic constraint. Then we have that for B € PA} all events in
Er[B] have delay 0 iff all initial actions of B have delay 0. This implies that our timed event
structures model can be simplified, only having bundle delays and omitting the event delays,
once this (syntactical) condition is met.

4.41. LEMMA. V B € PA :nii(B) = @ <= pos(&r[B]) = @.

PROOF. ‘<’ Straightforward from Lemma 4.40 and omitted.

‘=’ : By induction on the structure of B.

Base: For B = 0 and B = 4/ the theorem trivially holds as nii(0) = & and nii(y/) = &, and all events
in &r[B] have delay 0. For B = (t) a; B; we have nii(B) = {a} if ¢t = 0. But then D(e,) =t =0,
and for all other events D(e) = 0 (cf. definition of &7[|).

Induction Step: Assume the lemma holds for B; and B,. Let I'; = (&;,D;, T;) = E7[B;], for i=1,2
with & = (E;, ~;,—,1;). We provide proofs for abstraction, enabling and parallel composition. The
proofs for the other constructs are quite similar and omitted here.

1. B = B;\ G. We prove that
nii(B; \ G) =&
& { Definition 4.39 }
nil(Bi))\G=2 A {7 |ni(B)NG# 2} =0

e {3}

ni(B))\G =9 A nii(B))NG =9
e {3}

nii(B,) = &

= { induction hypothesis }
pos(Er[B,]) =@

< { definition of &[] }
pos(ér[B.\ G]) =@

2. B = B; >> B,. For this case we derive:
nii(B; >> By) = &
< { Definition 4.39 }
nil(B)\ {6} =@ A {7|d€enii(By)} =02
< {1}
nii(B,) = &
= { induction hypothesis }

86 Chapter 4: A simple timing module

pos(ér[B1]) =@
< { definition of &[] }
pos(ér[By >> By]) = @

3. B = B ||¢ B,. For this case we infer:

nii(By ||¢ Bz) = &

< { Definition 4.39 }
nii(B;) \ G® U nii(By) \ G° U (nii(By) Nnii(By) N G%) = &

& {A\CUB\CUANBNC)=A\CUB\CU(ANB)}
nii(B;) \ G® U nii(By) \ G° U (nii(By) Nnii(By)) = &

& {BePA;; ANCUB\CU((ANB)=AUBifANC=BNC}
nii(By) U nii(B2) = @

= { induction hypothesis }
pos(Er[B.]) =9 A pos(ér[B:]) =2

= { definition &[] }
pos(ér[Billg B:]) = @

4.4 Conclusions

In this chapter we have presented a simple timed extension of extended bundle event structures
that allows the specification of minimal time constraints. The theory of extended bundle event
structures is carried over to the timed setting in a rather smooth way—notions like timed
event trace and timed remainder are straightforward conservative extensions of their untimed
counterparts.

One of the features of the model is the absence of actions that represent the passage of time,
which in one way or another make their appearance in most interleaving models (see also
Chapter 5). Here, time is dealt with in a way comparable to ordinary physical models, viz. by
means of parameterization (e.g., for recording the delays). Another important feature of the
timed model is that it is a conservative extension of the untimed case; the causal dependencies
present in the untimed model are unaffected by the inclusion of minimal time constraints.
This stems from the fact that events do not become impossible by imposing minimal time
constraints. In Chapters 6 and 7 we will encounter timed extensions which violate backward
compatibility.

The timed model in this chapter is kept rather simple—expressiveness was not our first main
goal. The incorporation of urgency in the simple timed model of this chapter is dealt with in
Chapter 6. In Chapter 7 we will investigate how the theory of this chapter can be generalized
by allowing intervals (or even sets) of time instants to be associated with events and bundles;
in this chapter we also compare our approach with existing timed extensions of partial-order
models.

Conclusions 87

From several perspectives it would be interesting to elaborate the timed model in even other
directions, some of which are mentioned below:

e Associate time with the asymmetric conflict relation. The intuitive meaning of e, % ey
is that (i) if e, occurs it disables the occurrence of e, (as in the untimed case), and (ii)
if e, and e both occur in a single system run then e, causally precedes e, (as in the
untimed case) and the minimal time between the enabling of e, and the occurrence of

e, is t. When in addition e, 4 ep and all three events e,, e, and e. occur in a single run,
then e, is enabled at max(t,+t,t.+t'). Note that ~» = 2. The extension of the model
with this construct is fairly straightforward.

e In the current model time is associated with bundles. E.g., when {e,, e} Ly e, the
minimal relative time between e, and either of its causal predecessors is equal to t. An
alternative would be to allow for the association of different time values to the different
‘branches’ of the bundle. For instance,

a

b 5

intuitively specifies that (i) if e, and e, occur in a run then the minimal timing between
the occurrences of these events equals 3 and (ii) if e, and e, occur then this time is 5.
We believe that also this construct can be added to our model in a reasonably straight-
forward way.

e The previous construct can also be used as a basis to add time to one of the primitives
in our model of Chapter 3, disjunctive causality. Even adding time to the interleaving
relation of that model could make sense. The interpretation of e, ! =4 e, is that e, and
ep are interleaved, e, being caused by e, after a minimal delay of ¢’ time units, or e, is
being caused by e, after a minimal delay of ¢ time units. This subject is left for further
study.

88

Chapter 4: A simple timing module

5 Timed operational semantics

This chapter presents two timed event transition systems for the timed pro-
cess algebra PAr. Opposed to the standard case transitions are equipped
with event and action (and time) labels. The timed event transition sys-
tems are defined by structured operational semantics. One transition model
is based on timed-action transitions and the other is based on the separa-
tion between time- and (untimed) action-transitions. The compatibility of
these timed transition models with the causality-based semantics of PAr
as provided in Chapter 4 is investigated. The timed event traces of the
timed-action transition model and the causality-based semantical model are
shown to coincide. For the model distinguishing between time- and action-
transitions this holds when restricting to time-consistent traces.

5.1 Introduction

In Chapter 4 we have presented a causality-based semantics for a temporal variant of the
process algebra PA. The basic timing ingredient in PA7 is a delay function that specifies the
minimal relative delay of an action with respect to its causal predecessors (if any). This chapter
presents an event-based operational semantics for this formalism in two ways and shows that
these operational semantical models are compatible with the causality-based semantics of PA7.

If we are mainly interested in a causality-based semantics why do we have to define an op-
erational semantics as well? This understandable question can be answered adequately as
follows. First of all, a rather ‘standard’ means to provide a semantics to process algebras, let
alone timed variants thereof, is to present an operational semantics. By providing an opera-
tional view on our timed event structure semantics we facilitate a comparison with existing
approaches. Various timed extensions of process algebras have been (and still are being) pro-
posed in the literature based on timed variants of labelled transition systems. Since there is no
canonical way to include time into transition systems different approaches appear. A (timed)

event-based operational semantics for PAr provides a basis to determine our position in this
broad field.

Secondly, like for interleaving semantics of timed formalisms there are various ways in which
a partial-order semantics can be defined for such formalisms. A natural demand is that the
partial-order semantics is compatible with less discriminating semantics such as pomset, step
and interleaving semantics. This has been well-recognized in the literature. Langerak, for
instance, shows that his event structure semantics of LOTOS is compatible with the standard
interleaving semantics of LOTOS [89], Boudol & Castellani [23, 26] consider the compatibility

89

90 Chapter 5: Timed operational semantics

between a flow event structure and interleaving semantics of CCS, and Baier & Majster-
Cederbaum [10] prove the consistency between a prime event structure and interleaving se-
mantics of theoretical CSP, extending the results of a previous attempt by Loogen & Goltz
[95].

These studies are all performed in an untimed setting. A problem, compared to the untimed
case, is that there is no consensus on how to include time into a transition system and, as
a consequence, different styles have been developed for providing an operational semantics
for timed process algebras. This chapter concentrates on, what we consider to be, the two
major schools in timed interleaving models—models that explicitly distinguish between time-
advancing transitions and the occurrence of ‘normal’ actions, and models that do not and
combine these two notions into a single transition relation.

The difference between timed-action and time- and action transition systems can best be un-
derstood by means of a simple example. In the timed-action model (Figure 5.1(a)) transitions

€)) (b)

Figure 5.1: Timed-action transitions versus time- and action transitions.

are labelled with timed actions and the passage of time is not explicitly modelled. In time- and
action-transition systems (Figure 5.1(b)) the passage of time is modelled explicitly (depicted
vertically) and action transitions (depicted horizontally) are untimed. Action transitions are
orthogonal to time transitions and the projection of action transitions on the time axis has
zero length, indicating that actions consume no time.

The approach followed in this chapter is adopted from [89, Chapter 7]; the same scheme is
used by Rensink [127] to obtain an operational semantics for a process algebraic formalism
including a refinement operator. Since our timed variant of extended bundle event structures
is in fact just a parameterization of this model we might expect that we can quite closely
follow this approach. The approach—inspired by [23, 26]—embodies defining a timed event
transition system, which is a transition system in which we keep track of action occurrences
(i.e., events) rather than the actions themselves (as usual in structured operational semantics),
and showing that this transition system generates the same set of timed event traces as the
causality-based semantics.

As argued above we concentrate on two types of timed interleaving models. This results in
two timed event-based operational semantics for PAr.

Event-based operational semantics for PAr 91

In the first part of this chapter we consider a timed model for PA7 based on timed-action tran-
sitions. This model turns out to be a straightforward (and minimal) extension of the untimed
event transition system of Chapter 2—by just omitting the time labels in each inference rule
the untimed event transition system for PA is obtained. The resulting event-based operational
semantics is fully compatible to the causality-based semantics of Chapter 4 in the sense that
it generates the same set of timed traces, and, since timed event traces can be used to deduce
Iposets, it generates the same set of lposets.

In Section 5.4 we distinguish between time-transitions (denoted ~-) and action-transitions
(denoted —). This gives rise to a transition system which is an orthogonal extension of the
untimed event transition system for PA (of Chapter 2) in the sense that the rules for — are
identical to the untimed event-based inference rules. Thus, time is indeed considered as an or-
thogonal dimension of the untimed model. The model forces derivations to be time-consistent,
and therefore is only partially compatible to the causality-based semantics of Chapter 4—it
generates the same set of time-consistent traces.

In more detail this chapter is organized as follows. Section 5.2 defines an operational semantics
for PAr. Section 5.3 considers the consistency between the operational and causality-based
semantics of PA7 at the level of timed event transition systems. The alternative approach with
separate time- and action-transitions is presented in Section 5.4. The consistency between the
alternative model and the denotational semantics is studied in Section 5.5. Model properties
like time determinism, action persistency, and time additivity—properties of timed transition
systems that are commonly considered to be of importance, see Nicollin & Sifakis [112]—are
considered in Section 5.6. Finally, Section 5.7 discusses some related work and Section 5.8
draws conclusions.

In this chapter we confine ourselves (as in the previous chapters) to finite behaviours; event-
based operational semantics for P := B where B might contain occurrences of P is dealt with
in Chapter 10.

5.2 Event-based operational semantics for PA;

In this section we present an operational semantics, for PAr, the simple timed process algebra
of Chapter 4. This semantics is defined by means of inference rules (in the style of Plotkin [120])
that determine a timed event transition relation. We follow the procedure of Section 2.5.

Event identities are generated by annotating each action occurrence in term B with a unique
event occurrence identifier, denoted by a Greek letter. Recall that for parallel composition
new event names can be created. If e is an event name of B and €’ an event name in B’, then
possible new event names in B ||g B’ are (e, *) and (x*, €') for unsynchronized events and (e, €’)
for synchronized events.

The operational semantics defines a set of transition relations —©%%,, B (28, B’ denotes
that behaviour B can perform event e € Ev, labelled with action a € Act™, at time ¢ € Time,
and subsequently evolve into B’. The transition relation — is the smallest relation closed
under all inference rules in Table 5.1.

92 Chapter 5: Timed operational semantics
\/é (576775) R 0

B (g)a’t) > B’

(¢,a,t") ' (tl > t) '
(t)ag; B L5 ¢ B] [B] L2t ¢
B (g)a’t) 5 Bi B2 (é"a)t) > Bé
_B1 + B2 (é"a)t) > Bi B1 + 32 (g)a’t) NN Bé
B (§7aat) B/ B (é,&,t) BI
1(t> 1 (a 7 9) : TN
B, >> B, &%, B! > B, By >> B, &0, t[B,]
B]_ (§7a’t) , Bi (a % 6) B]_ (é,&,t) Bi
By [> By &8ss B [>t{ By} By [> B, &%, B
B2 (§7aat) B/ B (.{,a,t) > BI
2 (t>t)

B]_ [> B2 (§’a7t) NN Bé t’{ B } (.{,a,t) N t’{ BI }

B (§’a7t) 5 B/ B (§7a’t) B’
1((§*>at) . (a ¢ G 2((*§)at> : (a ¢ G°)
By [|g By === Bi || B; By ||g By =220 B, || By
B]_ (§7a’t) Bi /\ B2 (1/)7a"t) > Bé (al c Gé)
B, || B, (&22%0,, Bt ||, B,
B (§7a’t) B/ B (§’a7t) B’
(a g C) (a€G)
B\ G-, g\ @ B\ G-&r,, g\ @
B (g)a’t) BI
B[H] (é’H(a)’t) BI[H]

Table 5.1: Event-based operational semantics for PAr.

Event-based operational semantics for PAr 93

As 0 cannot perform any transition there is no rule for this construct. / can perform the
successful termination action 6 at any time ¢. (¢) a¢; B can perform event £ at time ¢/, ¢’ > ¢,
and evolves into ¥ [B]. ¥[B] can be considered as behaviour B shifted ¢ time units in advance.
That is, if B can perform event ¢, say, at time ¢, then ¥ B] can perform ¢ at time t+t'. Note
that t'[B] is only an auxiliary construct; it has no counterpart at the language level.

The rules for choice are a straightforward extension of the untimed case—if either B; or B,
can do an event e labelled a at time ¢, then B; + B, can do so either. The same applies for the
rules for parallel composition in which no synchronization takes place, hiding, and relabelling.
Synchronization can only take place when both participants can perform an equally labelled
event whose label is in the synchronization set G (or equals §) at time ¢.

The rules for >> are also a straightforward extension of the rules for the untimed case except
that in case B; performs a successful termination action ¢ at time ¢, then B; >> Bj evolves
into ![By] rather than B,. This represents that ¢ time units have been passed before By can
start with its execution. This is similar to the timed action-prefix case.

For B; [> B, the rules are justified as follows. If B; performs an event at time ¢ and evolves
into B then B; [> B can do the same while evolving into Bj [> *{ By }. *{ By } behaves like
B, except that it is unable to perform events before t. This ensures that B, cannot disrupt
B{ [> B, by performing an event at time t', say, while B; has performed an event at time
t > t'. The other inference rules for disrupt are straightforward extensions of the rules for the
untimed case.

The inference rule for *{ B} is that if B can perform an event at time ¢, then ¥ { B} can do
so if t > t'. Note that ¥ { B} is—like [B]—an auxiliary operator that cannot be specified by
the user.

The inference rules are a conservative (and minimal) extension of the SOS-rules that determine
the (untimed) event transition system for PA (cf. Table 2.1)—when we omit the time labels in
the transitions and turn ![B| into B we obtain identical rules. Note that the inference rules
for [B] and *{ B } then reduce to a tautology.

5.1. EXAMPLE. Let B = (3) a¢; (((2) by; 0+ (7) cy5 (3) dy; 0)]]a(12) d,; 0). Then we
derive using the inference rules of Table 5.1:
(3) ae; (((2) by; 0+ (7) cy;5 (3) dy; 0)]]a(12) d,; 0)
(&20) . £ (timed-action prefix) }
°[((2) by 3 0+ (7) cy5 (3) dy3 0)[|a(12) d, 5 O]
~W.edd),, £ (timed-action prefix), (choice-right), (par-left), (time-shift) }
°[71(3) dy; 0]]la(12) d,; O]
:0)d:22),, ¢ (synchronization), (time-shift) }

1011 lla **[O]]

It should be noted that time labels in successive transitions do not have to increase, in fact,
they can even decrease. Take, for instance, B = (3)ag; 0|/ (7) by ; 0. A possible derivation

of Bis B9, g (&ed), B where B' = (3)a |||°[0] and B” = 4[0]]]|°[0]; see also

94 Chapter 5: Timed operational semantics

Corollary 5.19. O

5.2. EXAMPLE. As a second example consider

B = (((2) ac; vy 11 (14) by; v/,) >> (1) ¢53 0) [> (1) dy; O] (3) f5 0)
Using the inference rules of Table 5.1 we derive

((2) ag5 v/, 11129) by) >> (1) 55 0) [> (1) d,; O[[|(3) £.5 0)

ALx)b D, £ (timed action-prefix), (par-right), (enabling-left), (disrupt-left) }

(@) ae5 Vy 11TV, D) >> (1) €5 0) [> 17{ (1) d,.; 0] (3) £,; 0}
((&).0.5) { (timed action-prefix), (par-left), (enabling-left), (disrupt-left) }
(CIVL IV, D >> (1) ¢ 0) [> 5{17{(1) 5 O[]|(3) £u; 0})

~di33) , £ (timed action-prefix), (disrupt-right), (rule for {{B}) }
{TFEI0]B3) fo;0}}
[

_f18) , £ (timed action-prefix), (rule for *{ B }), (par-right) }
r{Eegeol 0
Remark that nested {[] and *{ } operators can be simplified as follows: ![¥[B]] = **[B]
and t{t’{B} } — ma,x(t,t’){ B }

In the remainder of this section we formally define the transition system defined by —» and
show the correspondence of this transition system with the standard transition system for PA
defined in Chapter 1. The intuition is that if we take the transition system for B induced by
— and abstract from the timing aspects and event identities then we obtain the standard
transition system for ®r(B), the untimed counterpart of B.

The set of derivatives of expression B consists of all expressions B’ that can be reached from
B by performing zero or more — transitions.

5.3. DEFINITION. (Behaviour derivatives)

For B € PA7 the set of derivatives of B, Der(B), is the smallest set satisfying:

e B € Der(B)
e B' € Der(B) A B'2%),, B" — B" c Der(B).
U
5.4. DEFINITION. For B € PAr the set of events in B, denoted E(B), is defined by
E(B) 2 {ec Ev|3ac Act™® B, B" € Der(B),t € Time : B' (&%, B"},
U

Let Ip : E(B) — Act™ associate to each event in B its action label. That is, Iz(e) = a

iff 3B',B" € Der(B) : B'-©21,, B" This permits us to write B 22+ B’ instead of
B (e,lB(e),t) B”.

Event-based operational semantics for PAr 95

5.5. DEFINITION. (Timed event transition system)
For B € PA; the timed event transition system TSy(B) = (S, L, T, so) with
e S = Der(B)
L={(e,t)|Ja € Act™, B', B" € Der(B) : B' 21, B}
T = { | (e,t) € L} where —®s = {(B;,By) € S x S | B, % B, }
e 5o = B.

Transition relation — is said to be deterministic iff
VBZ(HBI,B” B (eat) (e,a,t) B' A B-leat) (e,a,t) B" = B/:B//)

A transition relation that does not satisfy this property is called nondeterministic.

Since event identifiers are unique and (together with the time at which they occur) uniquely
determine the successor state of a state in TSy (B) we have that the transition system does
not contain nondeterminism.

5.6. LEMMA. VB € PAr : TSp(B) is deterministic.

PROOF. Straightforward by induction on the structure of B. 0

We extend the function &7 : PAr — PA, which associates to a timed behaviour its cor-
responding untimed behaviour by simply omitting all time annotations, to include [B]
and *{ B} as well. Let PAJ denote the extension of PAr with ![B] and *{B} and let
®7(*[B]) £ ®7(B) and &p(*{ B}) £ &;(B) for any B. We then have (recall from Chapter
1 that —% is the transition relation from the standard interleaving semantics of PA):

5.7. LEMMA. VB, B € PA} : (Je,t: B2 B' A Ig(e) = a) iff &7(B) % &7(B').

PROOF. By induction on the structure of B.
Base : The base cases that we consider are O, \/g and timed action-prefix.

1. B = 0. Trivial as 0 cannot perform any — transitions and ®1(0) = 0 cannot perform any
— transitions.

2. B =/,. Trivial as 1/, can only perform § at time ¢, evolving into 0. ®7(y/,) = 1/, can only
perform § and evolves into 0 = ®&1(0).

3. B = (t) a¢; B;. Then we have B (&0t ¥IB] for ' > t. ®p(B) = a¢; ®r(B;). For this
construct the only possible — transition is ®(B)—>'I>T(Bl). Since ®(*[B,]) = ®r(B;)
this proves the case.

Induction Step: Assume the lemma holds for B; and B,. We only provide the proof for time-shift
and parallel composition. The proofs for the other operators are rather similar and omitted here.

96 Chapter 5: Timed operational semantics

1. B ="*[By]. For this case we derive

Je,t' : B,]S [By] A lge) =a
< { SOS-rule for *[]| }

Je,t': B, =) B, A lp,(e) =a
< { induction hypothesis }

&1 (B;) 2 ®1(B,)
< { definition of &1 }

Or(‘[B1]) - @r(*[B2])

2. B = B ||¢g B;. For this case we derive

de,t: By ||GBzﬂ» B" A lg(e) =a
& { SOS-rule (—») for ||¢ }
(Je,t: Blﬂ»B{ A lg(e)=a A a & G®)
\% (He,t:B2ﬂ»B; A lg,(e)=a A a & G®)
V (Je,e,t: By ety B] N B, SGEIIN B} A I, (e)=lp,(e')=a A a€ G?)
< { induction hypothesis }
(27 (B1) 2 @1(B;) A ag G°) V (®r(By) > @1(B;) A a & G%)
V (27(By) 2 @1(B;) A ®p(By) > ®¢(B;) A a€G’)
& {SOS-rule (—) for ||¢ }
&1(By) |6 Br(Bs) = B”
< { definition of & }
®7(B, ||g B2) % B"

It is now easy to check that B" = &7(B’).

0
For a set S of behaviours { By, ..., B, } let ®(S) £ {®1(By),...,®7(B,) }.
5.8. COROLLARY. YV B € PAr : &1 (Der(B)) = Der(®r(B)).
PROOF. Straightforward from Lemma 5.7. O

5.9. DEFINITION. Let TSy(B) = (S, L, T, s9). The corresponding untimed transition system,
denoted ®(TSy(B)), is defined as ®(TSr(B)) £ (S', L', T', sh) where
e 5" =d7(S)
L'={lg(e) | (e,t) € L}
T'={-% |a€ L'} where
2 = {(®7(B1), ®r(B,)) | Je,t: By 2% By A Ip(e) =a}

86 = (I)T(So).

Correspondence with causality-based semantics 97

The correspondence between the timed event transition system of PAr and the standard
interleaving system of PA is presented in the following theorem. It says that when we construct
for timed behaviour B the automaton TSz (B) and subsequently omit times from this transition
system while focusing on action labels rather than on event labels (i.e., construct ®(TSr(B))),
we obtain the same result as we get by constructing the standard transition system TS for the
corresponding untimed behaviour ®r(B). That is,

5.10. THEOREM. V B € PAr : ®(TSz(B)) = TS(®7(B)).
ProOOF. Let ®(TSr(B)) = (S',L',T",s,). We then derive

1. For the set of states S’ we have by definition of TSt (B) that S’ = ®&1(S5), and since S = Der(B),
we obtain S’ = ®1(Der(B)). From Corollary 5.8 it immediately follows S’ = Der(®7(B)).

2. For the label set L' we derive
{is(e) | (e;t) € L}
= { Definition 5.5 }
{iz(e) | Ja € Act™, e, t € Time, B', B" € Der(B) : B' {221),, B}
= { Lemma 5.7 }
{a|321(B'), 2r(B") € Der(®r(B)) : @7(B') > &7(B") }
3. For T" we have
{(®21(B,),®1(B,)) | Je,t: B, 2 By, A lg(e) =a}
= { Lemma 5.7 }
{(27(B1), ®1(B:)) [Fa: @r(By) > &1(B>) }
4. For the initial state we have s; = ®7(so) = ®7(B).

It is now easy to check that ®(TSz(B)) = TS(®r(B)) for any B. O

This shows that the timed event transition system (induced by ——) for B € PA7 is a
straightforward and conservative extension of the transition system (induced by —) for
®(B) € PA.

5.3 Correspondence with causality-based semantics

This section proves the consistency between the denotational semantics Er[| of PAr in terms of
timed event structures (see Chapter 4) and its operational semantics induced by the inference
rules for —~. The consistency proof is carried out in two steps. First, we characterize the
timed event traces that are generated by the operational semantics of B in a denotational way.
This yields a denotational trace semantics for B, denoted 7r[B]. Secondly, it is proven that
this trace semantics coincides with the timed event traces obtained from the causality-based
semantics of B, Er[B].

We start by extending —» towards a trace derivation relation —% in the usual way:

98 Chapter 5: Timed operational semantics

5.11. DEFINITION. For B € PAr, and 0 = (e1,a1,t1) ... (€n, an,t,) for n > 0, let

B-%» B' £ (3B;: B= B, -avt),, g (e2aat) - (enantn) . p — B,
0

The following notion is needed to characterize the timed event traces for parallel composition.

5.12. DEFINITION. Let S; and S, be sets of triples of events, actions and a time, and let G
be a set of action labels (G C Act). The set S; Mg S» is defined by

(a g G5 A (e,a,t) €S; A e’,:*) %
(agG® A e)
U

So, ((e,€'),a,t) is a member of S; Xg S, if (i) a is a synchronization event (i.e., a € GY),
(e,a,t) € S; and (¢,a,t) € Sy or (ii) a is a non-synchronization event (i.e., a ¢ G?), (e,a,t) €
S1 and €' = x (or similar for (¢/,a,t) € Sy and e = *). Notice that for case (i) triples of S;
and S, are required to have identical timings.

(S1 Xg S2)* consists of all finite sequences constructed from elements of the set S; xg S.

5.13. DEFINITION. For o € (S; Xg S2)* projections 71 (o) and 7 (o) are defined by:

o mi(e) £ g, fori=1,2

(1>

! !
o 71'1(((6, e)a a, t) o) (6, a, t) T (o") otherwise

{ m1(0") if e = *

[I>

e m(((e,€),a,t) o)

my(0’) if e/ = %
(e'ya,t) m(c') otherwise .
U

In order to characterize the set of timed event traces generated by the SOS-rules for —» we
need the following auxiliary operations on traces.

5.14. DEFINITION. The following operations on timed event trace o are defined:

1. For set of actions G, 0 \ G (‘o with G hidden’) is defined by
(a) e\G 2 ¢

' a | (e,7,t) (6" \G) ifae@G
(b) ((B,a,t)U)\G = { (e,a,t) (O_I\G) ifa d G

2. For relabelling function H, o[H| (‘o relabelled with H’) is defined by
(a) e[H] 2 ¢
(b) ((e,a,t) o")[H] = (e, H(a),) (o'[H])

Correspondence with causality-based semantics 99

3. For t € Time, {[o] (‘o delayed by t’) is defined by

(a) ‘[e] =

(b) (e, at’) "1 = (e,a,t+2) 0]

4. mx(o) denotes the maximal time instant occurring in ¢ and is defined by
(a) mx(e) £ 0

(b) mx((e,a,t) o') & max(t,mx(d")).
0

Let V for V a set of timed event traces denote the set of timed labelled events occurring in a
timed trace in V.

5.15. DEFINITION. For V a set of timed event traceslet V. = {s|3occV :5€7}. O
The set of timed event traces of B is defined in a denotational way as follows.

5.16. DEFINITION. For B € PAr the set of timed traces of B, 7r[B], is defined by:

Tr[0] = {e}
Tr[vl 2 {e}U{(&6¢) |t € Time}
Tr[(t) ag; Bl £ {(&a,t) (o] [¢'>t A o e Tr[B]}U{e}
Tr[Bi+ By] £ Tr[Bi] U Tr[By]
Tr[B, >> B,] = {o1(e,7,t) 03] | 01 (e,6,t) € T[B1] A 0y € T7[B2] }
U{oeTr[Bi] | o #0" (ed,t)}
Tr[Bi[> By] = {o103|01 € Tr[B1] A o1 #01(e,6,t) N 02 € Tr[By]
N (Ve; €03 :t; > mx(o1)) }
U{oceTr[B]|o=0"(e6t)}
Tr[BIH]] 2 {o|3¢' € Tp[B]:0=0'[H}
T:[B\G] & {o|3d €Ty[B]:0=0"\G}
Tr[Bi||l¢B:] 2 {0 € (Tr[Bi|xgTr[B:])* | mi(o) € Tr[B;] for i=1,2}.

O

Definition 5.16 provides a denotational timed event trace semantics for PAr. The following
lemma shows that this denotational timed event trace semantics 77[B] coincides with the
timed event traces generated by —>.

5.17. LEMMA. VB € PAg : Ir[B]={0¢ |3B': B-2» B'}.

PROOF. By induction on the structure of B.

Base: For B = 0 we have that {o | 3B’ : 02> B'} equals {e¢}. By Definition 5.16 this equals
77[0]. From the SOS-rules it follows directly that for B =/, the only timed event traces are £ and
(€,6,t) for any t € Time. By Definition 5.16 this equals T7[+/].

Induction Step: Assume the lemma holds for B; and B,. For convenience let T'(B) denote { o | 3B’ :
B -2 B'}. We consider the proofs for timed action-prefix and disrupt. The proofs for the other
constructs are similar and omitted.

100 Chapter 5: Timed operational semantics

1. B = (t) a¢; B;. By induction on the length of o it is rather straightforward to prove, using
the SOS-rules of Table 5.1, that for nonempty o behaviour (t) a¢; B; < iff 0 = (¢,4a,t") o’

with # > ¢ such that (£) a;; By ~£2%) *[B,] and * [B; | <=~». Thus, we have:

{c|3B":(t) ag; B *» B'}

= { see above }
{Gat)o ¢ >t A o' eTC[B])} U{e)

= {0 eT([Bi]) & (0 €T(B)) A o' ="[c]) }
{(&a,t) [o] [>t N oeT(B)}U{e}

= { induction hypothesis }
{(&a,t) o] |t >t A oeTr[Bi]} U{e}

= { Definition 5.16 }
Tr[(t)ae; Bi]

2. B = B; [> B,. By induction on the length of o, using the SOS-rules of Table 5.1, it is not
hard to prove (but tedious) that By [> By % iff either

(i) o =04 (e,6,t), and B; 2» Bj or
(ii) o = 0109, By -2 B}, 01 # o} (e,6,t), and *{...""{ By } } 22 B} for
o1 =(e1,t1)...(en,tn)-
So, we can derive:
{0|3B':B,[> B, 2» B'}
— { (i) and (i))
{0 €T(B,) | o #0'(ebt)}
U{o102| 01 €T(B1) A o1 #o0y(e,6,8) N oa eT(™{..."{B>}})}
= {H*¥{B}}=m==®"{B}; definition mx }
{0 €T(By) | o #0'(ebt)}
U{o10y |01 €ET(By) A a1 # 0} (e,6,t) A op € T(™I{B,})}
= {oceT{B})e(c'eT(B) N Ve; €T :t; >1) }
{0 €T(By) | o #0'(ebt)}
U{or02 |01 €T(By) A 01 #01(e,0,t) N oy €T(By) N (Ve; €73 : t; = mx(oy)) }
= { induction hypothesis }
{oc €Tr[B,] | o #0 (ed,t)} U
{o109| 01 €Tr[B:] N 01# 01(e,6,t) N 02 € Tr[B2] AN (Ve; €73 :t; > mx(oy)) }
— { Definition 5.16 }
Tr[By [> B:]

O

In order to relate the operationally characterized timed event traces and the traces obtained
from the causality-based semantics Er[| we slightly adapt the definition of &7 | for 4/ and
(t) a; B. In the current definition of £r[| a unique but arbitrary event is introduced for these

Correspondence with causality-based semantics 101

constructs modelling the appearance of § and a, respectively. Here we assume that all occur-
rences of 4/ and action-prefix are uniquely identified, and we take this unique identification as
the unique event name in the definition of Er[|.

The following theorem says that the set of timed event traces of behaviour B of PA7 is identical
to the set of timed event traces of the corresponding timed event structure Er[B].

5.18. THEOREM. VB € PAr : Tr(Eér[B]) = Ir[B]-

PROOF. By induction on the structure of B.

Base: For B = 0 we simply have T7(E7[0]) = {e} = 7r[0].

For B =/, we have Tr(Er[+/,]) ={e} U{(6,%) |t € Time} =T7[+/,].

Induction Step: Assume the theorem holds for B; and B,. We only provide proofs for timed action-
prefix, choice, enabling and disrupt. The proofs for the other operators are conducted in a similar

way as for the untimed case [89, Theorem 7.5.3], and are omitted here.
Let T'; = Er[B;] = ((Ei, ~4, 4, 1), D, T;) for i=1,2, and T' = Ep[B].

1. B = (t) a¢; B;. For I bundles {{({,a)}} x pin(E;) have been added to (({¢},@,9,
{(&,a)}),{(&t)},o). The non-empty timed event traces of I' are therefore those interleav-
ings of (¢,a,t') and ¥ [0], with ¢ € Tr(T), that satisfy the following constraints: (i) the first
element of ¥ [] is preceded by (¢,a,t'), and (ii) ' > D(¢) = t. Thus we derive:

Tr(Er[() a¢; Bi])
= { see above }

{(&,a,t)][] |t' =2t A o €Tp(Ty)}U{e}
= { induction hypothesis }

{(€a,t)'[o]|t' >t A o € Tr[Bi]} U {e}
= { Definition 5.16 }

Ir[(t) a¢; Bi]

2. B = B; + B,. In T mutual conflicts are introduced between init(T';) and init(T'y). So, the
timed event traces of I' are those interleavings of oy € Tr(T';) and o, € Tr(T';) such that the
first timed event in o; precedes the first timed event in o5, and vice versa. That is, the trace
is either oy or oy. So, Tr(Er[B: + By]) = Tr(T'1) U Tr(T'2), which, by induction hypothesis,
equals 77[B; | U 77[By]. By Definition 5.16 this equals 77[B; + B:].

3. B=B; >> B,. InT a bundle from exit(T';) to pin(T;) is introduced. This means that traces
of I are either (i) traces of I'; that do not contain a §, or (ii) concatenations of o, (e, 7,t) and
![oy] with oy (e, 8,t) a trace of I';, and o5 a trace of I'y. That is,

Tr(Er[By >> By])
= { see discussion above }

{cd €Tr(Ty) | o #0c'(e,6,t) } U{o1(e,1,t)[02]]| 01 (e,6,t) € Tr(T1) Aoz € Tr(Ts) }
= { induction hypothesis }

{0 €T7[By] | 0 # o' (e,6,t) }

U{o:(e,7,t)02]]|01(e,6,t) € Tr[By] A o3 € T7[B2] }
= { Definition 5.16 }

Ir[B, >> B,]

102 Chapter 5: Timed operational semantics

4. B = B, [> B,. From the untimed case we know that traces of I are either (i) traces of I';
that end with a 8, or (ii) concatenations of traces o, € Tr([';) and o, € Tr(T'y) where o,
does not contain a §. In I' asymmetric conflicts are introduced between E; and init(T'y). This
means—according to Definition 4.5—that the timing of events in ¢, should exceed the timing
of all events of I'; that have occurred in ;. So, we derive:

Tr(ér[By [> B:])
= { see discussion above }

{ceTr(ly)|oc=0(edt)} U

{o105| 01 €Tr(T1) AN 02 € Tr(Ty) A o1 # 07 (e,6,t) N (Ve; €T3 :t; > mx(o1)) }
= { induction hypothesis }

{o €Tr[B]|oc=0(eb,t)} U

{0102 | 01 €T7[B1] N 09 € Tr[B2] AN o1 #01(e,6,t) N (Ve; €02 : 8 > mx(oy)) }
= { Definition 5.16 }

Tr[B: [> B]
O
5.19. COROLLARY. VB, B{,By € PAp,t,t' € Time:
(B-Leoy By L9885 By A ¢ < t) = (3B': BLEE, prlead, B
PROOF. Directly from Theorems 5.18 and 4.9. O

We now rephrase Theorem 5.18 in the sense of timed event trace equivalence between transition
systems. Let TSr(B) be the transition system obtained by applying the inference rules of
Table 5.1 to B. For £r[B] a transition system is constructed in the following way.

5.20. DEFINITION. For I' € EBESy, the set of derivatives, der(T"), is defined as the smallest
set satisfying:
e I' € der(T)
e (I"eder(T') A T =T"[(e,t)]) = T € der(T).
[

States of the transition system for &r[B] are derivatives of Er[B| with 7] B] being the
initial state. There is a transition from T to I if IV = I'[o] for trace o with | o | = 1.

5.21. DEFINITION. For T' € EBESy let ETS1(T) = (S, L, T, s0) with
o S =der(l')
o L={(et)| 3T, T" eder(T):T" =T"[(e,t)] }
o T={(I",(e,t),T") | I',T" € der(T") A I" =T"[(e,t)] }

e so =1

An alternative approach for PAr 103

Theorem 5.18 implies that the timed event transition systems TSr(B) and ETSr(Er[B]) are

(timed) event trace equivalent. It is easy to check that for each transition B —=%+ (t),, B’ there
is a unique way in which this transition is derived from the SOS-rules for —~. Since—in
addition—both (timed) event transition systems are deterministic it follows that TSz(B) and
ETSz(Er[B]) are strong (timed) bisimulation equivalent.!

5.22. THEOREM. VB € PAr : TSp(B) ~ ETSy(E7[B]).

PROOF. Similar to the proof of Theorem 2.46. O

5.4 An alternative approach for PA;

This section presents an alternative event-based operational semantics for PAr which is in-
spired by the separation of the passage of time (relation ~~) and the occurrence of actions
(relation —) as introduced by Moller & Tofts [105] and Wang [149] and adopted by, amongst
others, Bolognesi et al. [18] and (partly) Schneider [133].

The transition relations ~» and — transform a pair (B,t), where B € PAr and t € Time.
(B, t) should be interpreted as behaviour B at time ¢. Usually one starts with (B, 0). (B,t) ~
(B',t') denotes that B at time ¢ can pass time to B’, which is often equal to B, at time ¢’
(t' > t). Thus, time is advanced with an amount of #—¢ time units. (B, t) 2% (B’ t) means
that B at time ¢ performs event e, labelled with action a, and turns into B’ (at t).

The relations ~~ and — are the smallest relations closed under all inference rules defined
below.

Inaction
This behaviour cannot perform any action, i.e., it can perform no — transitions. 0 permits
any amount of time to pass, remaining O.

(0,t) ~ (0,t) 29

Successful termination
/ can only perform a é action, and permits any amount of time to pass, remaining /.

(' >1)

Ve t) ~ (Ve t') (Ve 1) =52 (0,1)

'For the sake of brevity, we refrain from formally defining the notion of strong timed bisimulation equiva-
lence; its definition is similar to Definition 1.4 labelling transitions also with time labels.

104 Chapter 5: Timed operational semantics

Timed action-prefix

The behaviour (t) a¢; B will wait for ¢ time units to become (0) a¢; B after which it either
permits any amount of time to pass, remaining the same behaviour, or it may perform event
(£, a) and behave subsequently like B. (Recall that &y denotes max(z—y,0) for z,y € Time.)
The fact that (0) a; B may delay is reasonable; if the environment is not possible to engage
in a then it should be allowed to delay until the environment is able to engage.

(t" > t)
(") ag; B, t) ~ ((t' © (t"—1)) ag; B, ")

((0)ag; B,t) £ (B, 1)

Choice
If the component behaviours B; and B, permit the passage of time with some amount then so

does their choice B; + B;. Note that the passage of time does not decide the choice between
B, and B,.2 If B; (or B,) performs event (£,a) and evolves into B] (Bj) then B; + B, can

do the same. Thus,

(Bl’t> ~? <Biat,> A <B2’t> ~ (Béat,>
(Bi + By, t) ~ (B; + By, t')

<Bl’t> M) <Biat> <BZ’t> M) <Bé’t>
<Bl+Bz,t>M>< Lt) <Bl+Bz,t>M>< 5y t)

Enabling
If the first component B; permits the passage of time with some amount, then so does the

enabling of it with B,. The action transitions are similar to the untimed case.

(Bl’t> ~ <Bi’tl>
(By >> By,t) ~ (B} >> By, t')

(Bi,t) 22 (B, t) (a4 5) (B, 1) 42 (B}, 1)
(By >> By, t) &%, (B!l >> By, t) (B, >> By, t) &7 (B, 1)

2In the ‘standard’ jargon of Nicollin & Sifakis [112] our choice construct is classified as a strong choice; a
weak choice allows the passage of time to decide the choice.

An alternative approach for PAr 105

Disrupt
If the component behaviours B; and B, permit the passage of time with some amount then
so does By [> B,. The action transitions are similar to the untimed case.

(Bi,t) ~ (B,) A (By,t) ~ (By,t) (By,t) 2 (By¢)
(Bi[> By, t) ~ (B [> By, t') (By [> By, t) &7 (B, t)
<Bla> (fa) <Bia> (a;éé) <B2’t> (g,a) <Bé’t>
(B [> By, t) 42 (B [> By, t) (B [> By, t) 42 (B) 1)

Parallel composition

Like for choice, Bj ||g By allows the passage of time with some amount if both component
behaviours permit this. Components of a parallel composition may perform actions not in the
synchronization set G? independent of each other, while if both B; and B, can participate in
a synchronization action a € G® then so can their parallel composition.

<B17t> ~ <Bi7t,> A <B2’t> ~ <Bé7t,>
(Bi|lg Bast) ~ (Bj ||¢ By, t')

(By,t) 2 (B], 1)

- (a & G°)
(Bi||g Ba, t) {222, (B! || By, t)
B _(&a) Bt
< 29 >((*§) < 27> (aQGé)
(B1 ||g By, t) {822, (B, || B}, t)
(Bi,t) &% (B, t) A (B, t) "% (By,) (a € G

<Bl ||GB2,t> M) <Bi ||GBé, >

Hiding

If B allows the passage of time with a certain amount, then so does B\ G. Any action that B
can perform, can also be performed by B \ G whereby actions in set G are turned into silent
actions 7.

(B,t) ~ (B',t')
(B\ G,t) ~ (B"\ G,t")

(B,t) €2, (B',1)
(B\ G,1) 1, (B\ G, 1)

(B.t) (5,1
(B\G.t) 52 (B Gt

(a € G)

(a ¢ G)

106 Chapter 5: Timed operational semantics

Relabelling

Like for hiding, if B allows the passage of time with a certain amount, then so does B[H].
If B can perform action a and evolve into B’, then B[H| can perform H(a) and evolve into
B'[H].

(B,t) ~ (B',¢') (B, t) &2, (B’ t)
(B[H],t) ~ (B'[H],#') (B[H],t) &1, (B/[H] ¢)

From the event transition system defined by — we can easily obtain the standard interleaving
semantics for PA (as defined in Chapter 1) by omitting time components of tuples (...) and
the event identifiers from transitions and expressions. When retaining the event identifiers
and only omitting the time components we obtain the event-based operational semantics of
PA (see Table 2.1). In this sense the presented transition system(s) can be considered to be
an orthogonal extension of the untimed one.

5.23. EXAMPLE. Consider B = (3) a¢; (((2) by ; 0+(7) ¢y ; (3) dy; 0)|]a(12) d,; 0). Then
we derive using the inference rules for ~ and — (compare with Example 5.1):
((3) ag; (((2) by; 0+ (7) cy; (3) dy; 0)]a(12) dy; 0),0)
~ { (timed action-prefix) }
((0) ag; (((2) by; 0+ (7) cy; (3) dy; 0)]a (12) dy; 0),6)
&), (timed action-prefix) }
(((2) by; 0+(7) ¢y (3) dy; 0)[a(12) d, 5 0,6)
~ { (parallel composition), (choice), (timed action-prefix) }
(((0) by ; 0+(0) cy; (3) dy; 0)[[a(5) dy5 0,13)
W), [(par-left), (choice-right), (timed action-prefix) }
((3) dy; 014 (5) dy,; 0,13)
~ { (parallel composition), (timed action-prefix) }
((0) dy5 014 (0) dy; 0,22)
:2)d), £ (synchronization), (timed action-prefix) }
(01l20,22)

Opposed to the transition system based on timed-action transitions, time labels in successive
transitions do increase, and as a result all derivations are time-consistent. E.g., for B =

(3) ag; 01| (7) by ; O we have (B,0) _Wb9, (B’ 9) M@*, where —, is defined below. [J

—, 18 defined as the combination of ~ and — .
5.24. DEFINITION. (B,t) Mﬁ(B’,ﬂ} iff (3 B": (B,t) ~ (B" ¢') (=), (B’,t’}), 0

Using the relation —, the notion of timed event trace and a trace derivation relation %,
for timed event trace o can be defined in the usual way.

Alternative timed event transition semantics 107

5.5 Alternative timed event transition semantics

This section proves the consistency between the denotational semantics Er[| of PA7 in terms
of timed event structures and its operational semantics induced by the inference rules for
— and ~». We start by giving an operational characterization of timed event traces of B
under —,, and relate this to the denotational characterization of timed traces, 77[B] (see
Definition 5.16).

We have the following result for timed event traces generated by —,. For parallel composition
we use the projections 71 (o) and my(c) for o € (S; Mg S)™ (rather than *), the set containing
all time-consistent sequences constructed from elements of the set S; xg 5.

5.25. LEMMA. For trace o, behaviours B, B; and B, and time t,t"” we have:

1. (0,t) S (B t")iffco=¢,B'=0and t' >t
2. (Ve t) 2« (B', 1) iff either
(i) o=¢,B' = \/gandt t, or
(ii) o= (&, 6,t'), BP=0and t' > ¢
3. ((t) ag; B,t") -Z.(B',t') iff either
i) c=¢,B'=(to(t'—t")) ag; Band t' > t", or
(ii) o (f,a to) o' with t, > t"+t such that ((t) a¢; B,t") (&%), (B t,) and
(B;ta) ==.(B',t).
4. (By + B, t) %, (B',t') iff either
(i) o =¢ A (Bi,t) =.(B,t') N (Ba,t)=.(B5,t') N B'=Bj+ Bj, or
(ii) (By,t) 2= (BI,t') N B =B, AN o =0 A oc#¢,or
(iit) (By,t) 2, (By,t') AN B'=By AN 0 =0' A 0 #¢.
(By >> By, t) %5, (B',t') iff either
(i) o # o1(e, 6,t'), (B1,t) “Z.(Bji,t'), and B' = B} >> By, or
(ii) o = o1(e, 7, t")os, (By,t) -2, (B1 41y (B, ¢") 225, (BL, ') and B' = B},
. (B1[> B, t) -5, (B',t') iff either
(i) o =01, (By,t) 2. (B, t'), 01 # o} (e,6,t') and B' = B} [> Bs, or
(ii) o = oy (e,8,t"), (By,t) 280, (B! 1) and B' = B}, or
(iii) o = 0109, (B1,t) ~Z.(B1,t"), o1 # o1(e,6,t"), and (Bs,t) = ,(Bj, "),
(By,t") 225,(B},t'), 09 # € and B' = Bj,.
- (Bt |lg By, t) -5, (B, ') iff
(By,t) ™), (B! ') and (Bj,t)”2—“'% (Bj,t') and B' = By || By.
. (B[H],t) %, (B',t') iff (B,t) 2 (B” t') and B’ = B"[H| and 0 = o'[H|.
. (B\ G,t) %.(B',t') iff (B,t) 2>.(B",t') and B'=B"\ G and 0 = ¢’ \ G.

ot

=2}

\]

©

108 Chapter 5: Timed operational semantics

PROOF. For all syntactical constructs the proof is by induction on the length of o using the
transition rules for — and ~». These proofs are rather laborious, but quite straightforward. Here,
we only provide the proof for action-prefix. Consider (t) a¢; B we distinguish between two cases,
oc=c¢and o #e.

1. For ¢ = ¢ we derive
((t) ac; B,t") =.(B',t')
< { Definition 5.24 }
((t) a¢; B,t") ~ (B, 1)
< { SOS-rules for ~» }
' >t" A B =(to(t'—t")) ac; B

!

2. For o # ¢ it follows immediately from the SOS-rules for ~ and — that o = (§,a,t,) o

(£) ag; B,t") ol (B 1)

< { Definition 5.24 and %, }
() ag; B,t") ~ (B",t,) < (B, t,) -2 (B, t')

& { see proof just above for ¢ = ¢ }
((t) ag; By1") ~ ((t© (ta—1")) ag; B,t.) 425 (B",t,) <. (B, 1)

< { SOS-rule for — implies ¢, > t+¢" and B”’ =B}
((t) ag; B, ") ~ ((0) a¢; B,t,) <82 (B t,) <=5, (B, #') A t, >t+1t"

& { Definition 5.24 }
(1) ag; B,t") -E2te)s (B t,) 25 (B, ¢') Aty >t+1t"

5.26. DEFINITION. The set of timed event traces of B at ¢t under —, is defined as:

Ti[B]t = {o| 3Bt : (B,t) %.(B,t')}
O

The following lemma shows that the set of timed traces of B under —,, 77[B], corresponds
to the time-consistent timed traces obtained from the transition system based on timed-
actions, 7r[B].

5.27. LEMMA. ¥ B € PAp,t € Time : TA[B]t = {[c] |0 € Tr[B] A tc(o) }.

PROOF. By induction on the structure of B.

Base: For B = 0 we have 7;:[0]t = {¢ }. From Definition 5.16 we infer that 7r[0] = {e}. Since
‘[e] = € and tc(e), the lemma holds for this case. For B =/, we have 77[0]t = {e} U {(£,6,1') |
t' >t} that is, {e } U {*[(£,6,¢")] | " > 0}. From Definition 5.16 the lemma follows directly.
Induction Step: Assume the lemma holds for B; and B,. We provide the proofs for timed action-prefix
and enabling. The proofs for the other operators are similar and are omitted here.

Alternative timed event transition semantics 109

1. Timed action-prefix. For this case we derive:
TA1(t") ag; BJt
= { Definition 5.26 }
{o | 3B, t": ((t") a¢; B,t) %, (B',t') }
= { Lemma 5.25; Definition 5.26 }
{e}U{(&a,t.)o" |ty > t+t" N o € TF[B]t,}
= { induction hypothesis }
{e}U{(&a,ty)t[d"] |t Zt+t" N 0" € Tp[B] A te(a")}
= { calculus; tc(o) & tc(*[o]) }
{e}U{(&at) [o"] |1, >¢" A 0" € Tr[B] A te(*[0"])}
= { definition of *[c] }
[} ULEaty) o] [> A o € Tl B A te((€a,8)%[0"])}
= { Definition 5.16; ‘[e] = ¢; tc(e) }
{"lo] |0 € Tal(t") ag; B A te(0))

2. Enabling. For this case we derive:
T7[B1 >> By |t
— { Definition 5.26 }
{o|3B',t': (B; >> By, t) -, (B',t')}
= { Lemma 5.25; Definition 5.26 }
{o]|o#o1(e,6,t) N o € TF[B.]t}
U{oi(e,7m,t") 02| 01(e,6,8") € TE[Bt N 02 € TA[B2]t" }
= { induction hypothesis }
{t[o]|to] #o1(e,6,t') N o €Tr[B1] N te(o)}
U{ta! (e,7,t"=t)]* [o}] | o) (e,6,t"—t) € Tp[B1] A o) € Tr[B]
A tc(oy (e,7,t"—t)) A tc(ob)}
= { calculus }
{t[o]|o] #o1(e,6,t") N o€ Tr[Bi] N te(o)}
U{ta!(e,7,t"=t)*" "t [a}]] | o) (e,6,8"—t) € Ty[By] A o) € Tr[B;]
A te(al (e, 7, t"—t) " "t ab])}
= { Definition 5.16 }
{![o] |0 € Tr[By >> By] A tc(o)}

O

Since we know from Theorem 5.18 that 7r[B] equals the set of timed traces generated from
the event structure corresponding to B, £r[B], we immediately have

5.28. COROLLARY. VB € PA;: T[B]t = {![o] | o € Tr(Ex[B]) A tc(o)}.

PROOF. Straightforward from the previous lemma and Theorem 5.18. O

110 Chapter 5: Timed operational semantics

5.6 Model properties

In this section we prove some properties of our timed transition system based on time- and
action-transitions. More precisely, we will prove time determinism, time additivity and per-
sistency (this terminology is adopted from Nicollin & Sifakis [112]).

The first property conforms to the intuition that a process can always evolve into itself by not
advancing time.

5.29. THEOREM. For all B € PAz,t € Time : (B,t) ~ (B, t).

PROOF. Straightforward by induction on the structure of B. O

It is easy to verify that the transition system defined by — is deterministic. The transition
system defined by ~» is time deterministic. This means that the passage of time does not
introduce any nondeterminism into the execution of a behaviour.

5.30. THEOREM. Time determinism
VB,B',B" € PAr,t,t' € Time: ((B,t) ~ (B',t') A (B,t)~ (B",t')) = B'=B".

PROOF. By induction on the structure of B with 0, /, and action-prefix as base cases.
Base : For B = 0 and B = 4/ the theorem trivially follows from the fact that there is only one

SOS-rule for ~~ for these cases. For B = (¢") a; B; we have
(") a3 By, t) ~ (B, ¢') A ((t") a3 By,t) ~ (B",#)
= { Lemma 5.25 }
B'={t"e({' —t)a; B, N B"=({t"e({' —t) a; By
= { calculus }
BI — BII

Induction Step : Assume the theorem holds for B; and B,. We only provide the proof for choice.
The proofs for the other constructs are similar and omitted here. For B = B, + B, we derive:
(By + By, ty ~ (B',t'Y N (B; + By, t) ~ (B",t)
< { SOS-rules for ~~ }
(By + By,t) ~ (By + By,t'Y \B' = B, + B, N (B;+ Bsy,t) ~ (B + B},t') A\B" = B} + BY
< { Lemma 5.25 }
(B1,t) ~ (Bj,t) A (Ba,t) ~ (B,t) AN B'= B} + B}
A (Bq,t) ~ (By,t) N (Ba,t) ~ (BJ,t) A B"= B} + B}
= { induction hypothesis }
B,=B/ N B,=B) N\ B=B;+ B, N\ B"=B]+ B}
= { calculus }
B'=B" . O

The next property (sometimes referred to as action persistency) conforms to the intuition that
the progress of time should not suppress the ability to perform an action. That is,

Model properties 111

5.31. THEOREM. Action persistency
¥B,B' € PAr,t,t' € Time: ((B,t) % A (B,t) ~ (B,t')) = (B',t) -5,
PROOF. By induction on the structure of B.
Base: For B = 0 the theorem trivially holds as 0 cannot perform any — transitions. For B =/ ¢
the theorem holds as (v/,t) for any ¢ can perform ¢ and (v/,,t) ~ (/,,t'), for any ¢ > ¢. Now
consider B = (t") b, ; B,. For this case we derive
(") bes Bi,t) (22 A (") be; By, t) ~ (B',¢)
< { SOS-rules for action-prefix }
((0) be; By,t) L8 A ((0) be; By, t) ~» ((0© (#'—1)) be; By, #')
= {}
((0) b5 By, t) ~ ((0) be; By, t')
< { SOS-rule (—) for action-prefix }
((0) b; By, t') L2

Induction Step: Assume the theorem holds for B, and B,. We consider the proof for parallel
composition; the proofs for the other constructs are similar and omitted.
(Bi |l B2, t) <2 A (Bi g Bs,t) ~ (B',)
& { distinguish between a € G° and a ¢ G%; SOS-rule (~) for ||¢ }
((By,t) 29l A (B, t) {28, A e =(e1,e;) A a€GP)
V (B, t) L2 A e= (e, %) A a @ G) V ((Ba,t) 122 A e=(x,e5) A a g GP)
A (Bi|lg Ba,t) ~ (B |l¢ B3, 1)
= { SOS-rule (~) for ||¢ ; induction hypothesis }
((B{,t’)M A (Bé,t’)% A e=(e1,e;) A a€ GP)
V (Bt L2 A e = (e, %) A a g GO V ((Byt') L2 A e =(x,e) A adGP)
& {SOS-rule (—) for ||¢ }
(Bf llg By, t') 12 0

Finally, a process at time ¢ is able to evolve to a certain time ¢ iff it can evolve to any time
instant in between ¢ and ¢'. This property which is often referred to as time additivity (or time
continuity) is formally stated as®

5.32. THEOREM. Time additivity
VB,B' € PAp,t,t',t" € Time :

(B,t) ~ (B t+(t'+t")) <= (3B" : (B,t) ~ (B", t+t') ~ (B’ t+(t'+t"))).

PROOF. Straightforward by induction on the structure of B. O

3Lynch & Vaandrager [98] adopt for their timed I/O-automata a stronger notion that says that there must
be a trajectory of consistent states through the interval [¢,¢']. Since our timed transition system satisfies the
image-finiteness condition (i.e., for any B and ¢ there are at most finitely many B’ such that (B,t) ~ (B',t'))
it follows from Jeffrey et al. [79] that our model also satisfies this stronger trajectory condition.

112 Chapter 5: Timed operational semantics

5.7 Related work

To our knowledge this chapter constitutes the first attempt to relate a causality-based seman-
tics and an (event-based) operational model in a timed setting. For the untimed case several
related approaches have been published to relate a causality-based semantics to an operational
one [10, 26, 95|. These investigations differ from our work in particular in the causality-based
model, the language at hand, and the type of consistency relation between the two types of se-
mantics. The relation between the approach we followed and the work of Boudol & Castellani
[26, 23] (for finite CCS and flow event structures) is discussed at length in Langerak [89].

Baier & Majster-Cederbaum [10] prove the consistency between an operational semantics
for theoretical CSP (TCSP) and a compositional true concurrency semantics based on la-
belled prime event structures. They show that the ‘interleaved view’ of the event structure
semantics—obtained by considering remainders of prime event structures after the execution
of a single event—is (weak) bisimilar to the operational semantics of TCSP. An identical tech-
nique was used by Loogen & Goltz [95] but they studied TCSP without recursion. We will
consider consistency for recursion in Chapter 10.

Degano et al. [42] proposed an approach to prove the consistency of an operational nonin-
terleaving semantics of CCS (with guarded recursion) and a denotational semantics based on
labelled prime event structures. From the operational semantics an occurrence net is derived
which is shown—using the well-known connection between this class of nets and event struc-
tures by Nielsen et al. [114]—to be equal to the event structure obtained in the denotational
way.

On relating operational and denotational models in a timed setting we mention the work of
Schneider [133] and Murphy [107]. [133] provides an operational semantics of timed CSP, a
mature timed extension of CSP, and studies the relation of this semantics with an (interleaved)
denotational model for timed CSP based on timed failures. [107] introduces a timed process
algebra where actions are assumed to have a fixed duration. Murphy provides a true concurrent
operational semantics, based on timed asynchronous transition systems, and sketches the
relation with timed Petri nets.

5.8 Conclusions

In this chapter we have introduced two event-based operational semantics for PA7 which keep
track of timed action occurrences (that is, timed events).

The first timed operational semantics is based on timed-actions (relation ——) and is a
straightforward generalization of the untimed event transition system for PA, see Chapter 2.
Consequently, a natural and minimal extension of the standard operational semantics for PA
(as introduced in Chapter 1) is obtained. (Notwithstanding Bolognesi et al. [19] who conclude
that it ‘would seem particularly difficult’ to obtain a natural, or what they call conservative,
extension of an untimed process algebra like LOTOS without a clear separation between time
and action transition rules.) One of the features of the timed-action model is the absence of

Conclusions 113

actions/transitions that represent solely the passage of time. Here time is dealt with in a way
comparable to physical models, viz. by means of parameterization.

The model based on timed-actions allows for the generation of ill-timed traces like in Aceto &
Murphy [1, 2]. Recently, Gorrieri et al. [56] proposed a timed process algebra with the TCSP
parallel operator that also includes ill-timed traces. In the proposals of Aceto & Murphy and
Gorrieri et al. sub-processes have their independent local clock, and since local clocks are only
synchronized at interaction, ill-timedness appears. We believe that the operational semantics
presented in this chapter is simpler by avoiding local clocks.

Ill-timedness is a phenomenon that is sometimes explicitly avoided by others (like in real-time
ACP of Baeten & Bergstra [7] and TIC of Quemada et al. [123]), since the precedence of timed
events in the trace does not reflect the order in time. To our opinion ill-timed traces are not
that obscure—we have shown earlier that for each ill-timed trace there exists a corresponding
time-consistent trace with the same timed events—and we think that the avoidance of them
leads to a more complicated operational semantics. We remark that the operational semantics
of Table 5.1 can easily be adapted such that only time-consistent traces are generated, by
replacing the rule for independent parallelism by
(&.a,t)

B, &8, pr

Bi||g B, &2, B ||t B, }

(a & G°)

and similar for the symmetric case.

The second transition system is inspired by the separation of the passage of time (relation ~+)
and the occurrence of actions (relation —) as introduced by Moller & Tofts [105] and Wang
[149] and adopted by several others [18, 133]. It turns out that the transition system for —
is identical to the untimed transition model presented in Chapter 2. That is, time is added in
a completely orthogonal way. This model allows for the generation of well-timed traces only
and will be used in Chapter 6 where the notion of urgency is discussed.

The compatibility of both event-based operational semantical models with respect to the
causality-based semantics for PA7 provided in Chapter 4 has been investigated. The timed-
action model generates the same set of timed traces for behaviour B as the causality-based
semantics, whereas for the transition model induced by ~» and — this holds when only
considering time-consistent traces. This result provides the basis for proving that the timed-
action model and the ‘interleaving view’ of the causality-based semantics are strong bisimu-
lation equivalent. Since the second transition model forces derivations to be time-consistent,
a similar result for this model does not hold. The main features of the interleaving models
are their simplicity and compatibility with the standard interleaving semantics of PA, and the
untimed event transition system of Langerak (see Chapter 2). We consider these aspects to
provide evidence for the adequacy of our timed event structures model.

114 Chapter 5: Timed operational semantics

6 The urgency module

This chapter introduces the concept of urgent events—roughly speaking,
events that are forced to occur once they are enabled—in timed event
structures. Typically an urgent event ‘guards’ the occurrence time of an
alternative event in the sense that this other event is prevented from hap-
pening after a particular time instant. Timeout mechanisms are well-known
urgent phenomena. It is investigated how the theory of Chapter 4 carries
over to this new model, referred to as urgent event structures. The timed
process algebra PAr is extended with an urgency operator that forces (lo-
cal or synchronized) actions to happen in an urgent fashion. Urgent event
structures are used as a vehicle to provide a denotational causality-based
semantics for this formalism. In the spirit of Chapter 5 a consistent event-
based operational semantics based on a separation of the passage of time
and the occurrence of actions is presented.

6.1 Introduction

In realistic designs one often encounters events that once enabled—i.e., their causal predeces-
sors have occurred and their timing constraints are respected—are forced to occur, provided
they are not disabled by other events. Typically such events are timeout mechanisms that
guard the occurrence time of other events (like receiving an acknowledgement message) in the
sense that they prevent these events from happening after a certain time instant. We call such
events urgent. Urgent events are graphically denoted as open dots, nonurgent events as closed
dots (as before).

To provide a better understanding of our intuition consider, for example, a timer process that
is started once a message m is transmitted (represented by event send), and assume that it
is reasonable to expect an acknowledgment from 3 time units (event receive) on since m was
transmitted. When after 5 time units, say, the expected acknowledgement message is not
yet received it is assumed that some error occurred; at that time the timer will expire (event
timeout) and a retransmission of m is initiated (not modelled explicitly here). Figure 6.1
depicts an event structure that models this situation. The interpretation is as follows.
Event send may happen from the start of the system; no timing constraint is imposed on its
occurrence. Once event send has appeared either receive or timeout can happen. Event receive
can happen between 3 and 5 time units after send; if not, event timeout happens at exactly 5
time units after send. At 5 time units after send a nondeterministic choice appears between
events timeout and receive. Such timeout mechanisms are sometimes referred to as ‘weak’

115

116 Chapter 6: The urgency module

receive

send

timeout

Figure 6.1: Timer example using urgent events.

timeouts, as opposed to ‘strong’ timeouts where in the timer example at time 5 event receive
would already become impossible [112].

In this chapter we equip timed event structures, as introduced in Chapter 4, with the notion
of urgent events. Section 6.2 introduces the notion of urgent event structures, and investigates
how the theory of Chapter 4 carries over to the urgent setting. In Section 6.3 the temporal
process algebra PAr is enriched with an urgency operator, denoted Uy (), that forces (local or
synchronized) actions (in U) to happen urgently. A denotational causality-based semantics
is provided for the resulting timed process algebra, called PAy, and is related to a consistent
event-based operational semantics. Due to the presence of urgent actions the consistency proof
is more involved than for the nonurgent case as treated in Chapter 6. Therefore, this consis-
tency proof is divided into two parts. In Section 6.4 we prove that the way in which urgency
is dealt with in the operational semantics of PAy corresponds to our intuition. Subsequently,
in Section 6.5 the actual consistency proof is carried out (in three steps). Section 6.6 relates
PAy to some proposals in the literature that incorporate urgency in a timed process algebra.
Section 6.7 summarizes the technical results.

6.2 Urgent event structures

An urgent event structure is a timed event structure in which a distinction is made between
nonurgent and urgent events. Urgency is modelled by a predicate U on events—U(e) is true
if and only if e is urgent.

6.1. DEFINITION. (Urgent event structure)

An urgent event structure is a tuple (I', /) with " a timed event structure and 4 : E —
Bool, the urgency predicate. O

We use ¥, possibly subscripted and/or primed, to denote an urgent event structure and EBES

to denote the universe of urgent event structures. In this chapter we consider urgent event
structures with a finite number of events; infinite structures are considered in Chapter 10.

6.2.1 Timed event traces

For convenience we recall the definition of the auxiliary function time:

Urgent event structures 117

6.2. DEFINITION. For o a sequence of timed events (eq,¢1) ... (en, t,) with e; € E, t; € Time,
for 0 < i < n, and e € en([o]), let

time(o,e) = Max({D(e) } U H; U H,) where
H={t+t;|3XCE:X%e A XN[o]={e;}} and
sz{tj|ﬂej€m:ejwe} .
0J

As a next step we generalize the notion of timed event trace (cf. Definition 4.5) towards the
urgent case.

6.3. DEFINITION. (Timed event trace (revisited))

A timed event trace of urgent event structure ¥ = (£, D, 7,U) is a sequence o of timed
events (er,t1)... (e, t,) with e; € E| t; € Time, for 0 < i < n, satisfying

l.e...e, €T(E)

2. Vi:(—~U(e;) = t; >time(oy,e;)) A (U(e;) = t; =time(oy,e;))
3. Viye:ecen([oy]) A U(e) = t; < time(oy,e)

4. Vi,j:1<j = t; <1

C C E x Time is a timed configuration iff there is a timed event trace o such that C' = &.
0

Ty () denotes the set of timed event traces of ¥ and Cy (V) its set of timed configurations.

According to the first constraint we should obtain an (untimed) event trace of the correspond-
ing event structure £ when we omit the times from a timed event trace. The second constraint
requires correct times to be associated to events in c—ordinary events can happen at any mo-
ment from the time they are enabled and urgent events can happen only as soon as they are
enabled, they cannot be further delayed.

These two constraints do, however, not take into account the fact that urgent events may
prevent other events to occur after a certain time. For instance, according to the first two con-
straints, Figure 6.1 would have event trace (send, 3) (receive,9) whereas if event receive has not
happened before time instant 8, the timeout should have occurred. Thus (send, 3) (receive,9)
should not be considered a legal timed event trace. The third constraint takes this matter
into account. It says that o; may be extended with (e;, ;) iff there is no urgent event enabled
after o; that could occur at any time earlier than ¢;.

The fourth constraint requires timed event traces to be time-consistent. The reason for this is
that urgency is an intrinsically global property: the fact that some event e is urgent influences
for events, which seem at first sight completely independent of e, the ability to appear at
a certain time instant. So, in order to decide whether an event may happen it is necessary
to know in the entire system which events have happened already (in time). For instance,
according to the first three constraints the urgent event structure

118 Chapter 6: The urgency module

c d

would have timed event trace (e4, 1) (ep,4) (e, 2), whereas if e, happens at time 2 urgent event
eq 1s forced at time 3 and should disable the occurrence of ey.

6.4. ExaMPLE. For the following sequences of timed events the conditions are given under

2
1
a b o vy b
a
3 > 2
c d 7 c
(a) (b)

Figure 6.2: Some example urgent event structures.

which they are timed event traces of Figure 6.2(a):

(€asta) (€nyto) (€q,ta) if to <ty A tp+2 < tg < max(t,+3,t,+5), and
(easta) (€nyty) (€cyte) if to <ty A t. = max(t,+3,ty+5).

The only maximal timed event trace of Figure 6.2(b) is (e4,2) (ep,3). In this urgent event
structure event e. can never happen since after the occurrence of e, (which will be forced at
time 2) e, will occur (at time 3), so excluding e.. Thus, e, excludes e. though they seem
to be completely independent! It appears that the asymmetric conflict between e. and e
‘propagates back’ to an asymmetric conflict between e, and e,.. O

Now consider Section 4.2.3. In that section we proved that timed event traces having the
same timed events constitute a lattice with a least element. It can easily be verified that in
presence of urgent events ([o]., <) is still a poset with a least element. That is, we can still
construct chains of event traces (more precisely, equivalence classes of traces) under < with
a fast event trace as least element. The lattice construction in Section 4.2.3 does, however,
no longer apply, since it cannot be guaranteed that the lub and glb are again timed event
traces of the event structure at hand. Consider, for example, the urgent event structures of
Figure 6.3. (a) has traces (e,,0) (ep, 1) (ec,2) and (ep,0) (€q,1) (€, 2), but the Iub of these
traces (eq,0) (ep,0) (ec, 2) is not a legal trace. Similarly, (b) has traces (eq, 1) (€5, 1) (e¢, 3) and
(€4,0) (ec, 1) (es,3), but the glb of these traces (e,,0) (ep, 3) (ec, 3) is not a legal trace.

6.2.2 Families of lposets

This section characterizes the lposets of an urgent event structure. For timed event structures
we used an operational scheme by generating lposets from timed event traces. This procedure

Urgent event structures 119

b
a 1
c a d
T e
(a) (b)

a

Figure 6.3: Structures for which (a) Iub and (b) glb are not traces.

does not work for urgent event structures. E.g., the urgent event structures

2 3 2 3
ao ob ao——0 Db

have identical timed event traces, and consequently, would have identical Iposets if we would
deduce Iposets out of traces. We, therefore, take another route and associate to a timed
configuration an Iposet in the same intensional way as in Chapter 2 for the untimed case.

6.5. DEFINITION. For C € Cy(V) let <¢ C C x C be the smallest relation satisfying, for all
(ez-, tz), (6]', t]) € CI
1. (E|X CE:e; e X N X A e]-) = (Bi,ti) <c (ej,tj)
2. e; ~> ej = (ei,ti) <c (ej,tj)
]
Let <% be the reflexive and transitive closure of <¢ and let the labelling of (e, t) equal I(e).

6.6. LEMMA. Vo € Ty(¥) : <% C <}
PROOF. Suppose 0 € Ty (V) and let C = 7. Let (e;,¢;:),(ej,t;) € C such that (e;,t;) <¢ (ej,t;).

According to Definition 6.5 this can only be because either

1.LIXCE:e;, € X AN X V5 e;. Then by definition of event trace we have X N [G'—j] %+ .

Suppose X N [o;] = {ex }. If e, # e; then it follows from the stability constraint that e; ~ e;
and e; ~» e;. Since [o] is an event trace then ey <lo] & N e; <[5] e, Which is a contradiction.
SO, €; = €k and (ei,ti) <5 (e],tj)

2. e; ~ e;. Then, by the definition of event trace, (e;,t;) <, (ej,t;).

This proves <7 C <, and implies that <z C <. O

Given this lemma it is now easy to verify that <, is a partial order on C.

6.7. COROLLARY. (C, <) is a poset.
PROOF. Similar to the proof of Corollary 2.21. O

The family of Iposets of ¥, denoted Ly (), is defined as the set of all Iposets corresponding
to its timed configurations.

120 Chapter 6: The urgency module

6.8. DEFINITION. (Lposets of an urgent event structure)

For ¥ € EBESy : Ly(¥) = {(C,<5,11C) | C € Cy(¥) }. O

6.9. THEOREM. VU, ¥ € EBESy : Ly (W) = Ly(V) = Ty(¥) = Ty(T).

PROOF. Straightforward and omitted. O

A few remarks concerning the relationship between the Iposets of ¥ and the lposets of its
untimed equivalent £ are in order. The lposets of a timed event structure are equal to those
of £, see Theorem 4.21. For urgent event structures this does not hold, since some events may
not occur at all because an urgent event prevents them to happen. Since this phenomenon is
absent in £ there does not need to be a timed configuration C for each configuration in C(£).

6.2.3 Urgent remainder

The notion of timed remainder (cf. Definition 4.22) can easily be extended by incorporating
urgent events—an event in the remainder of ¥ is urgent iff it is an urgent event in V.

6.10. DEFINITION. (Urgent remainder)

The urgent remainder of urgent event structure ¥ = (I', i) after timed event ¢ is ¥[o] =
(I U"y where I" =T[o] = ((E',~',—", '), D", T"),and U' =U | F'. O

In order to prove the correctness of the urgent remainder it is convenient to introduce the
following lemmata. Consider ¥ and let o be a timed event trace of ¥. Assume ¢’ is a timed
event trace of U after o, ¥[o]. Then event e is enabled in ¥[o] after the execution of o' iff
it is enabled in ¥ after the execution of o ¢’. This is stated in Lemma 6.11. In addition, the
time at which e can occur in ¥[o| after ¢’ equals the time at which it can occur in ¥ after
o o'. This is stated in Lemma 6.12.

6.11. LEMMA. For o € Ty(¥) and o' € Ty (¥[o]) we have:

V0 <i<|o'|:engp([o;]) =eng([oa]]) .

)

PROOF. Similar to the proof of Lemma 6.12 and omitted. O
6.12. LEMMA. For o € Ty(¥) and o' € Ty (¥[o]) we have:

VO <i<|o' | ecengyo]]) : timegp (o], e) = timeg(o 0}, €)

PROOF. Assume o € Ty (V) and o' € Ty(¥[o]). Let ¥ = ((E,~,—,1),D,T,U) and Vo] = ¥' =
(B',~" =" 1), D', T"\U". Let 0 <i < | o' | and e € eng:([0}]). (time = timey and time' = timey.)
time'(o/, e)
= { definition of time }
Max({D'(e) } U H; U H}) where

Urgent event structures 121

H,={t+t; | IXCE :X5'e A XN[o}]={e;}} and
Hy={t;[3e; €loj]:e; ~"e}
= { Definition 4.22 }

Max({ Max({D(e) } U H, U H,) } U H; U H}) where
H,={t+t; | IXCE :X5'e A XN[o}]={e;}} and
Hy={t+t;|3IXCE: X 5e A XNo]={e; }} and
H)={t;|Je; € o] :e; ~" e} and
H,={t;|Jejclo]:e;~e}

= { calculus }

Max({D(e) } UH,; U H, U Hy U H,) where... as above ...

= { H;UH]=H! (i=1,2) (see below) }

Max({D(e) } U H!' U H}') where
H! ={t+t; | IXCE:X+5e A XN[oo]={e;}} and
H} ={t;|Jej €lool]:e;~e}

= { definition time; Lemma 6.11 }

time(o o}, e)

The proof that H; U H; = H{ is presented below. The proof for H, U Hy, = Hj is similar, but
simpler, and is omitted.

{t+t; | IXCE : X 5'e A XN[ol]={e; }}
U{t+t; | IXCE: X oe A XN[o]={e}}
= { Definition 2.28 }
{t+t; | IXCE : X5 e A XNo]=2 A XN[o}]={e}}
U{t+t; | 3XCE :X+5e A X=0 A XNJo]={e; }}
U{t+t; | IXCE: X e A XN[o]={¢}}

= {EFCE; XN[o]=0}

{t+t; | IXCE: X5 e A XNJo]=2 A XNfoo] ={e; }}
U{t+t; | IXCE:X+5e A XNo]={e;}}
= { calculus }
{t+t; |IXCE: X+ 5e A XNloo] ={e}} . O

We now have the following correctness result for the remainder of an urgent event structure.
Note that the correctness criterion is identical to that of timed remainders (cf. Theorem 4.24)
except that we require oo’ to be time-consistent.

6.13. THEOREM. Correctness of urgent remainder

For 0 € Ty (V) and o’ a sequence of timed events satisfying tc(o o’'):

1. o' € Ty(¥Y[o]) <= o0’ € Ty ()
2. o' € Ty(¥[o]) = Ly(o) is a prefix of Ly(a7d’).

122 Chapter 6: The urgency module

PROOF. Let ¥ = (£,D,T,U) with £ = (E,~,—,1) and ¥[o] = ¥ = (£, D', T",U') with
£ = (E',~",="1).

1. ‘=": Assume that o € Ty(¥) and o’ € Ty (P'). We prove that oo’ € Ty (¥) by systematically
checking the conditions of being a timed event trace (see Definition 6.3).

(a) [o0'] € T(E). Given that [o] € T(E) and [0'] € T(E') this follows directly from Theo-
rem 2.30.

(b) Vi: —~U(e;)) = t; > time((c0');,e;) N U(e;) = t; =time((o0');,e;). We consider the
second conjunct; the proof of the first conjunct is conducted in a similar way and is
omitted. We derive:

Vi:U(e;)) = t; =time((od');,e;)
< { domain split }
(Vo<i<|o|:U(e;) = t; =time((c0')i,e;))
AN Mo|<i<|oo |:U(e;) = t; =time((o0');,e;))
< { calculus }
(Vo<i<|o|:U(e;) = t; =time(oy,e;))
AN (VO<j< o |:U(e) = t; =time(oaj,e;))
< { calculus; U(e) = U'(e) for e € E'; Lemma 6.12 }
(Vo<i<|o|:U(e;)) = t; =time(oy,e;))
ANNVO<j<|o'|:U'(ej) = t; =time'(a},e5))
< { Definition 6.3 }
o €Ty(¥) A o € Ty(T')

(c) For the third constraint of being a timed event trace we have

Vije:ec€en([(ca')]) A U(e) = t; < time((oa');,e)
< { domain split }
(Vo<i<|ol|,e:ecen([(ca')]) N U(e) = t; <time((od');,e)) A
(Vio|<i<|oo' |,e:e€en([(ca')]) A Ule) = t; < time((o0');,e))
< { calculus; U(e) =U'(e) for e € E' }
(Vo<i<|ol|,e:ecen([oy]) A Ule) =
(Vo<j<|o'|,e:ecen([oa]]) A U'(e)
< { Lemma 6.12; Lemma 6.11 }
(Vo<i<|ol|,e:e€en([o;]) AN U(e) = t; < time(oy,e)) A
(Vo<j<|o'|,ezecen'([0f]) A U'(e) = t
< { Definition 6.3 }
o €Ty(¥) A o € Ty(T')

t; < time(oy,e)) A
= t; < time(o 0}, ¢))

(d) oo’ is time-consistent by assumption.

This concludes the proof that o o’ € Ty (7).

<’: the proof for this direction can be provided along the same lines as the proof for = using
Lemma 6.12 and Lemma 6.11.

A timed process algebra including urgency 123

2. Let o' € Ty(¥'). From 1. it follows that o ¢’ € Ty (¥), so Ly(c ') exists. Evidently, we have
o Coo and <= C <%_,. Since oo’ € Ty(¥) and Lemma 6.6 it follows that no event in &’
precedes (under <%_,) an event in &. This proves that Ly (@) is a prefix of Ly (7 d).

oo

O

6.3 A timed process algebra including urgency

This section extends the simple timed process algebra PAr with an urgency operator. Sec-
tion 6.3.1 introduces the syntax of the resulting timed formalism PAy. Section 6.3.2 defines
the causality-based semantics of PAy and Section 6.3.3 presents an event-based operational
semantics of PAy. Since we consider a time-consistent setting we use the transition model of
Chapter 6 based on separate time- and action transitions for this purpose. The consistency
between these two semantics is proven in Section 6.5.

6.3.1 Syntax

In order to have a means to express urgency PAr is extended with an urgency operator, denoted
Uy (), for U C Act”. Let PA} denote the resulting formalism.

6.14. DEFINITION. (Timed process algebra with urgency PAL)

B:=0|y | () a;B|B+B|B|¢B|BH|B\G|B> B|B[>B|uy(B).
O

Uy (B) behaves like B except that actions in U are forced to happen as soon as they are enabled.
If U is a singleton set, {a } say, we simply write U,() instead of U;,y(). Notice that U may
contain also internal action 7. Uy () is a generalization of the urgency operator "introduced by
Brinksma et al. [28], where a denotes action a that is forced to happen urgently. “is restricted
to be only applied to actions whose occurrence can be controlled completely internally. Here,
urgency can involve several participants and is strongly influenced by the more general notion
of urgency in proposals for timed extensions of LOTOS by Bolognesi et al. [18, 19] and similar
work by Klusener, inspired by [18], in the setting of real-time ACP [86].

6.15. EXAMPLE. Consider U (a; ((t1) b; B1 + (ta) ¢; Bs)).

After the occurrence of a it specifies a choice between b; B; and c; B,. The first behaviour is
enabled t; time units after a’s occurrence, the second behaviour after ¢ time units. When b
is performed before the second argument is enabled (i.e., t, € t,+][t1,2]) the entire behaviour
subsequently behaves like B;. Otherwise, precisely ¢, time units after the appearance of a it
behaves like c¢; Bs, since c is urgent. O

Urgent interactions are forced to happen once all participants are ready for it. E.g., in

B=a;(3)c;0[[cb; ((2) d; 0+ (5) c; 0)

124 Chapter 6: The urgency module

¢ can occur at any t. > max(t,+3,t+5) provided d has not yet appeared. If ¢ has not
yet occurred, d can occur from t,+2 on. In U,(B) action c¢ is forced to happen at t, =
max(t,+3,%+5) in case d has not yet appeared at that time. That is, d is prevented to
occur at any time later than ¢., and can only occur in the interval [t,42,%.]. At time ¢, a
nondeterministic choice between ¢ and d occurs—urgency does not impose a priority in this
case.

Once made urgent, actions cannot be used for synchronization any further. Without such a
restriction, expressions like B = Up((2) b) ||»Up((1) b) would be allowed. Conforming to the
principle that an urgent action happens as soon as all participants are ready for it, (b,2) would
be a trace of B. This would cause a delay of action b in the right component, contradicting its
(local) urgency. The fact that we do not allow synchronizations on urgent events is captured
by a syntactical constraint on behaviours which is formulated as follows. As a subsidiary
notion we introduce a function that determines syntactically the set of urgent actions of a
behaviour.

6.16. DEFINITION. For B € PA}, function Urgent : PAL — P(Act”) is defined as:

Urgent(B) £ gforBe{0,}
Urgent((t) a; B) £ Urgent(B)
Urgent(B; op Bz) £ Urgent(B;) U Urgent(B,) for op € {+, ||la,>>, [>}
N (Urgent(B) \G) U {7} if Urgent(B)NG # @
Urgent(B\ &) = { Urgent(B) otherwise
Urgent(B[H]) = {H(a)|a € Urgent(B)}
A

Urgent(Uy (B)) Urgent(B) U U.

6.17. DEFINITION. (Temporal process algebra PAy)

PAy is the largest subset of PA} such that any subexpression B’ of B € PAy satisfies:

B'=B;|l¢g By = (G N Urgent(B;) =@ A G N Urgent(B;) = 9)

6.3.2 Causality-based semantics

In this section we give a causality-based semantics to PAy. We do so by defining a mapping
SU[[]] : PAU — EBESU Let SU[[BZ]] == \Ifz = <F“uz>, for ZZI, 2. Then:

6.18. DEFINITION. (Causality-based semantics of PAy)

Let Ey[| : PAy — EBESy be defined as follows:

&v[0] = (&r[0],2)
Eulvl = (E&rlv]{(es false) })

A timed process algebra including urgency 125

Eu[B ||a Be
U((er,e2)

gT B1 ||G Bz]] U) where
Ui(e1) V Us(ey) with U;(x) = false, for i=1,2.

Ev[(t) a3 Bi] £ (Er[(t) a; Bi],Us U { (e, false) })
Eu[BiopB,] = (Er[ByopBy],Uy Ulhy) for op € {+,>>, [>}
EvlopBi] £ (Er[op Bi],Uh) for op € {\,[]}
Ev[Uy(B1)] = (Er[B1],U) where U(e) =Ui(e) V (li(e) € U)
] £ (&l
)

O

It is easy to check that due to the syntactical constraints of Definition 6.17 we have for ||¢
that (e # % A ex # %) = —U((e1,ez)), since in this case e; and ey synchronize. It is also
not difficult to check that for all B € PAy we have that ;[B] is an urgent event structure.

6.19. ExAMPLE. In Figure 6.4 the urgent event structures corresponding to the following
expressions are depicted:

(a) Up((2) a; (4) b;0]([5(7) b5 0),
(b) ((2) a; (7) z; O||Uy((4) a; (11) y; 0))[]a ((5) a; (2) b; 0), and
(c) Uy, (ar; ((t1) z; 0+ (di) y1; 0))|]oUy,(az; ((t2) z; 0+ (d2) y2; 0)).

5 X
a ! ® a; ap
2 4 7 b dy b dy
a b
a
Y1 X Y2
5 11 y
@ (0) (c)

Figure 6.4: Examples of semantics of urgent behaviours.

For urgent event structure (c) we have that if (z,¢,) belongs to a timed event trace then
tal +t1 < tw < ta1+d1 A taz +t2 < tz‘ < ta2+d2- D

6.3.3 Event-based operational semantics for PAy

This section extends the timed event transition system of Section 5.4 with urgency. The

relations ~» and — are defined as the smallest relations closed under all inference rules of
Section 5.4 and the rules for Uy (B) defined below.

As a subsidiary notion, let dp;,(a, B) determine for initial action a in B the minimal time at
which a can appear. The interpretation of dp,(a, B) = 0o is that B is not able to perform an
a action initially.

126 Chapter 6: The urgency module

6.20. DEFINITION. Function dp;, : Act™® x PAy — Time™ is defined as:

dmin(a,0) = o0

A oo ifa#é

dmin(a, V) = { 0 ifa=6

' a oo ifa#b

dla (005 3) 2 {37 07

dmin(aa Bl + BZ) é mjn(dmin(a'a Bl)a dmin(aa B2))
00 ifa=146
dmin(a, By >> By) 2 dmin(a, By) ifag {r,6}

min(dyin(a, B1),dmin(6,B1)) ifa=r7

[1>

dmin(a'a Bl [> BZ) mjn(dmin(a'a Bl)a dmin(aa B2))

. N min(duyin(a, By), dmiz(a, By)) ifa & G®
dmm(aaBl ||GBZ) B { maX(dmin(aaBl),dmin(aaB2)) ifa S G6
Min{ dpin(b,B) | be G"} ifa=rT
dmin(a, B\ G) £ 00 ifa € G
dmin(a, B) ifa g G
dmin(a, BH]) 2 Min{dpy(b,B) |a= H(b)}
dmin(aaz/{U(B)) é dmin(aa B)

O

Here it is assumed that min, max and their generalizations over sets of events are defined on
A

Time™ in the obvious way. E.g., min(t,00) £ t and max(t,o0) 2 oo.

Urgency

If B permits time to pass with some amount, then Uy (B) is able to do the same provided
that there is no urgent action in U that can be performed by B at any time earlier. Thus,
the effect of the urgency operator is to prevent the passage of time as an alternative to the
occurrence of an action in the urgency set U. If B can perform (e, a) and evolve into B’ then
so can Uy (B), evolving into Uy (B').

(B,t) ~ (B',t)
Uy (B),t) ~ (Uy(B'), 1)

(Va €U :t'—t < dmin(a, B))

(B, t) &2, (B’ t)
(Uo(B), t) 2 (Uy(B'), t)

For convenience we have listed all rules for time transitions in Table 6.1 and all rules for action
transitions in Table 6.2 .

6.21. ExaMPLE. Consider B = Uy(B') with B’ = (2) a; (1) b; 0]|,(0) b; 0. (For sim-
plicity we omit the occurrence identifiers.) It follows that d,(a, B) = 2 and dpi(b, B) =

A timed process algebra including urgency 127

(' >1) (" > t)
(0,%) ~ (0,¢) (") ag; B,t) ~ ((t' © (t"—t)) ag; B, ")
(tl > t) (Bl’t> ~ <Biat,> A <B2’t> ~ (Béat,>
(Ver 1) ~ (Ve t') (B1 + By, t) ~ (By + By, t')
<Bl’t> ~ <Bi’tl> (Bl,t> ~ <Biat,> A <B2’t> ~ (Béat,>
(By >> By, t) ~ (B} >> By, t') (B [> By, ty ~ (B [> B, t')
<B’t> ~ (B,’tl> (Bl,t> ~ (Biat,> A <B2’t> ~ (Bé’t,>
(B\G,t) ~ (B'\G,t) (Bt |lg Bz, t) ~ (Bi ||c By, ')
(B,t) ~ (B',t) (B,t) ~ (B',t") (©)
(B[H],t) ~ (B'[H],t) Uy (B),t) ~ (Uy(B'),t")

Table 6.1: Time transition rules for PAy where C equals Va € U : t'—t < duin(a, B).

max(00,0) = oo. Assume that a happens at time 7, say. Then we infer for the component
behaviours of B':

((2) a; (1) b; 0,0) ~ ((0) a; (1) b; 0,7) and ((0) b; 0,0) ~ ((0) b; 0,7)
Using the inference rules for ~» for parallel composition and urgency we obtain
(B, 0) ~ (Up((0) a; (1) b; 0[], (0) b; 0),7)
By the inference rules for — for parallel composition (a ¢ G%) and urgency we get
{Us((0) a3 (1) b5 0[5 (0) b5 0),7) = (Us((1) b3 O[] (0) ; 0),7)

Let us denote Uy((1) b; 0| (0) b; 0) by B”. It follows by Definition 6.20 that d,,;, (b, B") = 1.

Due to the inference rule for ~», behaviour B” allows the passage of time for at most 1 time
unit only. By this mechanism it is enforced that b happens precisely at time 8. 0

6.22. ExamMpPLE. Let B = Uy((2) a; (1) b;0]|5(0) b;0[> (7) ¢;0) with U = {a,b}.
(Again, event identifiers are omitted.) Using Definition 6.20 we have di,(a, B) = 2, and
dmin(b, B) = 00. We then have the following derivation:
(Uy((2) a; (1) b5 0[], (0) b; O[> (7) c; 0),0)
~ { (timed action-prefix), (choice), (parallel composition), (urgency) }
(Uy((0) a; (1) b; 0[], (0) b; O[> (5) ¢; 0),2)

-5 { (timed action-prefix), (parallel composition), (urgency) }

128

Chapter 6: The urgency module

(Ve t) =52 (0,1)

(By,t) &2 (B,)
(By + By, t) =5 &), (Bi,t)

<Bla > (fa) <Bia >

o
<Bl >> By, > (fa) <Bl >> By, > (a%)

<Bl’t> (56) (Bi’>
(Bi[> By, t) &7 (By 1)

<B17 > (éa) <B17 >

((0)ag; B,t) 42 (B,)

(B, 1) £ (B} 1)
<Bl+BZ’ > (fa) <B2a >

(By,t) % (B t)

(By >> By, t) &7 (B, 1)

<B2’t> (éa) (Bé’>
(Bi[> By, t) -4 (B) 1)

(B1 [> B, t) &), (Bi [> Ba,t)

(By,t) 2 (B] 1)

(a #6)

(Bi ||g By, t) {222, (B || By, t)

(By,t) €2, (B}, 1)

(a ¢ G

(Bi ||g By, t) {229, (B, || By, t)

(By,t) &2 (B! #) A (B, t) %2 (B})

(a & G°)

<Bl ||GB2at> M) <Bi ||GBéat>

(B, t) &2), _(&a) | (B, t)
(B\ G,t) &2 (B'\ G, 1)

(a ¢ G)

(B,t) €2, (B, 1)
(B[H], t) @, (B[H], 1)

(a € G?)

(B, t) &2, _(&a) | (B, t)

(B\ G,t) 1575 (B'\ G, 1)

(a € Q)

(B,t) &2, (B,)

(Uy(B), 1) b Uy (B), 1)

Table 6.2: Action transition rules for PA.

Is urgency captured faithfully? 129

{Uy((1) b; 0[], (0) b5 0[> (5) ¢; 0),2)

~ { (timed action-prefix), (choice), (parallel composition), (urgency) }
Uy ((0) b; 0], (0) b; O[> (4) ¢; 0),3)

-2, { (timed action-prefix), (choice), (synchronization), (urgency) }

(Ur (0], 0),3)

Since this is the only allowed derivation (apart from intermediate ~~ transitions) it follows
that ¢ will never happen. B corresponds to the urgent event structure in Figure 6.2(b). O
We conclude this section by considering the properties time determinism, action persistency,
and time additivity for PAy. It turns out that the introduction of urgency does not disturb
these properties.

6.23. THEOREM. Action persistency, time determinism, and time additivity

For all B, B',B" € PAy, t,t',t" € Time we have

1. (B,t) ~ (B,t)
)~ (B ') A (B,t)~ (B",t')) = B'=B"

[\
N
—

3 ((B,1) b (Bt) - (BL)) = (B¢) L),
4 (B,t) > (B, (' +#") <= (3B : (B,t) ~ (B", 1) ~ (B, t+(+4"))).

PROOF. All properties can be proven by induction on the structure of B. We only have to consider
the urgency construct; for the other constructs the inference rules are unchanged and the proof is
provided in Chapter 5. For the sake of brevity we only provide the proof of action persistency (3.).
The proofs for the other properties are rather similar. Let B = Uy(B;) and assume the theorem
holds for B;.

U (B), 1) (=5 A (Uy(By),1) ~ (Un(BS),t')
& { SOS-rules for urgency }
(By,t) ~©2s A (By,t) ~ (Bi,t') A (V€U :t'~t < duin(b, By))
= { induction hypothesis }
(B, t) L2
< { SOS-rule (—) for urgency }
(Up (B1), ') Lead, U

6.4 Is urgency captured faithfully?

This section proves the correctness of the d,,;, function, in the sense that urgency is captured
in a way corresponding to our intuition about what urgency should be. Some of the cor-
rectness results are essential to provide a timed event trace semantics of PAy which is used
in Section 6.5.3 for proving the consistency between the denotational and the event-based
operational semantics. We prove the following properties:

130 Chapter 6: The urgency module

e the time determined by d,(a, B) corresponds to the earliest moment at which initial
action a can be performed by B

e urgent actions in B can only be performed as soon as they are possible, i.e., once enabled,
their execution cannot be postponed

e dyin(a, B) = 0o corresponds to the fact that B is not able to perform action a initially

e actions can only be performed by B provided there is no urgent action in B that could
occur earlier, and

!
min

e if B advances ¢ time units then d_ . of the resulting behaviour equals dp,;, © t.

The proofs of these properties are all by induction on the structure of expressions. As an
illustration we provide only proofs for three properties; the proofs of the other properties are
conducted in a similar way and are left to the diligent reader.

The first theorem confirms that the time determined by the function dp,(a, B) indeed corre-
sponds to the minimal time at which initial action a can be performed by B.

6.24. THEOREM. V B, € PAy, ty € Time,a € Act™ : (By, to) 2%, = t > ty + dmin(a, By).

PROOF. By induction on the structure of B, with base cases 0, 1/, and action-prefix.
Base: For By = 0 the theorem trivially holds as the premise of the theorem does not hold. For By = /
it is easy to check that the theorem holds as § can be performed at any time and d,;;,(6,+/) = 0. For
By = (t') b; B; we derive:
((t) bs By) oo,
< { Definitions 6.20 and 5.24 }
(3B' (') b; By, to) ~ (B',t) =2))
AN (b=a = dun(a,By) =t AN b#a = duu(a,By) = 00)
= { SOS-rules for ~» and — }
(AB" :t>ty+t N B =(0)b; By A\ a=b)
AN (b=a = dun(a,By) =t AN b#a = duu(a,By) = 00)
= { calculus }
t > to + dmin(a, Bo)

Induction Step: Assume the lemma holds for B; and B,. We only consider parallel composition
and urgency. The proofs for the other constructs are similar and are omitted.

1. For By = B, ||¢ B> we derive:
(B1|lg B, to) 2255,
& { Definition 5.24 }
AB': (B || Ba, o) ~ (B, 1) <22,
< { SOS-rules for ~» }
3B, B} : (Bi ||e Bayto) ~ (B! ||¢ By, t) 122

Is urgency captured faithfully?

131

< { SOS-rules for ~» }

3B, B} : (By,ty) ~ (Bl,t) A (Bs,to) ~ (Bl t) A (B} ||¢ B, t) {22

At this point in the derivation we distinguish between two cases: a € G° and a ¢ G®. For

completeness we consider both cases.

(a) For a € G° we deduce starting from the result of the derivation above:

& { SOS-rules for — ;a€ G’}
3B], By : (B ||g By, t) (o=l A
(Buyto) ~ (B}, t) =2 A (Bayto) ~~ (By, 1) =2
= { calculus ; Definition 5.24 }
(Bi,to) 9205 A (B, t) 028,
= { induction hypothesis }
t >ty + dpin(a,B1) A t >ty + duin(a, B)
< { calculus }
t >ty + max(dyim(a, B1), dmin(a, B2))
& { Definition 6.20 (a € G?) }
t > to + dmin(a, By ||¢ B2)

(b) For a ¢ G’ we infer starting from the result of the derivation above:

& { SOS-rules for — ;a¢ G°}
3B1, By ¢ (Buyto) ~» (Biyt) A (Ba,to) ~ (Bs,t) A
(B1,t) = (B, #) A (By||o By,) Lee),)
V (B}, t) S (B, 8) A (B |lq Byt) Lo22),)
= { calculus ; Definition 5.24 }
(Bi,ty) 92, v (B, f) 28
= { induction hypothesis }
t >ty + dpin(a,B1) V t >ty + dpin(a, Bs)
< { calculus }
t >ty + min(dyin(a, By), dmin(a, Bs))
& { Definition 6.20 (a ¢ G?%) }
t > to + dmin(a, By ||¢ Ba)

2. For By = Uy (B;) we derive:

(Uy (By), to) 20,
< { Definition 5.24 }
AB': (Uy(By), o) ~ (B, t) =2
= { SOS-rules for ~» and —; B' =Uy(B") }

de,B" : (By,ty) ~ (B",t) A (Vb e U :t—ty < dmin(b,B1)) N (Uy(B"),t)

= { SOS-rule for — }

(esa)

—r

132 Chapter 6: The urgency module

Je,B" : (By,ty) ~ (B", 1) 22 A (Vb e U :t—ty < duw(b,B1))
< { Definition 5.24 }

(Bi,to) =2 A (VD EU 1t —ty < dumin(b, By))
= { induction hypothesis }

t>to+dmin(a,B1) N (Vb eU :t < ty+ duin(b, Br))
& { Definition 6.20 }

t > to + dmin(a,Uy(B1)) N (Vb e U :t <ty + duin(b,Uy(B1)))

O

It is interesting to note that for a € U we obtain from the result just above that t = t; +
dmin(a,Uy(By)). This confirms that actions in U can only be performed as soon as they are
possible and forms the basis for the following theorem. It says that any urgent action in
behaviour B can only be performed as soon as possible:

6.25. THEOREM. V B € PAy,t' € Time,a € Urgent(B) : (B, ¢') @2, = t — '+ d,in(a, B).

PROOF. By induction on the structure of B. Straightforward and omitted. U

As a next result we prove that dp,(a, B) = oo indeed corresponds to the fact that B is not
able to initially perform action a.

6.26. THEOREM. ¥ B € PAy,a € Act™ : dpmin(a, B) = 0o <= (w, #: (B, 1) M@)

PROOF. By induction on the structure of B with base cases 0, 1/, and action prefix.

Base : For B =0, dyix(a, B) = oo for all a. The theorem trivially holds as 0 is not able to perform
any action. For B = +/, dpin(a, B) = oo for a # 6 and d,;;,(8, B) = 0. Since 4/ is only able to perform
8, this proves the case. For B = (t) b; B; we have that dp,(a, B) = oo if a # b. As B is able to
initially only perform action b, the theorem evidently holds for this case.

Induction Step : Assume the theorem holds for B; and B,. We only consider the proof for choice
and parallel composition. The proofs for the other cases are quite similar and therefore omitted.

1. For B = B, + B, we derive:

dmin(a7B1 + B2) = o0

& { Definition 6.20 }
min(dyix(a, By), dmin(a, B2)) = 0o

< { calculus }
dmin(a’Bl) =00 A dmin(a’BZ) =00

< { induction hypothesis }
(V¢ (B, t) =220) A (Vt,¢ 2 (By, t) —220

& { SOS-rules for ~» and — }

Vi, : (By + By,)~

Is urgency captured faithfully? 133

2. For B, ||¢ B, we distinguish between a € G® and a ¢ G°. The proof for a ¢ G° is quite similar
to the proof for +, so we concentrate on a € G°.

dmin(a7B1 ||G B2) = 0

& { Definition 6.20 (a € G?) }
max(dyin(a, By),dpin(a, By)) = oo

< { calculus }
dmin(aaBl) =00 V dmin(aaB2) = o0

< { induction hypothesis }

(Vt,2": (B, 1) (E,—a,t’)/_’*) vV (Vt,t': (By,t) M/_,*)
& { SOS-rules for ~ and — (a € G%) }

Vt, tl . (Bl ||GB2,t> ((ese’),a,t){ .
[l

As a next property we have that action a can only be performed by behaviour B provided
there is no urgent event in B with a smaller d;,.

6.27. THEOREM. V B € PAy : (B,t) €%, — ' < t++ Min{ duin(b, B) | b € Urgent(B) }.
PROOF. Straightforward by induction on B. O

We conclude by proving that the intertwining of ~» and d,;, is as one would expect. More
precisely, if B at time ¢ can perform a then B’ at time ¢/, obtained from B by the passage of
t'—t time units, can perform a at dyix(a, B) © (t'—t). Let co—z = oo.

6.28. THEOREM. V B, B’ € PAy,t,t' € Time:
((B,t) (e2teds A (B,t) ~ (B')) = dumin(a, B') = dmin(a, B) © (£'~t)

PROOF. By induction on the structure of B with base cases 0, 4/, and action-prefix.

Base: For B = 0 the theorem trivially holds as (0,¢) cannot perform any action. B = 4/ can
only perform § and under ~» evolve into /. Since dpia(6,4/) = 0 the theorem holds for this
case. Let B = (") a; B;. We have dpi(a,B) = t" and dpia(b,B) = oo, for b # a. Assume
(B,t) ~ (B',t'). By the inference rules for ~» we have B' = (" © (t'—t)) a; By, and it follows
dmin(a, B') = t" © (t'—t) = dpin(a, B) © (t' —t) and dpin(b, B') = 00 = dpin(b, B) © (t'—t).

Induction Step: Assume the theorem holds for B; and B,. We only provide the proof for synchro-
nization, the proofs for the other cases are similar and omitted. Let B = B ||¢ B2 and assume
a € G°. We then derive

(Bil|g Bs,t) {2%%bs. A (B ||g Bayt) ~ (B, 1)
& { SOS-rules for — and ~ (a € G%); let e = (e1,e;) }

(By,t)y Lomlely A (B 1)~ (B, t) A (B, t) {22fe)s A (B, t) ~ (B, 1)
= { induction hypothesis }

dmin(a, By) = dpin(a, B1) © ('—t) A dupin(a, By) = dpin(a, B2) © (t'—t)

134 Chapter 6: The urgency module

& { Definition 6.20 (a € G%) }
dmin(a, By ||¢ B}) = max(dmiz(a, B1) © (t'—t), dmin(a, Bs) © (t'—t))
& { max(z © z,y © z) = max(z,y) O z; Definition 6.20 (a € G°) }
dmin(@, By || By) = dmin(a, B1 ||¢ B2) © (t'—t) . O

6.5 Correspondence with causality-based semantics

The main aim of this section is to prove the consistency between the denotational semantics of
PAy in terms of urgent event structures and its event-based operational semantics as induced
by the inference rules for ~»~ and — . The consistency proof is carried out in two steps, similar
as in Chapter b where we dealt with PAz. First, an (operational) characterization, denoted
T5[B], is provided of the set of traces of the tuple (B,t) as generated by the event-based
operational semantics. This is done in Section 6.5.1. Here, the main difficulty is to correctly
characterize the set of timed event traces of Uy (B) without using the d,,;, function that is
used in the inference rules for this construct. In Section 6.5.2 a second, though denotational,
characterization (denoted 7y [B]) is presented of the set of traces as generated by ~» and — .
The main reason for providing a second characterization is to facilitate the consistency proof;
it follows that both characterizations denote identical sets of timed event traces, i.e., 7y = 7.
Finally, in Section 6.5.3 it is shown that the set of timed event traces of urgent event structure
Eu| B] coincides with 7y [B]. This proves the consistency between the causality-based and
operational semantics of PA.

6.5.1 Operational characterization of timed event traces

The following lemma characterizes the timed traces (under —,) of (B,t) where B € PAy in
an operational way. The presence of urgency has an important impact on the characterization
of timed traces for By + By and B; [> Bs; it is not difficult to check that the characterizations
for the other operators in PAy are equal to those for PAr (cf. Lemma 5.25). For + and [>
states can be reached (under —,) for which there is an outgoing branch labelled with an
urgent action the timing of which avoids the occurrence of a competitive alternative. E.g., for

(2) a; (5) b; 0+U.((7) c; 0)

(a,8) (b,13) is not a legal trace since ¢ will prevent a from occurring at any time later than
7. In general, a trace o (o # €) of Bj is also a trace of By + B, provided B, cannot initially
perform an urgent action at any time earlier than the time of the first event in o. By symmetry,
an analogous reasoning applies to traces of Bs.

Replacing + by [> in the above behaviour expression yields:

(2) a; (5) b; O[> U((7) c; 0)

Correspondence with causality-based semantics 135

Here, ¢ will prevent a from occurring at any time later than 7. In general, a trace o (o # ¢)
of By is also (part of) a trace of By [> B, provided that for each event e; in o behaviour B,
cannot initially perform an urgent action at any time earlier than ¢;. For

U ((2) a; (5) b; 0)[>(7) c; 0

(c,7) is not a trace since a is forced at time 2 and should precede c. In general, trace o oy
with o; a trace of B; is a trace of By [> B iff 07 does not contain a successful termination
event, and if for the first event e; in oy there does not exist an urgent action in B; after o
that could occur earlier than ¢;.

It is technically convenient to introduce a function that determines the minimal time instant
at which behaviour B at time ¢ can perform an urgent event.

6.29. DEFINITION. mt(B,t) £ Min{t, | 3a € Urgent(B) : (B, t) {castle), 1. O

The timed event traces generated by —, can now be characterized as follows. We only
provide full characterizations for choice, disrupt, and urgency. For the other constructs the
characterization of Lemma 5.25 remains to hold.

6.30. LEMMA. For trace o, behaviours B, B; and By € PAy, and ¢,t” € Time we have:

1. (B + By, t) %, (B, t') iff either
(i) o= A (By,t) 5. (B},t') N (Bs,t) 5,(Bj,t') N B'=Bj+ B}, or
i1) (By,t) Z.(B/,t'Y N B'=B! N 0= (e, a,t,) " A
() < ’ > < 1 1 ay %y ba
(iii) (Ba,t) . (Bj,t'y N B'=Bj) N 0= (e, a,t,) o’ A
2. (By[> By, t) %, (B',t') iff either
(i) o =¢ A (By,t) =, (B1,t') N (By,t)y—.(Bj,t'Y) N B'=Bj[> Bj, or
ii) o =o' (e,6,t") N (By,t) % (B}, t'Y N t' <mt(By,t) A B'= B}, or
1 1
(iii) o = (e,a,ty) 0’ AN (Ba,t) 2. (Bj,t') A t, < mt(B1,t) A B' =B}, or
o o1(e,a,ta)
— V1 (&8, b) * Ia a [IS 2
(iv) o =01 (e,a,ta) 00 A (By,t) -2{e®le), (B ¢V A a#£6 Aty < mt(Bs,t) A
<B2, > —2 <Bé’tl> A (UZZ(Bab,tb)UI = tbgmt(Biata) A B,:Bé) A
(0’2 E = B' = Bi)
B),t) % (B',t") iff (B,t) %.(B",t") A B' =Uy(B") and
3. (Uy(B),t) (B’ : : v
VO<i<|o|:(Vae Uty <t;:(B,t) -2

PROOF. The proof is by induction on the length of o. As an illustration we provide the proof for
urgency. The proofs for + and [> are similar and omitted. Consider Uy (B).
Base: For 0 = € we derive:

(Z’{U(B)at> L)*<‘Blat,>
< { definition =, }
(uU(B)at> ~ (B’at’>

136 Chapter 6: The urgency module

< { SOS-rules for ~» }

(B,t) ~ (B",t") A B'=Uy(B")
& { definition <, }

(B,t) =.(B",t") N B'=Uy(B")

Induction Step: ‘=’ : assume the lemma holds for n and suppose ¢ = ¢' (e,41,0n11,tn11) With
o' =(e1,a1,t1)...(en,an,t,), n > 0. The proof is by contradiction. That is, assume that for some i,
0 <7 < n+1 we have that

(B, t) —zileats) (6.1)

Y

for a € U and t, < t;. Because ¢’ is an event trace of (Uy(B),t) it follows from the induction
hypothesis that ¢ > n, since for all ¢ < n (6.1) does not hold. Thus, i = n+1. We derive starting
from (6.1):
(B,) zileats),
< { definition —%,;i=mn+1}
AC : (C,t,) ota),
= { Theorem 6.24 }
ty 2ty + dpin(a, C)
= {t, <tpy1 ; calculus }
din(a,C) < tpi1 — ty,

Thus from the assumption it follows that di,(a,C) < t,11 — tn, for a € U. We now infer:

(Uy(B),t) =.(B', 1)

< { definition %>, using that o = ¢’ (epy1,0ni1,tnt1) }
AB" : (Uy(B),t) 25.(B", t,) otttntnbasi), (Br g)

< { SOS-rules for ~» and — }
3C,D : (Uy(B),t) -, Uy (C), t,,) ~Cottnsrlost)y (1 (D), b,4,)

< { induction hypothesis; SOS-rules for ~» and — }
(B,t) <25, (C,t,) Aentrtntites), (D gV A (Va €U : tpyy—tn < dmi(a, C)).

This, however, contradicts with the fact that for a € U we have ¢,,; — t, > dui(a,C) as derived
above. Contradiction.

‘<’ : assume the lemma holds for n (n > 0) and suppose ¢ = ¢’ (epi1,ni1,tnp1) With o =
(e1,a1,t1) ... (€n,n,t,). We then derive:

(B, 1) = (B, 1) A (VO<i<|o|: (Ve <tiya€U:(B,1) M*))
& { definition %>, ; 0 =0" (€nt1)ni1,tni1) ;8 =tnir }
(B,t) -2 (B, t,) (eotntnsiinia), (pr gy
ANNVO<i<|o'[:(VE, <tja€U: (B,t)ML,*))
A (Via < toprya € U ¢ (B, t) —— 020,)

Correspondence with causality-based semantics 137

= { induction hypothesis }
(U (B),t) == (U (B"), tn) A (B, t,) (etrtmsntend, (B,)
A (Vto < topr,a € Uz (B, t) —2 &2ty
< { Definition 5.24; calculus }
(U (B),t) == (Uy(B"),tn) A (B",ty) ~> (B ty) Loottteitly (B4)
A =Tty < tpyr,a € U (B, t) Lot)
& {(B,t)=>.(B"t,) }
Uy (B),t) <. (Uu(B"),tn) A (B"sta) ~ (B tyyr) ~o2eids (B 1)
A =Tty < tpyr,a €U : (B t,) {2ta),)
= { Theorem 6.24 }
(U (B),t) <. (Uu(B"),tn) A (B",ta) = (B tyyr) ~o2eds (B 1)
AN =3ty <tpy1,a €U ity > t, + dpin(a, B"))
= { calculus }
(U (B),t) <= (Uy(B"),tn) A (B ty) ~> (B ty) Lottteitly (B4)
A (Va€U:tny —tn < dmin(a, B"))
< { SOS-rules for ~» }
Uy (B),t) <. Us(B") tn) ~> Uy (B"),tnsr) A (B",tyyq) Lootrtesth (B¢,)
& { SOS-rule for — }
(Uu(B),t) == Uy (B"), tn) ~ Uu(B"),tns1) =222 Uy (B'), t1)
< { Definition 5.24; 0 = ¢’ (€ns1,0n11,tns1) 3 =tni1 }
(uU(B)at> L’*(“U(B’)vtn+1> .]

6.5.2 Denotational characterization of timed event traces

We now characterize denotationally the set of timed event traces of B obtained from applying
the inference rules for ~» and —, and prove that this characterization coincides with the
operational characterization of the previous section. For the purpose of the consistency proof
it suffices to only consider (B,0). We use B as an abbreviation of (B,0). For technical
convenience we introduce

6.31. DEFINITION. mt'(B) £ Min{t, | 3a € Urgent(B) : (e4,a,t,) € Ty[B] }. O
The denotational characterization of the set of timed traces of B is defined as follows:

6.32. DEFINITION. For B € PAy the set of timed traces of B, 7yy[B], is defined by:
1. Ty[0] = {e}
2. Tyl V] = {e}U{(61) |t € Time}
3. Tu[(t) ag; B] £ {(&a,t) (o] [t' >t A o€ Ty[B]} U {e}

138 Chapter 6: The urgency module

4. Ty[Bi + B:] 2 {(§,a,t)0 € Ty[Bi] |t < mt'(By) } U
{(&at)c e Ty[B] |t <mt'(By)}U{e}
2 Loy (e,1,t)!02] |01 (e,6,t) € Ty[B1] A o2 € Ty[B2] }
U{o e Ty[Bi] | o # o' (e é,t)}
6. Ty[Bi[> Bo] = {o(e,6,t) € Ty[B1] |t <mt'(By) }u{e} U
{(e,a,t)0 € Ty[By] |t < mt'(By) } U
{o1002| 01 =0 (eya,t) € Ty[B1] N a#6 AN t<mt'(By) A
oy € Ty[Ba] N (02 = (e,b,t") oy, = t' >t A
(Ve e Urgent(By),t" <t :01(e,e,t") € Ty[B1])) }

5. TUIIBl >> B2]]

—~ — ==

7. Ty[B[H]] 2 {0 |30' € Ty[B]:0 = o'[H]}
8. Ty[B\G] 2 {o |30’ € Ty[B]:0 =0"\G}
9. Ty[Billa B2] £ {0 € (Tu[B[®aTu[B:1)" | mi(o) € Ty[Bi] for i=1,2}
10. Ty[Uy(B)] £ {c € Ty[B]|Vi: (Ve,a € U, t,<t; : 0 (e,a,t,) & Ty[B]) }.
U
6.33. LEMMA. VB € PAy : Ty[B] ={o | 3Bt : (B,0) %.(B',t') }.
PROOF. Straightforward but tedious by induction on the structure of B. O

6.5.3 Consistency between causality-based and operational
semantics

We now come to the following consistency result between the causality-based semantics of
PAy and the event-based operational semantics.

6.34. THEOREM. VB € PAy : Ty ([B]) = Tu[B]-

PROOF. The proof is by induction on the structure of B.

Base: For B =0 and B =/ the theorem trivially holds.

Induction Step: Assume the theorem holds for B; and B,. Let ¥ = &Ey[B] and ¥; = [B;] =
(B~ 40 1), Di, T, Uy (1=1,2).

1. B =(t) ag; B;. We have ¥ = (Er[B],U; U { (¢, false) }). Event ¢ is nonurgent and all urgent
events in ¥, can only occur after the occurrence of £, and thus cannot prevent ¢ from appearing
from a certain time on. The non-empty timed traces o of ¥ are thus of the form (¢, a,t,) [0’]
with ¢' € Ty (¥,) and ¢, > ¢ (see also proof of Lemma 5.17). By the induction hypothesis we
have Ty(¥,) = Ty[B,]. This proves the case.

2. B = B, + B,. In ¥ mutual conflicts are introduced between all initial events of ¥; and V,.
This means that initial urgent events of ¥; are put into conflict with (all) initial events of ¥,
(and vice versa for urgent events in ¥, and initial events in ¥,), and as a result may prevent
the occurrence of these initial events in ¥, after a certain time. For e;, e, initial events of ¥,
and U,, respectively, such that U;(e;) event e, becomes excluded in ¥ by e; from time ¢ on,

Correspondence with causality-based semantics 139

Di(e;) < t. Thus we derive:
Ty(Ev[By + B2])

= { see discussion above }
Ty(T)\{(e,a,t)o | Te' € By :Us(e') N e~e A Dye) <t}
UTy(P2)\{(e,a,t)o |Te' € Ey :Us(e') N e~e A Dy(e) <t}
= { calculus }
{(e;a,t) 0 € Ty(¥1) | = (
U{(e,a,t)o € Ty(¥,) | =(
= { induction hypothesis ; U(e) =
{(e,a,t)0c € Ty[B,] | = (3(e,b,t
U{(eya,t)o € Ty[By] | = (3 (€, b, ¢
— { Definition 6.31 }
{(eya,t)o € Ty[Bi] |t < mt'(Bs)} U{(e,a,t)0 € Ty[B2] |t < mt'(By)}U{e}
— { Definition 6.32 }
Ty[B, + B]

(e, b,t") € Ty(Ts) : Us(e') A ' < t)}
(e, b,t") € Ty(Ty) : Up(e') ANt <t)}U{e}
l(e) € Urgent(B) }
"Y€ Ty[B2] : b € Urgent(B,) A t' <t)}
) ETy[By]:b€ Urgent(B;) A t'<t)}U{e}

3. B = B; >> B,. Similar to the nonurgent case, timed traces of ¥ are either (i) traces of ¥, that
do not end with a successful termination event ¢ (this is equal to saying that no § should occur
in this trace), or (ii) traces of the form oy (e, 7,t) *[02] for o2 € Ty (¥5) and oy (e, 6,t) € Ty (Ty).
The fact that events in ¥, can only occur after the successful termination of ¥; guarantees
that urgent events in ¥, do not affect the occurrence of events in ¥, (and vice versa). Thus,
Ty () equals

{J 6T’U(\Ill) | J#J’(eaévt)}
U{oi(e,7,t)t[o2]]| ai(e, 6,t) € Ty(T1) A o9 € Ty (Ts) }

By the induction hypothesis it now directly follows that this equals

{oc €Ty[B:i] | o # o' (e,6,¢)}
U{oi(e,7,t)t[os]|01(e,6,t) € Ty[B1] A o2 € Ty[B:] }

By Definition 6.32 this equals 7y [By >> B,].

4. B = By [> B,. From the timed case without urgency (see Chapter 5) we know that traces of ¥
are either (i) traces of ¥, that end with a successful termination event §, or (ii) concatenations
of (possibly empty) traces oy € Ty;(¥;) and o5 € Ty (V) where o, does not contain a é-event
and where the timing of each event in o, should exceed the maximal timing in o;. In the urgent
case the asymmetric conflicts between the events in ¥, and init(¥,) do affect the occurrence
of events. That is, an event in ¥; can happen only provided there is no (initial) urgent event
in U, that could occur earlier, and an (initial) event in ¥, can happen provided there is no
urgent event in U, after o; that could occur earlier. We now characterize set (i) and derive for
this set:

{o(e,6,t) € Ty(¥y) | = (Ti,e" € init(Vy) : Ua(e') A Da(e') < t;)}

= { all traces in Ty;(¥,) are time-consistent }

140 Chapter 6: The urgency module

{o(e,6,t) € Ty(Ty) | = (Fe' € init(Vy) : Us(e') N Dy(e') < t)}
= { calculus }

{o(e,6,t) € Ty(¥y) | 7 (F(e,12(e),t) € Ty(Vy) : Ua(e') ANt <)}
= { induction hypothesis; Us(e') = l2(e') € Urgent(B,) }

{o(e,6,t) e Ty[B1] | ~(3(e',a,t") € Ty[Bs] : a € Urgent(B,) A t' <t)}
= { Definition 6.31 }

{o(e,6,t) € Ty[B1] |t < mt'(Bs)}

A similar derivation can be carried out for set (ii). By Definition 6.32 the union of the thus
obtained sets is equal to Ty [By [> B:].

5. B = By \ G. Similar to the nonurgent case, the timed traces of ¥ are the timed traces in
U, where all action labels in G' are renamed into 7. So, Ty (¥) = {0 | o' € Ty(¥,) : 0 =
o'\ G }. By the induction hypothesis this equals { o | 3¢’ € Ty[B:] : ¢ = '\ G }, which—by
Definition 6.32—equals 7y [B, \ G].

The proof for relabelling is similar and omitted here.
6. B = B;||¢B2- Since, according to Definition 4.26, G N Urgent(B;) = @, for i=1,2, it is
easy to check that no new (asymmetric) conflicts are introduced between urgent events in ¥,

and events in W, (or vice versa). This means that, similar to the timed case, o € Ty (¥) iff
mi(0) € Ty(¥;), for i=1,2, and o is time-consistent. So, T;;(¥) equals

{o € (Ty(¥,) xg Ty(Ty))" | m(o) € Ty(¥1) A m(o) € Ty(P,) }.

By the induction hypothesis this equals

{o € (Ty[Bi | ¢ Ty[B2])" | mi(o) € Ty[Bi] A ma(o) € Ty[B2] }-

By Definition 6.32 this equals 7] By ||¢ B2].

7. B =Uy(B,). All events in ¥, labelled with an action in U become urgent in ¥. No additional
conflicts and/or bundles are introduced. This means that a trace o of ¥, is also a trace of ¥ iff
(i) each event e; in o with [;(e;) € U cannot be performed any earlier, and (ii) for each event
e; in o there is not an enabled urgent event that could be performed earlier (cf. the constraints
in Definition 6.3). We now derive

Ty (Ev[Uy(B1)])
= { discussion above }
{oc €Ty(¥,) | (V(es,ai,t;) €T:a;, €U = t; =time(o,e;)) A
(Vo<i<|o|:ecen([oy]) A li(e) eU = t; < time(oy,e))}
= { calculus }
{oc €Ty(¥,) | (V(es,ai,t;) €Tt <t;:a; €U = o;(eiyai,t) € Ty(¥y)) A
Vo<i<|o,t<t:li(e) €U = o;(eli(e),t) & Ty(¥1))}
= { calculus }
{0 €Ty(¥,) |Vi: Ve,t <ty,a €U :0;(e,a,t) & Ty(¥,)) }
= { induction hypothesis }

Related work 141

{oc€eTy[B:]|Vi:(Ve,t <t;,a €U :0;(e,a,t) ¢ Ty[B:1]) }
= { Definition 6.32 }
Ty[Uy(B1)]

O

Let TSy (B) be the timed event transition system obtained by applying the inference rules to
B. For Ey[B] a transition system ETSy is constructed in the following way. States of the
transition system for £y B] are reachable urgent event structures (or, derivatives) of &y B]
with &y B] being the initial state. There is a transition from ¥ to ¥’ if ¥' = ¥[o] for timed
trace o with | o | = 1. (See Section 5.3 for a formalization of these issues.)

The previous theorem implies that TSy (B) and ETSy (Ey[B]) are (timed) event trace equiv-
alent. It is easy to check that for each transition B (eet), B’ there is a unique way in which
this transition is derived from the SOS-rules for ~» and — . Since—in addition—both (timed)
event transition systems are deterministic it follows that:

6.35. THEOREM. VB € PAy : TSy(B) ~ ETSy(Ev[B]).

PROOF. Similar to the proof of Theorem 2.46. O

6.6 Related work

This section discusses some related work in the literature that deals with the incorporation
of a notion of urgency in a timed process algebra. We deliberately state ‘notion of’ since it
appears that there are several closely related concepts around.

The basic timing ingredient in PAy is the delay function, (¢) a; B. It specifies that from ¢
time units on since the occurrence of the causal predecessor of a (if any) the behaviour is able
to engage in a. This type of time constraint is sometimes referred to as unbounded idling [112]
or loose time prefiz [105], since the time between the expiration of the specified delay and
the occurrence of a is determined by the environment, and in principle may be unbounded.
Opposed to this principle the notion of time-stamped actions has been proposed by, amongst
others, Baeten & Bergstra [7]. For example, [t| a; B specifies that a must occur at time ¢. In
fact, this construct specifies a delay ¢, and in addition, that a must occur at t—Ilocal urgency,
so to say.

Urgent and nonurgent actions are incorporated by Bolognesi & Lucidi [18] within a (discrete)
timed variant of LOTOS. In their proposal each action is nonurgent by default, but can
be made urgent—Ilike in our case. Opposed to the proposal of this chapter they do allow
synchronization of urgent actions. Such synchronizations only succeed if all participants are
ready to engage in the interaction at the same time instant. If this is not the case then a
so-called timelock appears, a situation in which the progress of time is blocked as a result of
which the entire system may halt execution.

Bolognesi et al. [19] generalize the notion of urgency (in a continuous time setting) by intro-
ducing the time operator. time a(t1,t3) in B denotes behaviour B in which a must occur

142 Chapter 6: The urgency module

in interval [t1,s] once it is enabled. U,(B) is akin to (time a(0,0) in B) \a. In order to
constrain the passage of time in the inference rules for time a(t1,t3) in B, Bolognesi et al.
use a function age(a, B) which determines the maximal (rather than the minimal) time at
which B can perform initial action a. (It was pointed out by Bolognesi that the operational
semantics of PAy strongly resembles an (unpublished) proposal by Bolognesi & Schneider [20]
to integrate timed LOTOS [18] and timed CSP [133].)

Klusener [86] introduces a real-time variant of ACP, called ACPur, and provides an operational
semantics using separate time and action transitions. Rather than using a function like d;,
to block the passage of time in presence of urgent actions, he uses negative premises. Klusener
defines several notions of bisimulation for ACPur and presents an axiomatization for it.

In other approaches (for instance, Hansson & Jonsson [65], Hennessy & Regan [67] and Schnei-
der [133]) a weaker notion of urgency, often referred to as mazimal progress, is present. The
notion of maximal progress (or eagerness) is weaker than urgency as it ‘ignores urgency in the
context of choice’. That is, if actions happen they happen as soon as possible, but they cannot
prevent the occurrence of other actions after a certain amount of time (like urgent actions do).
In most formalisms maximal progress is coupled with hiding (\). In these formalisms internal-
ized events become eager, and eager events are internal. The rational for this is that when an
event is internalized (i.e., hidden from the environment), no further interaction on this event
can take place, no further delays will be imposed by the environment, and thus there is no
reason to delay its execution any further. On the one hand, the maximal progress assumption
applied to internal events alone is not sufficiently expressive (why can’t non-internal events
be eager?), and on the other hand, it is a bit restrictive—when specifying an unreliable com-
munication service that may lose messages, the loss of a message is usually modelled by an
internal event, but we are not interested in specifying when this message is physically lost!

6.7 Conclusion

The notion of urgency was introduced by Bolognesi & Lucidi [18] in the context of (discrete)
timed LOTOS and later by Bolognesi et al. [19] in a dense timed setting. In this chapter we
have investigated the incorporation of urgency in the setting of event structures by distin-
guishing between urgent and nonurgent events. The resulting model has been used to provide
a denotational semantics to a timed process algebra that includes an urgency operator akin
to the one proposed for timed LOTOS. The corresponding event-based operational semantics
turned out to strongly resemble the inference rules in [19]. The main difference is that we
do not allow synchronization on urgent actions, while in [19] this is possible at the prize of
possible timelocks.

7 The real-time module

In this chapter we generalize timed event structures by equipping events
and bundles with sets of time instants and use urgent events for the sole
purpose of modelling timeout mechanisms (thus restricting urgent event
structures). An event e with set T of time instants denotes that e can
only occur at some ¢t € T since the start of the system. T associated with
bundle X — e denotes that the time between the occurrence of an event in
X and the appearance of e should equal ¢, for some ¢t € T'. The result is a
causality-based model allowing the specification of minimal, maximal and,
for instance, periodic time constraints. This chapter generalizes the theory
of Chapter 4 and uses urgent events in a controlled way. It investigates how
the more expressive model, baptized real-time event structures, can be used
as a vehicle to provide a semantics to a real-time process algebra including
timeout and watchdog operators.

7.1 Introduction

In Chapter 4 we introduced a simple timed variant of event structures by associating a single
time instant to events and bundles. These time instants specify only lower bounds of occur-
rence and do not allow for constraining the latest point in time at which an event may occur.
In addition, this model does not allow to specify timeout mechanisms, a necessary ingredi-
ent for describing real-time systems. Therefore, in this chapter we propose a model, called
real-time event structures, which allows to specify upper bounds of occurrence (in addition to
lower bounds) and allows to specify timeouts.

Let us first reconsider the timed event structure model. An event e with delay ¢ denotes that
e can happen from ¢ time units on since the start of the system. This is, in fact, a shorthand
notation for event e equipped with a set T of time instants, T = {¢' | ¢ > ¢}, with the
interpretation that e can happen at any time instant in 7. Of course, a similar observation
can be made for bundle delays. In this chapter we generalize this point of view by allowing
arbitrary sets of time instants to be assigned to events and bundles. In this way, it is not only
possible to specify the minimal time at which an event can occur, but also the latest time at
which it can occur.

In order to specify timeouts we use urgent events, like we introduced in Chapter 6. Opposed
to PAy, the process algebra of Chapter 6, that allows to enforce an arbitrary action in an
expression to be urgent we restrict the introduction of urgency to timeout mechanisms only.
In this way, the model of Chapter 6 can be simplified significantly, while suiting our purposes.

143

144 Chapter 7: The real-time module

We will also show how timed interrupts (or watchdogs [112]) can be modelled without using
urgent events.

This chapter is organized as follows. In Section 7.2 the notion of real-time event structures is
introduced and it is investigated to what extent the results and definitions related to timed
event structures still apply. Section 7.3 extends PAr by generalizing the delay function and
incorporating timeout and watchdog operators; it presents a causality-based and event-based
operational semantics for the resulting formalism and shows the correspondence between them.
Section 7.4 discusses related work in the field of extending partial-order models with time.
Finally, Section 7.5 presents the conclusions of this chapter.

7.2 Real-time event structures

7.1. NoTATION. For z,y € Time let [z,y] abbreviate {¢ | z < t <y} and (z, y] abbreviate
{t|z<t<y}. Forzec Timeand y € Time™ let (z,y) be a shorthand for {t |z <t <y}
and [z,y) a shorthand for {¢t |z <t < y}. [z,00) is often abbreviated as z. O

In order to facilitate the specification of other than minimal time constraints we replace event
and bundle delays by arbitrary, and possibly infinite, sets of time instants. The interpretation

of {e,} N ey, where T is a set of time instants, is that if e, happens at t,, then e; is possible
at t, +t, for any t € T. Notice that for T = [t, 00) the interpretation of {e, } > e is equal
to { eg } > €, in the model of Chapter 4.

For events that have more than one bundle pointing to them we take the following interpre-
tation. Consider {e, } KN e. and { e} T ec.. Then, if e, happens at time ¢, and e, at time
tp, then e, is enabled at any t € (t,+7T) N (t,+T1"), where t+T denotes {t+t' | t' € T }. (If
T = [t,00) and T" = [t', 00) then (t,+7T) N (t,+T") = [max(t,+t,ty+t'), 00); so the synchro-
nization principle of Chapter 4 is retained.) When the intersection of two (or more) sets of
time instants is empty this means that the event at hand cannot occur at any time and will
be permanently disabled.

The interpretation of an event with delay T is that e can happen at some time ¢ € T since
the start of the system. As before we use D and 7 to associate delays (which are now sets of
time instants) to events and bundles, respectively.

In order to be able to model timeouts we equip the model with urgent events (like in Chapter
6). In Chapter 6 we introduced urgent event structures and did not constrain the introduction
of urgent events in the model. As we have shown, urgent events may have a global impact
which alleviates one of the interesting characteristics of event structures, viz. the locality
aspect. This resulted in a rather complex characterization of timed event trace: in order to
decide whether an event can happen the ‘global’ state of the entire system is used (cf. the
third and fourth constraint of Definition 6.3). In this chapter we restrict the introduction of
urgent events thus yielding a simpler model. Later on in this chapter we will show that this
‘weakened’ variant of urgency suffices to model timeouts and watchdogs.

Let X ~ ¢’ abbreviate (Ve" € X : ¢” ~ ¢'). Note that @ ~~ ¢ for all €.

Real-time event structures 145

7.2. DEFINITION. (Real-time event structure)

A real-time event structure is a quadruple (£, D, 7,U) with

e &, an (extended bundle) event structure (E,~>,+,1)
e D: E — P(Time™), the event delay function

e 7 :+— — P(Time™), the bundle delay function

e U : EF — Bool, the urgency predicate

such that for all e € E with U(e):
1.VEEE,XCE:((efvweVewe)NXm—e) = (X—e VXwe)

2. 3t Time:D(e)C[t,t] V AXCE:X5e A TCtt]) .
]

The first constraint requires that the enablings of an urgent event e are either contained in
the enablings of an event e’ that it disables, i.e., ¢’ ~» ¢, or that an enabling of e is disabled by
e’ (the case e ~» ¢ is identical). This constraint enforces that as soon as ¢’ is enabled either e
is also enabled (provided e is not disabled in another way), or is permanently disabled, since
some enabling of e is disabled (by €'). As a result the global impact of urgent events is limited,
see also the discussion in Section 6.2.1. Thus, in order to decide whether e’ can occur—once
it is enabled—it suffices to consider the local (and urgent) disablings of e'.

The second constraint ensures that urgent events are enabled at at most a single time instant.
The motivation for this constraint is that urgent events are used for the sole purpose of
modelling timeouts, and timeouts typically can appear at a single time instant only.

Note that event and bundle delays may be infinite sets of time instants, but also empty sets
of time instants. We usually will use intervals and combinations (unions and intersections) of
them. For depicting real-time event structures we use the same conventions as for timed event
structures. We use A to denote a real-time event structure and EBESg to denote the class of
real-time event structures. We use T' to range over P(Time™).

7.2.1 Timed event traces

Given a sequence o of timed events and an enabled event e, that is e € en([g]), let time(o,e)
denote the set of time instants at which e can occur.

7.3. DEFINITION. For o a sequence of timed events (e1,t1) ... (en,t,) with e; € E, t; € Time,
for all 0 < i < n, and e € en([o]), let

time(o,e) = N ({D(e) } U H; U H,) where
H ={tj+T|3XCE:X5e A Xn[o]={e}}
Hy={[tj,;00) | Jej o] :ej~e} .

146 Chapter 7: The real-time module

For P a set of sets of time instants let NP £ {t|VT € P:tc T}.
7.4. LEMMA. For all sequences o of timed events and e € E we have:
ecen([o]) A U(e) = |time(o,e) | <1

PrROOF. This follows directly from the second constraint of Definition 7.2 and the definition of
time, 0

In the sequel we will use for urgent event e time(o,e) as a value, rather than as a set of time
instants, whenever appropriate. We use oo as the value of &.

7.5. DEFINITION. (Timed event trace (revisited))

A timed event trace of real-time event structure A = (£,D,7,U) is a sequence o of
timed events (e1,t1) ... (en,t,) With e; € E, t; € Time, for all 0 < i < n, satisfying

1. e1...ep € T(E)
2. Vi:t; € time(oy,e;)

3. Viye:(ecen([os]) A U(e) N (ei~e V e~ e)) = t; <time(oy,e).
O

The first two constraints are self-explanatory. The third constraint is justified as follows. First,
consider e; ~» e, for urgent e. Then the third constraint takes care of the fact that urgent
event e prevents the events that it disables (such as e;) to occur after a certain time. That is,
event e; can occur at time ¢; provided there is no enabled urgent event e that disables e; and
that must occur before ¢;. In the case that e ~> e; and both e and e; are enabled, the third
constraint ensures that e; can only occur if urgent e cannot occur earlier. If e could occur
earlier it should precede (and cause) e;.

7.6. ExaMPLE. For the following sequences of timed events the conditions are given under

a b [30,30] b
[5,12] 1
[3,7] (2,46, ...}
3
c d C
® (6)

Figure 7.1: Two example real-time event structures.

which they are timed event traces of Figure 7.1(a):

(ea, ta) (eb, tb) (ed, td) if tg¢€ {tb+2, ty+4, ... }, and
(easta) (€, ty) (e, te) if max(t,+3,ty+5) < t. < min(t,+7,t,+12).

Real-time event structures 147

For Figure 7.1(b) we obtain:

A t,+3 < t, <t,+ 30, and
AN tb:ta+30 A tCEmaX(ta+3,tb).

(€qsta) (€cyte) if
(€asta) (€, tp) (cyte) if

ty > 1
ty > 1

O

Like for the simple timed case, timed event traces do respect causality, but not necessarily
time. Ill-timed traces only appear as a result of the interleaving of causally independent events.
Let Tr(A) denote the set of timed event traces of A.

7.7. THEOREM. Ill-timed theorem (revisited)
For t' < t: o (e,t)(e/,t') o' € Tr(A) = o (€¢/,t')(e,t) o' € Tr(A).

PROOF. Let o' =0 (e,t)(€¢/,t') o' and 6 = o (¢/,t')(e,t) o’. Let t' < t and o' € Tr(A). The proof
is by contradiction. Suppose o2 ¢ Tr(A). This can only be because one of the following reasons:

1. [0?] € T(E). Identically to the proof of Theorem 4.9 this leads to a contradiction.

2. 3j : t; ¢ time(o?,e;). In a similar way as in the proof of Theorem 4.9 it can be proven that
this leads to a contradiction.

3. 3j,¢" : €" € en([0?]) with U(e") such that e; ~» e” (or €" ~» ¢;) and t; > time(d},e"). For
event e; in o or ¢’ this leads to a contradiction; otherwise o' ¢ Tx(A). It remains to check
e; =eand e; =e':

(a) ej ~ €”" A e; = e. Then e" = €' is the interesting case; if e’ # €' we would have
o' & Tr(A), which is a contradiction. If e” = e’ then e’ € en([o?]) which is impossible
since e’ is an event in the prefix of o2 of e. Contradiction.

(b) e; ~ €" A e; = €. Then e" = e is the interesting case; if ¢” # e we would have
o' & Tr(A), which is a contradiction. If e” = e then e’ ~» e and e could not precede €' in
o', so o' & Tr(A). Contradiction.

c) e ~e: A e =e Forein o or e’ in ¢’ this would contradict ! € Tx(A). So, let
J J
e = ¢e'. Then e’ ~» e which means that e could not precede ¢’ in o'. Contradiction.

(d) e" ~» e; A e; = €. Again, the interesting case is e = e; the other cases contradict
o' € Tr(A). Then e ¢ en([07]) since e’ disables e. Contradiction.
O

7.2.2 Families of lposets
As an underlying semantical model for real-time event structures we use lposets. The Iposets
of A, denoted Lr(A), are generated in the same way as for timed event structures, cf. Defini-

tion 4.18.

7.8. DEFINITION. (Lposets of a real-time event structure)

For A € EBESg : Lr(A) = {(7,Norepo]o, <orsl 17) |0 € Tr(A)}. O

148 Chapter 7: The real-time module

We sometimes use Lg(0) to denote (7', Nsrcpo]., <5:l [7).

For real-time event structures we have that having the same families of lposets is equivalent
to having the same sets of timed event traces.

7.9. THEOREM. VA, A" € EBESg : Lr(A) = Lg(A') <= Tgr(A) = Tr(A).

PROOF. Straightforward and omitted. O

In the real-time setting the untimed Iposets of A are not necessarily equal to the Iposets of
the corresponding untimed event structure p(A) (i.e., £). The reason for this is that events—
though causally enabled—may not appear since there is no time instant at which they can
occur (or because an urgent event prevents them from occurring). E.g., if A consists of a single
event e with D(e) = & then Lg(A) only consists of the empty Iposet whereas the corresponding
untimed event structure also has lposet [€].

7.10. LEMMA. VA € EBESg : L(A) C L(p(A)).

PROOF. Straightforward from the fact that Vo € Tr(A) : [0] € T(p(A)). O

7.2.3 Real-time remainder

The remainder of a real-time event structure is defined as a straightforward generalization of
Definition 4.22.

7.11. DEFINITION. (Real-time remainder)

The remainder of real-time event structure A = (£, D, T,U) after timed event trace o,
is Alo] = (£, D', T",U") where

&' =E&lo]] = (B, ~', ")

Veec E':D'(e) =N ({D(e) } U H U Hy) with
H ={t;+T|3XCE:X5e A XNn[o]={e¢;}}and
Hy = {[tj,00) | Jej € o] :ej ~ e}

T =(T |~")YU{((9,e),T)| o +—'"e} for some T € P(Time™)

U=U|E.

The fact that Afo] is a real-time event structure follows from:

7.12. LEMMA. VA € EBESg, 0 € Tr(A) : A[o] € EBESk.

PROOF. Let A = (£,D,7,U) with € = (E,~,—,l), and A’ = A[o]. It follows directly that
&' € EBES, since &[[o]] € EBES for all £ € EBES and [o] € T(£). For each e € E', functions D’
and U' are defined, and 7' is a total function on the bundles of A’. It remains to verify that the
constraints of Definition 7.2 are satisfied. Let e € E' with U'(e).

Real-time event structures 149

1.V EE,XCE :((ef~eVe~we)NX'e = (X' VX ~'e) Distinguish
between e' ~~' e and e ~' €.

(a) € ~' e. Then, by Definition 2.28, we have e’ ~» e. Since U'(e) we have U(e). Now let
X —'e. If X — e then we also have that X — ¢, since A € EBESg. In addition, since

X — e and X ' e it follows that X N [o] = &, and so X —' ¢'. In case X —' e, but
X +— e does not exist, then X —' e is a new bundle, and it follows from Definition 2.28
that X = @. But then X ~' ¢’ since @ ~' ¢’ for all ¢'.

(b) e ~'¢€'. Similar to the case ¢’ ~' e.

2.3t:D'(e) C[t,t] V(X CE : X De AT C [t,t]). Since U'(e) we have U(e). Suppose
D(e) C [t,t]. By the definition of remainder it follows directly that D’'(e) C [¢,¢]. Suppose
X5 e with T C [t,t]. If X ' e then the bundle delay is unaffected and the constraint is

satisfied. In case (X,e) ¢~ it follows from Definition 2.28 that X N[o] # @, say XN[o] = {¢; }.
But then D(e) will be intersected by ¢;+T', and since T' C [¢, ¢] then it follows that D'(e) C [¢', ']
for t' = t;4+t. This proves the case.

O

The following correctness result concerning real-time remainders is analogous to the correctness
results for timed and urgent remainders.

7.13. THEOREM. Correctness of real-time remainder

For o € Tgr(A) and o’ a sequence of timed events:

1. o' € Tr(Afo]) <= o0’ € Tgr(A)
2. o' € Tp(Alo]) = Lg(o) is a prefix of Lg(o o’).

PrOOF. Let A =(&,D,T,U) and A" = Alo] = (£',D',T',U') for o € Tr(A) where
E = (By~s,,1) and £ = (B',~', ', 1").

1. ‘=’ Assume o' € Tr(A’). We prove that oo’ € Tr(A) by systematically checking the con-
straints of being a timed event trace (cf. Definition 7.5).

(a) [o0'] € T(E). Given that [o] € T(E) and [0'] € T(E') this follows directly from Theo-
rem 2.30.

(b) Vi:t; € time((o0');,e;). Thisis proven in a similar way as in the proof of Theorem 6.13.
(c) For the third constraint of Definition 7.5 we derive for all e:
Vi:ecen([(co')]) AN Ule) N (e;~e V e~e) = t; < time((oo');,e)
< { domain split }
(Vo<i<|o|:e€en([(ca')]) AN U(e) A (e;~e V e~ e) =
t; < time((oo');e)) A
(Vio|<i<|od' |:ecen([(cd')i]) AN U(e) N (ei~e V e~re) =
t; < time((o0');,¢€))
< { calculus }
(Vi:ecen(joi]) A U(e) A (e;~e V e~ e;) = t; <time(o,e))

150

Chapter 7: The real-time module

AN (Vj:e€en(foai]) A Ule)
< { Lemma 6.12; Lemma 6.11 }

(Vi:e€en([o;]) A U(e) A

A (ej~e V e~we) = t; <time(ooj,e))

(e;~e Ve~ e) = t; < time(o;,e))

AN (Vizeecen'([of]) A Ue) A (e~ e V e e)=t; <time'(o),e))
< {U'(e)=U(e)forec E'; »'=~ N(E' X E") }

(Vi:e€en([o;]) A U(e) A
AN (Vi:ecen'([oj]) A U'(e) A (ej~"e V e~'e)

< { Definition 7.5 }
o c TR(A) AN o e TR(A’)

(e;~ e V e~ e) = t; < time(o;,e))
= t; < time'(d,e))

‘<=’: the proof for this case goes along similar lines as the proof for ‘=’.

2. The proof of this theorem is analogous to the proof of Theorem 4.24.

7.2.4 Transformation rules

The first rule allows for the transformation of (particular) events that are impossible due to
timing constraints into events that can never occur due to causal conditions that can never be
met (x denotes an arbitrary element of P(time™)). Since we can always safely remove events
with an empty bundle pointing to them, this rule is considered to be useful. The second rule
facilitates the removal of sub-bundles and is a generalization of a similar rule for the simple
timed case. The third rule allows for the recalculation of event delays. T associated to bundle
set X means that U.cx D(e) equals T. T+T" equals Uyer(t+T"), where Uyer(t+T") equals &
if T = &. Note that these rules do not depend on the fact whether e is urgent or not (except
that in the first rule x should equal @ or [t,t], for some ¢ € Time, if e is urgent; otherwise the
result is not necessarily a real-time event structure).

O *
e€ = \‘ge

(e

Isolating impossible events

Sub-bundle removal

(T+T) n T”
Adjusting event delays

Figure 7.2: Some transformation rules for real-time event structures.

A real-time process algebra 151

7.14. THEOREM. Real-time event structure (£,D,7,U) is Iposet-equivalent with
L ((B,~,— U{(2,e) 1,1),(D\{(e,2)}) U{(e;x) }, T U{((2,e),%) },U),
if D(e) = @.
2. (B, = (X, e) 11), D, (T\{((Y,e), T), (X,), T)) UL ((Y,e), TNT) }, U)
fYCX AYSe A XDe
3. (B, =,0), (DA { (e, T") }) U L (e, (Uerex D(NHT) NT) 1, T, U)
if X 5e A Die)=T"
PROOF. Similar to the proof of Theorem 4.25. O

The next transformation rule is a consequence of the third and first rules of Theorem 7.14 and
the rule for untimed event structures which allows to eliminate bundles pointing to impossible

events:
O _
< : >_.. e = @ e

This rule can be proven by first transforming the event delay of e into @ according to the
adjusting event delays rule, then introducing an empty bundle pointing to e according to the
first rule and subsequently eliminating the impossible event e according to the rule superfluous
bundles for untimed event structures (see Chapter 2).

7.15. EXAMPLE. The application of the transformation rules of Figure 7.2 is shown by the
following example:

[18,32] 0
(1.3} [18,29] ‘ d (1.3} [18,29] o d (1.3} [18,29] ‘ d (1.3} d
a a a a /,
[4,9] [4,9] [4,9]
b b b b
[0,1] 3.5] c [0,1] 3.5] c [0,1] 3.5] c [0,1] 3.5] c
[6,12] [6,8] [6,8] [6,8]
(a) (b) (© (d)

Suppose we initially have real-time event structure (a). In the first step we consider the
bundles originating from { e,, e, } and adjust the event delays of e. and e4 according to the
third transformation rule. This yields (b). Then we apply the same rule to {e.} — eg4,
resulting in (c). Finally, we can remove all bundles pointing to e; according to the above
derived transformation rule, and obtain (d). O

7.3 A real-time process algebra

This section introduces an extension of PAr by generalizing the delay function and introducing
a timeout and watchdog operator. In the first section we introduce the syntax; a causality-

152 Chapter 7: The real-time module

based semantics is provided in the second section. Subsequently, an event-based operational
semantics is presented in the same spirit as in Chapter 5 using timed actions (and using
separate time and action transitions), and the consistency of this semantics with respect to
the denotational semantics is proven.

7.3.1 Syntax

Let t € Time and T' € P(Time™). The syntax of the real-time process algebra PAg is defined
as follows.

7.16. DEFINITION. (Real-time process algebra PAR)

B := 0|y|(Ta;B|B+B|B|cB|BH|B\G|B>B -
B[>B|B>B|B»B
The precedences of the composition operators are, in decreasing binding order: ; , + and >,

||, [> and », >>, \ and []. Parentheses are omitted if this does not introduce ambiguities.

The delay function that expresses the relative delay of an action associates to an action a set
T of time instants. Behaviour a; (T) b; O is able to engage in b at ¢ time units since the
occurrence of a, for t € T. That is, if a happens at t, then b can happen at ¢,+t for some
t € T. Like for PAr we allow arithmetic expressions on sets of time instants. We abbreviate
([t,00)) a by (t) a, and (0) a simply by a.

t
By > B, is a timeout operator; initially the behaviour behaves like By, but if B; does not
perform any action before or at ¢ (since the enabling of this behaviour) then the control is

t
passed to B;. B; > B, can be considered as a timed generalization of B; + Bs: if during
[0,%) behaviour B; performs an action then the choice is resolved in favour of By, if it does
not perform any action in [0,¢] then the choice is resolved in favour of B;. At time ¢ a
nondeterministic choice appears between B; and Bs.

t
By » B, is a watchdog operator; initially the behaviour behaves like B; but at time ¢ control is

t
passed to By provided Bj is not yet successfully terminated. B; » Bs is a timed generalization
of By [> Bs: By is aborted at time ¢ by B, provided that B; has not successfully terminated.

t
Note that in B; > B, control is passed to By only if B; does not perform any action—either

t
internal or not—before (or at) ¢, whereas in B; » B, control is passed to B, at time ¢,
regardless of the activities of B; until time ¢ (with the exception of termination).

The synchronization principle for PAg is identical to that in PAz and PAy: an action can only
occur when all participants are ready to engage in it. Thus, in behaviour

a; (T1) b; 0||fapya; (T2) b5 0

b is enabled at any time in t,+T1 Nt,+Ty = t, + (T NTy).

A real-time process algebra 153

Notice that by means of synchronization actions may become impossible due to incompatible
timing constraints in the participating behaviours. For instance, if Ty N7, = & in the example
just above, b can never occur.

7.3.2 Causality-based semantics

In this section we show how a causality-based semantics can be given to PAg using real-time
event structures. We define a mapping Eg[| : PAR — EBESg. For convenience we use the
denotational semantics £'[| for the untimed case which is defined in Chapter 2. In addition
we use:

7.17. DEFINITION. ®r : PAp — PA is defined as follows:

Tr(0) £ 0
r(v) = V
®z((T) a; B) = a; ®r(B)
®r(ByopBy) £ ®g(B;)op ®r(B,) for op € {+, ||¢,>>, >}
®p(opB) = op ®g(B) for op € {\,[]}
Bp(Bit> By) 2 Bg(By)+7; a(By)
Bp(B; » Bs) Bp(B,) [> ®r(By).

O

So, ®p associates to a real-time behaviour B its corresponding untimed behaviour ®z(B) by
simply omitting all time annotations in B and converting > and » into + and [>, respectively.
The purpose of the internal event introduced by the timeout operator will be explained later
on.

In the rest of this section let Eg[B; | = A; = (&, D;, T;, U;), for i=1,2, with &; = (E;, ~4, 4, 1;)
and F; N Ey = &. The functions init and exit which denote the set of initial and termination

events, respectively, are defined for event structures in Chapter 2 and are used for real-time
event structures in the same way. Let Ey denote the universe of events.

7.18. DEFINITION. (Real-time semantics of 0, /, and (T) a;)

gR[[O]] 2 <8,|I<I)R(0)]la®’®’®>
Erlvl = (E'12r(V)] { (es, Time™) }, @, { (es, false) })
Er[(T) a; Bi] 2 ((E,~1,—,l1U{(es,a)}),D,T,U) where
E = FE;U{e,} forsomee, € Ey \ E;
— = o U {ed X By
D = {(es,T)}U(E; x {Time™})
T = TiU{(({ea},e);Dile)) [e € Er}
U = U U{ (e, Tfalse) }.

154 Chapter 7: The real-time module

The semantics of 0 and 4/ is self-explanatory. For timed action-prefix the semantics closely
resembles that for the simple timed case, i.e., PAr, except that now bundles are introduced
between the new event e, and all events in Eg[B;]. In this way it is guaranteed that the
resulting structure is indeed a real-time event structure: it satisfies the first constraint on
urgent events of Definition 7.2. A similar approach is taken for >>, see just below. For the
other operators the semantics is a straightforward generalization of the denotational semantics
for the simple timed case.

7.19. DEFINITION. (Real-time semantics of \, [], +, >> and [>)

Er[Bi+ By] = (E'[®r(B1+ By)],D1 U Dy, Ty UT, Uy Uly)
Er[Bi[> By] & (£'[®r(B1[> B2)],D1 U Dy, T1 U Ty, Uy Uldy)
ErlopBi] = (E'[Pr(op B1)], Dy, Ti,Uy) for op € {\,[]}
Er[B1 >> By] 2 ((Ey U Ey,~,+—,1),D,T,U; UlUsy) where

~ w1 U g U{(e,€) | e, €exit(A) A e#€}
- =1 U e U ({exit(Ag) } x Ey)

l ((lh Ulp) \ (exit(Ay) x {6})) U (exit(Ay) x {7})
D = Dy U(E, x {Time®})
T = TiUT,U{((exit(A1),e),Ds(e)) | e € Ey }.

O

For parallel composition the set of time instants associated to a bundle equals the intersection
of the delays associated to the bundles we get by projecting on the i-th components (i=1, 2)
of the events in the bundle, if this projection yields a bundle in Ex[B;]. The delay of an event
is the intersection of the delays of its components that are different from *. Finally, an event
is urgent once one of its components is urgent (where * is treated as nonurgent).

7.20. DEFINITION. (Real-time semantics of ||g)

Er[BilleBs] = (£'[®r(Bill¢ B2)], D, T,U) where

D((e1,e2)) = Di(er) N Da(ez) with D;(x) = Time™
T((X,(er,e2))) = T((pri(X),e1)) N T(pry(X), e2))
with 7;((2, e;)) = Time*™, for i=1,2
U((e1,e9)) = Ui(er) V Us(ey) with U;(x) = false, for i=1, 2.

O
Now we consider the denotational semantics for the two new operators > and ». We start
with the timeout operator.

In Eg[By é B>] a new internal, urgent event e, is introduced that models the expiration of
the timer (i.e., e, models a timeout). Since either the timer expires or B; performs an initial
action before (or at) ¢, event e, is put in mutual conflict with all initial events of Eg[By].
The events of Eg[By] can only occur after the timeout; this is modelled in the same way as

A real-time process algebra

155

for action-prefix: a bundle { e, } — e is introduced for all e € Eg[By]. (Again bundles are
introduced to all events in Eg[By] in order to guarantee that this yields a real-time event
structure.) The delay of these bundles is determined as in the action-prefix case. The event
delay of e, becomes [t,t] such that it can only occur at ¢ time units since the enabling of

Er[B: = By]. So, Er[B1 = By] equals Eg[By + ([t,t])7; Bz] where 7 is urgent.

7.21. DEFINITION. (Real-time semantics of ©>)

Er[Bi > B,] 2

TN o ¢
|

((E,~,—,1),D,T,U) where

E, UE,U{e,;} for some e, € Ey \ (E; U Es)

~1 U o~ U (init(Ag) x {e }) U ({e; } x init(Ay))
=1 U e U({{er}} X Ey)

ll Ul2 U {(BT,T)}

D1 U { (e, [t,t]) } U (Ey x { Time™ })

71T U{(({er},€),Da(e)) [e € By }

U, Ul U { (e, true) }.

7.22. EXAMPLE. Figure 7.3 shows how A; g A, is constructed from A; and A,.

a b 12
5

Y >

2

C 2 d 2
o————»® =
3 [27,41]

[12,12]

[27,41]

Figure 7.3: Example of timed semantics for timeout operator (I).

As a second example consider B; = ([3,7]) a; (2) b; 0]||(6) ¢; 0 and B, = ([4,32)) d; 0.
Figure 7.4 illustrates how Eg[By é B,] is constructed from Eg[B; | and Eg[By . O

a 2 b

[38,7] ¢
o
6

o~ > o =

6 d

[4,32)

Figure 7.4: Example of timed semantics for timeout operator (II).

t
A similar approach could be taken for the watchdog operator: for Eg[B; » B,] introduce a
new urgent event e with delay [¢, ¢], let this event precede all events in Eg[B»], and introduce

156 Chapter 7: The real-time module

a conflict ¢’ ~» e for all events e in Ex[B; | such that at time ¢ it is guaranteed that B is
interrupted; for the other attributes do the same as for By [> 7. ; Bs.

6
This recipe would, for example, result for B; » Bs, where B; and B, are taken from Exam-
ple 7.22, in:

a 2 b 6 d
o———»® > [J =
[38,7] ¢ [4,32)
[J
6

There is, however, also a possibility to model By ; B, in a simpler way without using urgent
events. Consider Eg[By [> Bs |, i.e., the real-time event structure of By [> Bs, and (i) restrict
all event delays in Eg[B; | by [0, t] ensuring that these events can only occur at time ¢ at the
latest, and (ii) postpone all events in Eg[By | by time ¢ such that these events can only occur
from ¢ on.

7.23. DEFINITION. (Real-time semantics of »)

Er[Bi» By] 2 E€[®r(Biw» B:)],D, T U Ty, Uy Ulhy) where

D = {(e,Di(e)n]0,t]) |e€ E1}U{(e,t+Ds(e)) | e € Ey }.
O
7.24. EXAMPLE. Figure 7.5 shows how A, ﬁ A, is constructed from A; and A,. The reader
is invited to compare this figure with Figure 7.4. 0
a 2 b 6 d a 2 b
" p o = 36 [0,6]
13,7] 2 [4,32) 6.6] 8¢
6 [10,38)

Figure 7.5: Example of timed semantics for watchdog operator.

7.3.3 Properties
The results in this section are all relative to A = Eg[B] = ((E, ~»,—,1),D,T,U) for B € PAg.

7.25. LEMMA. Ve € E :U(e) = I(e) =T.

PROOF. Straightforward, since urgent events are only introduced for >, and the urgency of events
is unaffected by Eg[| for all other syntactical constructs in PAg. O

A real-time process algebra 157

7.26. LEMMA. Ve, ¢ E, X CE:(U(e) N ewe N X—e)=X—e.

PROOF. By induction on the structure of B. Let B € PAg and A; = Er[B;] = (&, D;, T;,Us;)
where & = (E;, ~;,+—,1;) for i=1,2.

Base: For B =0 and B =/ the lemma holds, since A does not contain any urgent event.
Induction Step: Assume the theorem holds for B; and B,.

1. B=(T) a; B;. The new event e, is not urgent and is not put in conflict with some urgent
event, so it suffices to consider urgent events in A;. Let e € E; with U(e) (i.e., U;(e)), and
e/ € E; such that ¢/ ~ e (i.e,, e ~; e). Let X — e. If X +—; e then—by the induction
hypothesis—we have X +; €', and so X +— €. In case X + e is a new bundle, then X = {e, }
and it follows from Eg[] that also { e, } — €', since a bundle is introduced from e, to all events
in F;.

2. B = B; + B,. For non-initial events in A; and A, the lemma follows directly from the induction
hypothesis, since these events are unaffected in A. init(A;) and init(A,) are put in mutual
conflict, but since there is no bundle pointing to these events, the lemma follows directly.

3. B = B; >> B,. The events in exit(A;) are put in mutual conflict, but since these events are
nonurgent (cf. Lemma 7.25) this does not violate the lemma. In addition, new bundles from
exit(A;) to all events in E, are introduced. It follows in the same way as for action-prefix that
these bundles do not harm the lemma: if a bundle is introduced to an urgent event e in F,
then the same bundle is introduced to all events that are disabled by e in Ej.

4. B = By [> B,. The new conflicts between init(A,) and exit(A;) do not affect the lemma since
all events in exit(A;) are nonurgent (cf. Lemma 7.25). The other new conflicts are between
E, and init(A,). Suppose there is some e € init(A,) with Us(e). Since e is an initial event, no
bundles are pointing to e and the lemma holds immediately. Since all other events in A are
unaffected this proves the case.

5. B = B;\G. For this case the lemma directly follows from the induction hypothesis. The same
applies to relabelling.

6. B = B;||g B2. Suppose e = (e;,e3) € E such that U(e), and €' = (e},e}) € E with e’ ~ e.
Since urgent events are internal (cf. Lemma 7.25), no synchronization of urgent events takes
place; i.e., e, = * and e, # %, or the reverse. By symmetry it suffices to consider e; = *
and e, # *. But then e’ ~~ e implies €, ~», e;. Suppose X — e. Since e = (*,e5) it follows
that X = {(e,e’) € E | ¢ € X, } where X, —, e,. By induction hypothesis it follows that
X, 3 €, and so, X — €.

t
7. B = B, > B,. Similar to the proof for + since the untimed event structure corresponding to
B equals £'[By + 7¢; B,], where £ is an urgent (timeout) event.

t
8. B = B; » B,. Similar to the proof for B; [> B, since the untimed event structure correspond-
ing to B equals £'[B, [> B].

O

158 Chapter 7: The real-time module

7.27. LEMMA. Ve, e E, X CE:(Ue) Newe N X—e)= (X e VX e

PROOF. By induction on the structure of B. Let B € PAg and A; = Er[B;] = (&, D;, T;,U;)
where & = (E;, ~;,+—,1;) for i=1,2.

Base: For B =0 and B =/ the lemma holds, since A does not contain any urgent event.
Induction Step: Assume the theorem holds for B; and B,. We only consider the proofs for disrupt and
parallel composition. For all other constructs the proof is very similar to the proof of Lemma 7.26.

1. B=B;[>By;. Wehave E=FE, UE, andU =U; UlU,. Let e € E.

(a) Let e € E; and suppose U;(e). For e ~» ¢ with e’ € E; we have e ~»; ¢’ and the lemma
follows from the induction hypothesis (and the fact that bundles and conflicts in A; are
retained in A). Let e ~» €' but not e ~»; ¢’. Then we have e’ € init(A,). Suppose X — e.
It follows from the definition of £'[| that then X +— e, so X C E;. Since new conflicts
are introduced between E; and init(A,) we have (Ve" € X :e"” ~ ¢€'), i.e., X ~ €.

(b) Let e € E, and suppose Us(e). If e ¢ init(A,) neither new conflicts nor new bundles
are introduced; for this case the lemma follows directly from the induction hypothesis.
Assume e € init(A,). Since there are no bundles pointing to e the lemma holds trivially.

2. B = B ||g B2. Suppose e = (e1,e3) € E and €' = (e}, e,) € E such that U(e) and e ~ €.
Assume e; = * and e, # *. Then we have e, ~», e,. Suppose X — e. Since e = (x,e3) we
have pr,(X) = @ and pr,(X) = X, such that X, +, e,. By induction hypothesis it follows
Xy o e, V Xy ~», e,. But then we have, according to the definition of £'[|, that X +— ¢’
or X ~» e'. The proof for the case that e; # * and e, = * is obtained by exchanging the
subscripts in the above proof.

O

7.28. LEMMA. For all e € F such that U(e) we have:
AtecTime:D(e)Cltt] v BXCE: X Se A T Ctt])

PROOF. By induction on the structure of B.

Base: For B =0 and B =/ the lemma holds since A contains no urgent events.

Induction Step: Assume the lemma holds for B; and B,. We provide the proof for action-prefix,
choice, parallel composition, timeout, and watchdog. For the other operators the proof is conducted
in a similar way.

1. B = (T) a; B,. Suppose that e € F such that U(e). Then e € E; and U,(e), since e, is

nonurgent. If X »ﬂl e with T" C [¢,¢] then this bundle remains in A with the same timing and
so for this case the lemma holds. Now suppose D;(e) C [¢,t]. The new bundle {e, } — e will
become delay D;(e), and so also in this case the lemma holds.

2. B = B; + B,. For this case the lemma directly follows from the induction hypothesis.

3. B = B,||gBs. Let e = (e1,e2) € E such that U(e). Since no synchronizations on urgent
events takes place we have e; = x A ey # *, or the reverse. By symmetry, it suffices to
consider e; = x A ey # *. By the induction hypothesis we have that Dy(es) C [¢,¢] or that

X, £>2 e, with T C [¢,¢], for some ¢.

A real-time process algebra 159

(a) Suppose Dy(e2) C [¢,t]. From the definition of [| it follows that D(e) = D;(e;)ND2(es)
which equals D, (e,), since e; = x and D;(x) = Time™. So, then D(e) C [t,t].

(b) Suppose X, 5, e, with T C [t,]. Since e; = * this means that X — e with pr,(X) = @
and pr,(X) = X,. According to the definition of £g[] we have that 7((X,e)) equals
T:((pry(X), e1))NT>((pry(X), e2)) which equals (since 7:((@, €1)) = Time™) To((X>, e2)) =
T. So, X 5 e with T C [t,].

4. B=DB, é B,. Let e € E and suppose U(e). There are three different cases to be considered.

(a) e € E; and U;(e). Since the delay of e and the bundle delays of bundles in A, are
unaffected the lemma holds for this case by the induction hypothesis.

(b) e € E, and U,(e). Here, the same arguments as for action-prefix apply; if X L, e with
T C [t',¢'] for some ¢' then this bundle remains in A and so for this case the lemma holds,
and in case Dy(e) C [t',t'] a new bundle {e,} — e is introduced and becomes delay
Ds(e). So, the lemma also holds for this case.

(c) e =e,. For the new urgent event e, we have D(e,) = [¢,1].

5. B = B, ; B,. Let e € E with U(e). Event and bundle delays in A, are unaffected, so for
e € E, the lemma follows from the induction hypothesis. Let e € E;,. If e ¢ init(A;) we
have D(e) = D;(e) which, together with the fact that bundle delays in A; are unaffected,
proves the case. If e € init(A;) then D;(e) C [, '] by the induction hypothesis. But, since
D(e) = Dy(e) N[0, ¢, it also follows D(e) C [t',t].

O

7.29. THEOREM. V B € PAg : Eg[B] € EBESk.

PROOF. Let B € PAgp and A = ER[B] = (£,D,T,U). 1t follows directly from the definition of
Er[] that & € EBES and that D, 7, and U are total functions. From Lemma 7.26, Lemma 7.27, and
Lemma 7.28 it follows that £g[B satisfies the constraints of being a real-time event structure (cf.
Definition 7.2). O

Notice that we do not have a (strong) backward compatibility result like Theorem 4.36, for two
reasons: due to empty sets of time instants (e.g., due to synchronization) and the presence of
urgent events, events may be permanently disabled in the timed sense, but not from a causality
point of view. For example, B = (&) a; 0 has only an empty lposet, whereas ®(B) = a; 0
has an lposet in which an event labelled a occurs.

7.3.4 Event-based operational semantics for PAg

This section defines a timed event transition system for PAg. This is performed along the
same lines as in Chapter 5. The differences with PAz are (i) that a set of time instants is
associated to an action in a timed action-prefix; (ii) the inclusion of a timeout and (iii) a
watchdog operator. Besides the fact that—as in Chapter 5—all occurrences of action-prefix
and successful termination are uniquely identified (by a Greek letter) we do the same for all

160 Chapter 7: The real-time module

occurrences of >. E.g., £ in B; >, B, represents the event identifier of the urgent event that
models the timeout.

As a subsidiary notion let ut(B) denote the set of time instants at which B can initially
perform an urgent event. Let PA} equal PAg including the auxiliary {[] and !{ } operators.

7.30. DEFINITION. ut: PA};, — P(Time) is defined by:

ut([B]) £ {t+t[t €ut(B)}

ut(Byop By) 2 ut(B;) Uut(By) for op € {+, [>, |l¢ }

ut({B}) £ {tcut(B)|t >t}
ut(B, >> By) 2 ut(B))

ut(op B) 2 ut(B)for op € {\,[]}
ut(B; > By) £ ut(By)U{t}
Ut(Bl > Bg) = Ut(Bl) U Ut(t[Bg]).
For all other syntactical constructs let ut(B) = &. O

Let mt(B) abbreviate Min(ut(B)), where Min of the empty set equals 0. We will later on
prove the correctness of mt.

Table 7.1 presents the event-based inference rules for PAg. For various operators the inference
rules are identical to the rules for PAr, see Table 5.1. We only discuss the inference rules that
have been modified or introduced.

(T') a¢; B can perform ¢ at any time ¢ € T, while evolving into *[B].

The rules for B; + B,y are somewhat adapted since (initial) urgent events in B; or B, can
decide the choice. E.g., in

(12) ag; 0+ ((18) by; 0 B4 0)

the event y will occur at time 5, and resolve the choice in favour of B;. In general, if B;
performs an event at time ¢t then B; + B can perform the same provided that B, cannot
perform an urgent event at any time earlier, i.e., if ¢ < mt(B;). By symmetry, a similar
condition is obtained for By performing an event. The inference rules for [> are adjusted
analogously.

If B; performs an event at time ¢, with ¢ < ¢, and evolves into B] then B éd, B, can do
the same; in this case the possibility that Bs happens is dropped since B; has performed an
action before (or at) time ¢t. At time ¢ the timeout event ¢ can happen and the resulting
behaviour is ![By |, B, shifted ¢ time units in advance. This can only be done if ¢ < mt(By).
This condition ensures that 1 is not performed if B; can perform an urgent event before t.
E.g.,in (a; 0 ;5 0) @,b 0 it prevents v from happening (at time 21) without £ being executed
(at time 7).

A real-time process algebra 161

If B; performs an event (which is not a successful termination event) at time ', with ¢’ < ¢, and

t t
evolves into B] then B; » B, can do the same while evolving into B] » By; the possibility for
disruption (at time ¢) by B, remains. If B; terminates successfully at time ¢, ¢’ < ¢, disruption
by B, becomes impossible (like for By [> B;). If B, performs an event at time ¢' and evolves

t
into B!, then B; » B, can perform the same (provided B; cannot perform an urgent event
earlier) and evolves into ‘[By], B, shifted ¢ time units in time.

7.31. ExaMPLE. Consider

17
B = (((13,7]) ag; vy |l (14) by v/,) >> ([1,12)) €53 0) » (1) dy; O[|| ([3,7)) fy; 0).
Using the inference rules of Table 7.1 we derive

(((13,71) ae; vy 11(14) bys v/,) >> ([1,12)) €55 0) » (1) dy; 01| (3,7)) £,5 0)
AL)b 1D, £ (timed action-prefix), (par-right), (enabling-left), (watchdog-left) }

(137D a¢5 Vy 1171V, D) >> ([1,12)) €3 0) » (1) d,; 0[[[(3,m)) £ ; 0)
((&2):05),, ¢ (timed action-prefix), (par-left), (enabling-left), (watchdog-left) }

(CIVL IV, D >> ([1,12) €55 0) B (1) dy; O[[[([3,7)) fu; 0)

_nf20),, £ (timed action-prefix), (par-right), (watchdog-right) }

Y1) dus 0f1°[0]] - O

In order to define and prove the correctness of the mt function we let UE(B) denote the set of
urgent events in B.

7.32. DEFINITION. Function UE : PA}, — P(Ewv) is defined as

UE(B) =& @for Be{0,y/,}

UE(op B) £ UE(B) for op € {(T) ag;,\,[],"[1,"{ }}
UE(Biop By) = UE(B;) U UE(By) for op € {+,>>, [>,»}
UE(B; ||G By) 2 {(e,%)]|ecUE(B))}U{(xe)]|ecUEB)}
UE(B; >£ By) £ UE(B;) UUE(By) U{¢}.

0
It is quite straightforward to prove by induction on the structure of B that UE(B) concurs with
our intuition, i.e., if Eg[B] = ((E,~»,—,1),D,T,U) then we have UE(B) ={e € E |U(e) }.
The proof of this fact is left to the diligent reader.

The following lemma shows that mt(B) indeed corresponds to the minimal time at which B
can perform an urgent event initially.

162

Chapter 7: The real-time module

teT
(T)ac; B2, g T€T)
B (é"a)t) B’
! 1 (t < mt(By))
B, + B, (&ast) Bi
B (§7a’t) B/
. ! (a# 6)

B; [> By, &%, Bl [~ t{ B,}

B]_ (§’a7t) 5 Bi

(a & G°)

B, ||G’BZM» Bi ||GB2

B, &2, B A

B,

B (g)a’t) > B’

t’[B]M»t’[BI]

B2 (é"a)t) > Bé

t < mt(B
B, + B, (&ast) . B, ((1))

_B1 (576775) 5 Bi

B; >> B2M)')t[32]

’6’
B, (&d.t) Bi (t . mt(Bz))

By [> By (&40, pr
(@46 A t<mt(B))

B, &, By

(a & G°)

(1/}’a7t) N Bé

B]. ||G B2 ((*,é),a,t)}} B]. ||G’ Bé

(a € G%)

B1 | |G 32 ((6’1/})7a’t) N

(a ¢ G)

B\ G-, g\ G

B[H] (é’H(a)’t) , BI [H]

B1 (f’a)t’) NN Bi

By |la B

B (§7a’t) > B/

aeG
B\ G4, pr\ G e

o~
\Y%
&

(B} Lo (5]

(t < mt(By))

! (tl < t) t
B, By B, -&21),, B By >y By -l 1] B, |
B (g)‘s)t’) B’ B (g)a’tl) B’

! L <) 2 2 (t < mt(B)))

¢ (é,&,t’) ! t (§7Tat+t’) !
B, » B, &80, p B, » B, &mt) ¢ B

_B1 (g)a’t’) 5 B’
t / : t (a#6 N t'<H)
B, » B, &), Bty B,

Table 7.1: Event-based operational semantics for PAg.

A real-time process algebra 163

7.33. LEMMA. VB € PA} : (t < mt(B)) <= (Ve € UE(B),t < t: BMLH)_

PROOF. By induction on the structure of B, with base cases 0, 1/, and action-prefix.

Base: For B=0, B=/and B = (T) a; B; the lemma trivially holds, since B cannot perform an
urgent event initially and mt(B) equals Min(&) = oo.

Induction Step: Assume the lemma holds for B; and B,. We consider the proof for timeout and
parallel composition; the proofs for the other operators are conducted in a similar way.

t”
1. B = By > B,. For this case we derive:

t”
t < mt(B; >y Bs)
< { definition mt }

t < Min(ut(B; & B,))
& { Definition 7.30 }
t < Min(ut(B;),t")
& { calculus; definition mt }
t<t" A t<mi(By)
< { SOS-rules for >; induction hypothesis }

e,,t")

(By By By ~20) At <t A (Ve € UE(BL), ¢ < t: B, —=700)
< { SOS-rules for > }

(V#' < t:By by By —T000) A (Ve € UE(By),# < t: By by By —=T00s)
< { SOS-rules for >; Definition 7.32 }

(Ve € UE(B), ' < t: By By By —270)

2. B = B ||¢g B;. For this case we derive:
t < mt(31 ||G’ Bz)
< { Definition 7.30; definition mt; calculus }
< { induction hypothesis }

(Ve € UE(By),# < t: B, ““™00) A (Ve € UE(By), o < t: By — <7000
& {SOS-rule for ||¢ (T ¢ G?) }

(Ve € (UE(BY) x {}) U ({*} x UE(B)),# < t: By [|g By ~“0p)
& { Definition 7.32 }

(Ve € UE(B, ||¢ Ba),t' < t: By || By —=T00s)
O

For PAr we had the nice property that when we take the transition system for B induced by
— and abstract from the timing aspects and event identifiers then we obtain the standard
transition system for ®7(B), the untimed variant of B (cf. Theorem 5.10). A similar result
does not hold in the setting of PAg. A counterexample is provided, for example, by the

164 Chapter 7: The real-time module

expression ([1,2]) a; 0|, (12) a; 0 which in the timed case leads to a transition system only
consisting of an initial state (since there is no time instant at which the interaction a succeeds),
whereas if we omit the time annotations, yielding a; 0|, a; 0, we obtain a possible transition
labelled a from the initial state to state 0|, 0

7.3.5 Consistency between causality-based and operational
semantics

In order to prove the consistency between the denotational and event-based operational seman-
tics for PAgr we follow the same approach as in Chapters 5 and 6. We present a denotational
characterization of the timed event traces of B that are generated by —» and prove that this
characterization coincides with the event traces of Eg[B].

The following predicate is true iff all events in ¢ have a timing of at most t.
7.34. DEFINITION. For trace o and t € Time let res(t,0) = (Ve; € [0] : t; < t). O
The set of timed event traces of B is defined in a denotational way as follows.

7.35. DEFINITION. For B € PAg the set of timed traces of B, 7g[B], is defined by:

L. Tg[0] = {}
2. Ta[V] = {e}U{(&6,0) [t € Time}
3. Ta[(T) ag; B] = {(§,a,)[0][t€T A o€ Tp[B]}U{e}
4. Tg[B1 + B;] & {(&,a,t) 0 € Tg[Bi] |t < mt(By) } U
{

[B
(§,a,t) 0 € Tr[B2] [t < mt(By) } U {e}
5. Tr[By >> By] & {oi(e,7,t) 02] | 01 (e,6,t) € Tr[B1] A 05 € Tg][B;] }
U{o € Tg[Bi] |0 # o' (e é,t)}
6. Tr[Bi[> By] = {0 € Tg[B.] | 0 = o' (e,6,t) A res(mt(By),0)} U
{0109 |01 € TR[B1] N 02 € Tg[B3] A res(mt(By),01) A o1 # oi(e,6,t) A
(Ve; €3 :t; 2 mx(o1) A (Ve € UE(By),t' <t;:01(e,7,t') € Tg[B1])) }

7. Tr[B[H]] £ {0 |30' € Tzg[B] : 0 = ¢'[H] }

Te[B\G] 2 {0 |30 € Tzg[B]:0=0"\G}
9. Tr[Bi||l¢ B:] 2 {0 € (Tr[B %¢Tr[B:])* | mi(0) € Tg] B;] for i=1,2}
10. 7Tz[By Dng]] = {(e,a,t")o € Tg[B1] |t <t}

U{(7t) o] |t<mt(B) A ceTg[B]}U{e}

11. To[Bi » By] 2 {0 € To[Bi] |0 =o' (e,6,') A res(t, o)} U
{Ult[0-2] |0'1 ETRIIBl]I N 09 6TR|I32]] A 0'17é0'i (6,6,#) N res(t,al)
A (Ve € UE(B)), e € 03,8 < t;: o1 (e,7,t") & To[Bi]))).

A real-time process algebra 165

It can be proven in a similar way as in Chapter 5 that 7z[B] equals the set of timed event
traces of B generated by the inference rules for —-. Let —Z+ be the extension of —~ for
traces in the usual way.

7.36. LEMMA. VB € PAg : Tg[B] ={c |3B': B-2» B'}.

PROOF. Straightforward, but elaborative. O

In order to relate the operationally characterized timed event traces and the traces obtained
from the causality-based semantics Eg[| we slightly adapt the definition of Eg| | for v/, (¢) a3,
and >. In the current definition of [| a unique but arbitrary event is introduced for these
constructs modelling the appearance of §, a, or a timeout, respectively. Here we take the
unique event identification for this operators in the definition of Eg[]. E.g., for \/E a new
event ¢ is introduced (and labelled §).

The following theorem states that the set of timed event traces of a behaviour expression B
of PAp is identical to the set of timed event traces of the corresponding timed event structure

x[B].

7.37. THEOREM. VB € PAg : Tr(Er[B]) = Tr[B]-

PROOF. The proof is by induction on the structure of B.

Base: For B = 0 we simply have Tr(Er[0]) = { ¢} = Tz[0], and for B =/, we have Tr(Er[+/,]) =
[e}U{(6,6,8) | ¢ € Time } = Ta v, |-

Induction Step: Assume the theorem holds for B; and B,. We only provide proofs for timed ac-
tion prefix, choice, disrupt, parallel composition, timeout and watchdog. The proofs for the other
operators are conducted in a similar way and are omitted. Let A = Ex[B] and A; = Eg[B;] =
(&, Dy, T;,U;) with & = (E;, ~;,+—,1;) for i=1,2.

1. B=(T) a¢; B;. For A bundles {{(¢,a)}} x E; have been added to (({¢},9,9, {({,a)}),
{(,T)},2,{(&false) }). The non-empty timed event traces of A are therefore those inter-
leavings of (¢,a,t) and *[o], with o € Tr(A;), that satisfy the following constraints: (i) the
first element of *[o | is preceded by (£, a,t), and (ii) ¢t € D(¢) = T. Thus we derive:

Tr(Erl(T) a¢; Bi])
= { see above }

{(&a,t) o] [teT N oeTr(A)}U{e}
= { induction hypothesis }

{(&at) o] [teT A geTa[Bi]}U{e}
= { Definition 7.35 }

Tr[(T) a¢; Bi]

2. B = B; + B,. The proof for this construct is analogous to the proof of Theorem 6.34.

3. B = B, [> B,. From the untimed case we know that traces of A are either (i) traces o; of
A; that end with a §, or (ii) concatenations of traces oy € Tr(A;) and oy € Tg(A;) where oy
does not contain a . Like for the urgent case (cf. Theorem 6.34) we have to take into account
that due to the added asymmetric conflicts in A initial urgent events of A, may prevent the

166 Chapter 7: The real-time module

occurrence of events in A;. More specifically, o, is part of a trace of A provided that there is
no initial urgent event in A, that can occur earlier than some event in ;. We now characterize
set (i) and derive for this set:

{oc €Tr(A1) | o =0"(e,6,t) N (Ve; € [0],€ € init(As) : Us(e') = t; < Da(e))}
= { calculus }

{c€Tr(A) | o= J’_(e,6,t) A

(Ve; € [o] : t; < Min{Dy(e') | €' € init(A2) A Ua(e')})}

= { Lemma 7.33 }

{0 €Tr(Ay) |0 =0"(e,6,t) A (Ve; € 0] : t; < mt(By))}
= { Definition 7.34 }

{oc €Tr(A1) | 0 =0"(e,6,t) N res(mt(Bs),o)}
= { induction hypothesis }

{0 € TR[B,] | o =0 (e,6,t) A res(mt(B2),0)}

A similar derivation can be carried out for set (ii), taking into account the asymmetric conflicts
between F; and init(A,). By Definition 7.35 the union of the thus obtained sets equals Tg[B; [>
B,].

4. B = By ||g B2- Since synchronizations of urgent events cannot appear (cf. Lemma 7.25) no
new (asymmetric) conflicts are introduced between urgent events in A; and events in A, (or
vice versa). This means that o € Tr(A) iff m;(0) € Tr(A;), for i=1,2. So, Tr(A) equals

{0 € (Ta(Ay) Mg Ta(As))* | m(0) € Tr(Ay) A ma(0) € Tr(As)).

By the induction hypothesis this equals

{0' € (TR[[B]_]] NGTR[[B2]])* | 7'('1(0') € TR[[B]_]] A 7'('2(0') € TR[[B2]] }.
By Definition 7.35 this equals Tx[B ||¢ B2].

5. B=5B; ég B,. The plain event structure corresponding to A equals £'[By + 7¢; By]. This
means that untimed traces are either traces of & or traces of &, preceded by £. Since in A
event ¢ is urgent and has delay D(€) = [¢,¢], it follows that the timed event traces of A are
either (i) traces of A; that start before (or at) t—since otherwise ¢ will appear and disable
all initial events of A;—or (ii) traces of the form (¢, 7,t) %[0] where o is a trace of A, or (iii)
empty traces. Since for urgent e € init(A;) we have e ~» ¢ it follows (according to the third
constraint of Definition 7.5) that £ can only occur if ¢ < D;(e); otherwise e should precede £.
Thus,

Tr(Er] B: ¢ Bs])
= { see discussion above }
{(eya,t")o € Tp(Ay) |t <t} U{e}
U{,rt)to]|o€Tr(Az) A (Ve € init(A;) : Uy(e) = t < Di(e))}
= { calculus }
{(e,a,t")o € TrR(A1) |t <t}U{e}
U{,rt)t o] | o €Tr(Ay) At < Min{D(e)|e € init(A;) A Ui(e)}}

A real-time process algebra 167

= { Lemma 7.33 }

{(eya,t")o € Tr(Ay) | t' <t} U{(&,t) o] | o € Tr(A2) A t<mt(By)}U{e}
= { induction hypothesis }

{(e;a,t")o € TR[B1] |t <t} U{(&7,t)t o] | o € Tr[BaJAt < mt(B;)}U{e}
= { Definition 7.35 }

t
TR[[Bl Dg Bz]]

6. B = B; ; B,. The untimed event structure of A is equal to that of By [> B,. From the
untimed case we know that event traces of this expression are either (i) traces of £; that end
with a 6, or (ii) concatenations of traces o, of £ and o, of & such that no § occurs in ;. In
the real-time case the delay of all events in E) is restricted by [0,¢]. This means that all events
in the traces characterized under (i) should appear at time ¢ at the latest; for the same reason
this also holds for all events in o; under (ii). The proof for (i) is similar to the one presented
for [>. Consider traces characterized by (ii). The delay of all events in E, is postponed by ¢
time units. This means that all events in the traces (ii) are of the form o, [02]. Since E; ~» e
for all e € init(A,), e can only appear in o, iff there is no urgent event enabled in A; after the
execution of oy that can occur earlier (according to the third constraint of Definition 7.5).

[l
7.38. COROLLARY. VB, By, B, € PAg,t,t' € Time:
(BLe2dy, g, 28D B, A ¢ <t) = (B BLLE),, prleed, By
PROOF. Directly from Theorems 7.37 and 7.7. O

Let TSgr(B) be the timed event transition system obtained by —- and ETSg(Egr[B]) the
transition system obtained by considering Eg[B] as initial state and having transitions from
A to A" iff A' = Afo] for some o € Tg(A) with length 1. Then it follows that:

7.39. THEOREM. V B € PAg : TSg(B) ~ ETSg(Er[B]).

PROOF. Similar to the proof of Theorem 2.46. O

7.3.6 An alternative approach for PAp

This section considers an alternative event-based operational semantics for PAg in the same
spirit as in Section 5.4 (and Chapter 6). We only consider timed action-prefix, timeout, and
watchdog. For the other operators the inference rules are identical to those for PAr; the reason
that the inference rules of + and [> from Section 5.4 do not have to be changed is due to the
fact that we consider a time-consistent setting now.

168 Chapter 7: The real-time module

Timed action-prefix
(T) a¢; B at time ¢ can perform (&, a) if 0 € T and behaves subsequently like B (at t). Time

can always be passed by (T) a¢; B. Let Tot & {t'—t|t' €T A t' >t}.

(t' > t)
(T)ag; B,t) ~ (T (t'—t)) as; B,t")
<(T)a§;Bat>M><B,t> (OET)

Timeout
If the first component B; permits the passage of time with at most ¢ time units while evolving

t d
into B] then B; > B, allows the same, evolving into B] > B, where d equals ¢ minus the

0
number of time units that have been passed. B; >, B, at time ¢ can perform the timeout
event 1 while evolving into By (at t). If B; performs an event and evolves into Bj then

t
B; > B, allows the same, also evolving into Bj.

(Blat,> ~? (Bi’t”>
t t*(t”*t’) (t”_t, g t)
<Bl >¢ Bg,t'> ~ <Bi >¢ BQ,t”>

<B17t,> () < i’tl>
0 T a
(B By By, t) 27 (B, 1) (B By By, t) 42 (B, 1)

Watchdog
t t
By » B, allows the passage of time in the same way as >, and in addition, if By permits the

0
passage of time then B; » B can do the same, also evolving into Bj. If B; performs event
t t
(¢,a) and evolves into Bj then B; » B, can do the same and evolves into either B] » By if
0
a # 6, or B} if a = 6. Finally, if B; » B, can perform an event and evolves into Bj if B, can
do so.

<Bl’ tl> ~ <Bi’ t">
(" ")

(B » By, ') ~ (B, '» By,t")

(t” _tl < t)

(But) L (BLE) (By,t) L2 (B, ¥)
a
(Bi > By, t') &2 (B > By, t') (Bi > By, t') &2 (B, ¥)
S R (B,)15 (5,

(By » By) &9, (B} #)

(B4 £ By, t) ~ (By,t')

Time in causality-based models 169

We conclude this section by considering the model properties time determinism, action persis-
tency and time additivity. Since the passage of time is always uniquely determined it follows
that time determinism is respected. This can easily be checked by structural induction on
B. The alternative event-based operational semantics for PAg, however, violates action per-
sistency. This entails that the passage of time may suppress the possibility to perform an
action. This is not surprising, since in PAr we have the possibility to specify upper bounds of
occurrence of actions, and as soon as time passes beyond this upper bound the possibility to
perform this action is lost. For example, transition

((10,3]) a5 0,0) ~ (@) a; 0,)
makes it impossible to perform a in the resulting state, whereas a is possible in the starting

state.

The alternative event-based operational semantics for PAg also violates time additivity, as
shown by

((2) a; 0 (3) b;0,0) ~ ((0) a; 0w (3)b;0,7) ~ ((0) b; 0,23)

There is no single ~~» transition that mimics this two-step transition. The reason that the
timeout operator does respect time additivity is that at time ¢ an internal (timeout) event is
forced to occur, such that time can never pass beyond ¢ without performing this event. Time
additivity is obtained if we add the following rule for »:

(Bi,t1) ~ (Bi,t2) A (By,ty) ~ (By,t3)
(By » By, t') ~ (B}, t5)

(ta—t1 =t A tz—ty > 0)

A similar construction is used in ATPp of Nicollin et al. [113] to establish time additivity.

Let 74 B]t denote the set of timed event traces of (B,t) under ~ and —». We then have:
7.40. LEMMA. VB € PAg,t € Time: T5[Bt ={' o] |0 € Tr[B] A tc(o)}.
PROOF. By induction on the structure of B; similar to Lemma 5.27. O
7.41. COROLLARY. VB € PAg: Tx[B]t={'[o]| o € Tr(€r[B]) A tc(o)}.

PROOF. Straightforward from the previous lemma and Theorem 7.37. U

7.4 Time in causality-based models

In the literature numerous timed models are proposed based on an interleaving semantics,
usually being defined using a kind of timed transition system. Only a few timed models
are known (to us) based on a causality-based model. In this section we briefly discuss some
existing timed causality-based models.

170 Chapter 7: The real-time module

The only timed model that allows sets of time instants to be associated with events (or causal
dependencies) is introduced by Fidge [47]. Fidge proposes a real-time extension of causal
trees, a causality-based model introduced in Darondeau & Degano [36], and uses this model
to provide a semantics to a timed variant of CCS. Each event e in a causal tree has a set of
backward pointers to each event on which e causally depends. Time constraints are expressed
by associating a set of relative times to events. The relative delays T state that an event can
only occur at ¢ time units (for some ¢ € T) after the time at which all its causally preceding
events occurred (if any). Synchronization can only occur if both participants are willing to
engage in the interaction at the same time instant; if not, the synchronization will not take
place. Because in the causal tree model different occurrences of the same action cannot be
identified as such, Fidge’s model must be considered as a timed pomset model whereas our
model is a timed lposet model (see Chapter 1 for a discussion about pomsets versus Iposets).
The real-time semantics of CCS is defined operationally. Due to the adjustments of backward
pointers the inference rules are somewhat complicated and the relation with the standard rules
for CCS is not so clear.

An extension of Pratt’s pomset model [121] with delays is studied in Casley et al. [32, 31]. The
delays in the model specify the minimal relative delay between two causally dependent actions.
Casley et al. use a kind of metric space for their model and define several operations on these
structures that are generalizations of operations on Pratt’s pomset model like concatenation
and concurrency. E.g., P;? @ specifies that there is a delay of at least d time units between
each event in P and each event in (). They also define some operators that rely on the
location where an action occurs. E.g., P idQ differs from concatenation in that additional
timing constraints are introduced only between colocated actions in P and () rather than
between all of them.

Maggiolo-Schettini & Winkowski [99] consider timed configurations. They distinguish between
the time at which an event is enabled (the enabling time) and the time at which an event
actually happens (its completion time). Synchronization structures describe how actions of
composed behaviours are combined into actions of the resulting behaviour and which actions
are considered to be internal. Two (or more) events can synchronize if they are equally labelled
and have identical completion times. Similar to our model of Chapter 4, the enabling time
of the resulting event is the maximum of the enabling times of its components. The authors
define several operations on their structures (such as sequential and parallel composition,
abstraction, choice, and a fixed point operator). An equivalence relation is introduced which
is a congruence w.r.t. the operations introduced. The main limitation of this model is that all
events are required to happen as soon as possible in some sense. (Recall that a semantics of
extended bundle event structures at configuration level is not sufficient due to the presence of
asymmetric conflict; see Chapter 2.)

The most extensive treatment of time in a causality-based context is due to Murphy. An
interesting timed variant of event structures, called interval event structures, is proposed in
[106, 108]. In this model, each event has a duration modelled as the time between the start of
an event and its finish. An event with duration d could be modelled in our model by explicitly
representing the start and finish of an event by two distinct events, the start causing the finish,
and the interval [d, d] associated to this bundle. A fictitious silent event is introduced the start

Conclusions 171

of which causes every event, and all events cause its finish. The model incorporates symmetric
conflict, generalizes Winskel’s prime event structures, and allows to express Lamport’s model
of distributed systems [88].

The behaviour of timed systems with both conjunctive and disjunctive causality is studied
by Gunawardena in [61, 62]. Like in our model conjunctive causality, corresponding to syn-
chronization, results in a maximum timing constraint. All events are required to happen at
exactly the minimal time at which they are enabled. For disjunctive causality an event has to
wait for the first event in the set of its enabling events. This boils down to a minimum timing
constraint. This implies that in this model an event always is enabled by the first event that
occurs in case of disjunctive causality. Gunawardena studies the relationship of his model,
timed { AND,OR } automata, and the theory of min-max functions. Notions like periodicity
can be characterized and cycle times of periodic behaviours can be determined. Since the
model does not (yet) include disablings no conflicts between events are incorporated.

Janssen et al. [78] introduce a real-time process language consisting of simple sequential
processes that are composed by means of layering (o) and independent parallelism (|||). PeQ
executes P and () in parallel, except when some action in @) is dependent on some action in
P; in that case the action in P is guaranteed to happen first. The denotational semantics of
a real-time expression is a set of partially ordered runs where a run consists of a set of events
(each event having a duration) and a partial order on these events. This order is determined
by a causal order and a temporal order, the latter being induced by real-time constraints.

7.5 Conclusions

In this chapter we have presented a real-time extension of extended bundle event structures
that allows for the decoration of events and bundles by arbitrary sets of time instants. The
model incorporates urgent events and is shown to be sufficiently expressive to support impor-
tant real-time notions such as timeouts and watchdogs (or timed interrupts). Since urgent
events are used in a somewhat restricted way (as opposed to Chapter 6) most of the theory of
timed event structures is generalized to the more liberal timed setting in a rather straightfor-
ward way. An important consequence of the possibility to prevent an event to occur after a
certain time instant (by specifying an upper bound in time or by a conflicting urgent event)
is that the model is no longer a conservative extension of the untimed model. That is, the
untimed Iposets of a real-time event structure are a subset of the Iposets of its corresponding
untimed (extended bundle) event structure, but equality does not necessarily hold.

An interaction can take place if all participants can engage in it at the same time instant. The
interaction cannot appear if such common time instant does not exist. Since in our model
we do not have an explicit notion of the passage of time, such an impossible interaction does
not result in behaviours which do block the passage of time (so-called timelocks) in the entire
system—even in causally independent parts!—but simply in the local impossibility to execute
the event at hand.

We have considered timeout (>>) and watchdog (») operators in a process algebraic context.

B, = B, is modelled by By + ([t,t]) 7; By where 7 is required to be urgent and is intended to

172 Chapter 7: The real-time module

represent the expiration of a timer. » could be modelled without the introduction of auxiliary
urgent events. Although we used urgent events only for modelling timeout mechanisms, they
have an impact on the evolvements of other subprocesses in the context of +, [>, », and
>>. This made the event-based operational semantics of PAgr using timed-actions somewhat
more complex. These problems do not appear when separating the passage of time and the
occurrence of events: the inference rules for + and [> remain unaffected. We need, however,
9 inference rules to incorporate » and >. Since upper bounds on the occurrence of actions
can be specified action persistency is lost.

Compared to the urgent event structures of Chapter 6 the incorporation of urgent events in
real-time event structures is restricted. This resulted in a characterization of timed event traces
without being forced to time-consistency (as in Chapter 6). Like for the simple timed model
of Chapter 4 we have that for each ill-timed trace there exists a corresponding time-consistent
trace with the same timed events.

8 The stochastic timing module

This chapter proposes stochastic variants of extended bundle event struc-
tures. As a result causality-based models are obtained that allow the specifi-
cation of stochastic timing constraints. Events are supposed to happen after
a delay that is determined by a stochastic variable with a certain distribu-
tion function. First, a simple model is discussed restricting the distribution
functions to be exponential. Then the generalization of deterministic times
towards more general types of distributions is investigated and a stochastic
variant of event structures is proposed with (the more practical) phase-
type distributions. This class of distributions includes exponential, Erlang,
Coxian and mixtures of exponential distributions. It is shown how both
stochastic models can be used to provide a compositional causality-based
semantics to a stochastic extension of PA, and for the exponential case a
corresponding event-based operational semantics is provided that is proven
to coincide with various existing interleaving proposals.

8.1 Introduction

In Chapter 4, 6 and 7 we extended event structures with time and urgency. This facilitates
the specification and analysis of deterministic time constraints. In early stages of the design
there is often no exact timing information available and in, for instance, multi-media systems
phenomena like jitter and response times are not deterministically determined but much more
of a stochastic nature. In these cases the use of deterministic timed extensions is not always
appropriate. Therefore, it seems to be useful to let the time of occurrence of actions be
determined by stochastic (or random) variables rather than by constants. In this way a model
would be obtained that enables the description of more dynamic stochastic behaviour. See
also the discussion in Chapter 1.

This chapter investigates the incorporation of stochastic timing into extended bundle event
structures. In our timed causality-based model time is associated to causal relations (termed
bundles in our model) and to events. Bundle delays specify the relative delay between causally
dependent events while event delays enable the specification of timing constraints on events
that have no incoming bundle. In this timed model components may synchronize on a common
action as soon as all participants are ready to engage, that is, when all individual timing
constraints are met. The material presented in this chapter is based on the generalization of
deterministic times in our timed model towards distribution functions (note that a distribution
function uniquely determines a stochastic variable, and vice versa).

173

174 Chapter 8: The stochastic timing module

We start by investigating a generalization of our timed model of Chapter 4 in which, for
simplicity, we restrict to exponential distributions. This results in a simple stochastic event
structure model where rates are associated with events only (and not to bundles). The prin-
ciple that a synchronization takes place as soon as all participants are ready for it means in
a stochastic setting that the delay of such action will be distributed as the product of the
individual distributions (or, equivalently, as the maximum of the corresponding individual
stochastic variables, under the assumption of statistical independence). Since the class of
exponential distributions is not closed under product, we abandon our synchronization prin-
ciple of the timed model and take (just for this model) a pragmatic approach by computing
the rate of a synchronization simply as a function of the individual rates—similar to several
existing stochastic extensions of process algebras. The resulting model is used to provide a
compositional causality-based semantics of a simple stochastic process algebra. A correspond-
ing event-based operational semantics is provided (in the same spirit as is done in Chapter 5
for the timed model) which shows that our simple stochastic model closely resembles existing
interleaved proposals of stochastic process algebras.

Current stochastic process algebras all use (extensions of) labelled transition systems as an
underlying semantical model. This results in a semantics based on the interleaving of causally
independent actions. The structure of transition systems closely resembles that of standard
Markov chains, which is an advantage when trying to obtain a performance model directly
from the formal model. In addition, the elegant—memoryless—properties of exponential dis-
tributions enables a smooth incorporation of such distributions into transition systems. The
interleaving of causally independent actions, however, complicates the use of more general
(nonmemoryless) distributions in transition systems considerably [59].

This aspect is illustrated in Figure 8.1 where the depicted transition system intuitively corre-
sponds to (F) a; 0||| (G) b; 0 with F,G distribution functions. In case F' and G are mem-
oryless (i.e., exponential distributions) then the time until the occurrence of b (a) after the
occurrence of a (b) is still distributed by G (F') irrespective of how much time has elapsed until
a (b) occurred. However, in case the memoryless property is not satisfied the residual lifetime
of the stochastic variable determined by G since the occurrence of a must be computed in
order to correctly deduce the time until b’s occurrence. Here, the global state assumption

Figure 8.1: Independent actions in a stochastic transition system.

complicates the incorporation of nonmemoryless distributions considerably (despite attempts
to circumvent this problem by Gotz et al. [59]). We hope to show in this chapter that a
causality-based model avoids these problems.

Simple stochastic event structures 175

When carefully investigating the replacement of deterministic times in our timed model by
general distributions it turns out that it is possible to support a class of distributions which
is closed under product (corresponding to the maximum of stochastic variables under the
assumption of statistical independence), and which contains an identity element for prod-
uct. These properties will be justified in this chapter. As an interesting class of distribution
functions that satisfies these criteria we propose the use of phase-type (PH-) distributions. PH-
distributions can be considered as matrix generalizations of exponential distributions and are
well-suited for numerical computation. They are used in many probabilistic models that have
matrix-geometric solutions, have a richly developed theory due to Neuts [109, 110], and include
frequently used distributions in performance analysis such as hyper- and hypo-exponential,
Erlang, and Cox distributions.

This chapter is organized as follows. Section 8.2 reports on the study of exponential distribu-
tions in our model, introduces a simple stochastic process algebra including a causality-based
semantics, and relates this semantics to existing interleaved proposals. Section 8.3 investigates
the use of more general distribution functions in extended bundle event structures and justifies
why we are interested in a class of distribution functions which is closed under product and
which contains an identity element for product. It introduces PH-distributions and provides
some important results that are relevant in the context of this chapter. Finally, Section 8.4
contains conclusions and pointers for future work. Appendix A contains a brief introduction
into stochastic notions such as distribution functions and Markov chains.

8.2 Simple stochastic event structures

As a prerequisite we consider exponential distributions. Exponential distributions are defined
as follows.

8.1. DEFINITION. A distribution function F, defined by F(z) = 1 — e **, for z > 0, and
F(z) =0, for z < 0, is an ezponential distribution with rate A (A € R"). O

Evidently, a rate uniquely characterizes an exponential distribution. A well-known property
of exponential distributions is the memoryless property.

8.2. LEMMA. For U an exponentially distributed stochastic variable and z,y > 0 we have
Pr{iU<z+y|U>y}=Pr{U < z}. This property is known as the memoryless (or
Markovian) property.

PROOF. Standard, see for instance Kobayashi [87]. O

Informally, it states that the probability of U being at most z+y given that it is larger than
y is independent of y and equal to the probability of U being at most x.

8.2.1 The model

In this section we develop a simple stochastic variant of extended bundle event structures by
associating rates to events. The motivation for only associating rates to events, and not to

176 Chapter 8: The stochastic timing module

bundles too, is that when choosing to remain in the domain of exponential distributions it
turns out to be sufficient to attach rates to events only. Consider, for example, the following
event structure in which rates are associated to bundles:

The interpretation is that a rate associated to bundle X pointing to e determines the time
of e’s enabling relative to the time of occurrence of its causal predecessor in X. The above
structure specifies that the time period between the enabling of e, and the occurrence of e,
(ep) is exponentially distributed with rate A (u). Given that we want to stay in the domain of
exponential distributions this is equivalent to saying that the time between the last occurrence
of an event preceding e, and the enabling of e, is exponentially distributed with rate v where
v is determined by A and p. Due to the memoryless property this is statistically equivalent to
saying that the period between the start of the system and the enabling of e, is exponentially
distributed with rate v:

Therefore we choose to associate rates to events only. In this way we also keep close to the
stochastic transition systems that underly stochastic process algebra based on interleaving
(see also Section 8.2.3). Thus,

8.3. DEFINITION. (Simple stochastic event structure)

A simple stochastic event structure is a tuple (£, R) with £ an extended bundle event
structure (E,~»,—,l) and R : E — IR™, the rate function. O

As a generalization of the notion of event trace we define the notion of stochastic event trace.
We use X, possibly subscripted and/or primed, to denote stochastic event structures.

8.4. DEFINITION. (Stochastic event trace)
A stochastic event trace of stochastic event structure ¥ = (£, R) is a sequence o of rated
events (e1, A1) ... (en, A\n) With e; € E, \; € R, for 0 < i < n satisfying
l.e...e, €T(E)

Simple stochastic event structures 177

The set of stochastic event traces of simple stochastic event structure ¥ is denoted Ts(X). In
a similar way as for the deterministic timed case (cf. Chapter 4) Iposets can be defined from
stochastic configurations. This is not considered further here.

8.2.2 A simple stochastic process algebra

Let the syntax of the language PAg of simple finite stochastic behaviours be defined as follows:*

8.5. DEFINITION. (Simple stochastic process algebra PAg)

B:=0|(\)a;B|B+B|B|¢B|BH | B\G. 0

Like in the timed process algebra PA; actions are considered to be atomic and to occur
instantaneously. (A) a; B denotes a behaviour which may engage in a from a time period
relative to the beginning of the system with an exponential distributed length (of rate A) and
after the occurrence of a behaves like B. A specifies the rate of the exponential distribution
of a relative delay of an action.

In the deterministic timing case a set of behaviours may synchronize on a common action as
soon as all participants are ready to engage in this action. For example, in an expression like
(t) a; 0]|4 (') a; O the resulting action a is enabled from time max(¢,t'). In case the delay
of actions (in fact, events) is determined by a stochastic variable, it seems natural—and a
straightforward generalization of the deterministic time case—to let the enabling time of a
synchronization being determined by the maximum of the stochastic variables that determine
the local delay of this action. From basic probability theory [87] we know that the distribution
of the maximum of two (or more) independent stochastic variables corresponds to the product
of their distribution functions.

8.6. THEOREM. Let Uy,...,U, (n > 1) be independent stochastic variables where U; has
distribution Fy,, and W = Max{ Uy, ...,U, }. Then the probability distribution function
of W equals

Fr(o) =[] Ful) .

and its probability density function

F¢V<x>=i(Fz,i<m>- 11 FU,.<m>)

i-1 j=Li#i
PROOF. Straightforward by induction on n. We only provide the proof for n=2.
Fy (z)

1 For simplicity we do not consider the syntactical constructs 1/, >>, and [> here. Since we mainly introduce
this algebra to compare with existing approaches which do not contain these constructs either, this restriction
is convenient for our purposes.

178 Chapter 8: The stochastic timing module

= { Definition A.1 }
Pr{W <z}
= { definition of W }
Pr{max(U,,U,;) < z }
= { calculus }
Pr{U, <z,U, <z}
= { U, and U, are statistically independent }
Pr{U, <z} -Pr{U, <z}
= { Definition A.1 }
Fy, (z) - Fy, ()

Obviously, Fy,(z) equals Fy; (z) - Fy,(x) + Fy, (z) - Fyy, (). O

Unfortunately, the product of two exponential distributions is not an exponential distribution
(see also Example 8.21). Therefore, we take in this section a pragmatic approach by combining
individual distributions in such a way that the resulting distribution of a synchronization action
is again exponential. This is achieved by computing the rate of the resulting action from the
individual rates of the components according to ® : R™ x Rt — IR". E.g., action a in
the composite behaviour (A) a; 0|, (¢) a; 0 will have rate A ® u. Different choices for ® are
possible. For an extensive discussion on these possibilities, their (stochastic) interpretation,
and desired algebraic properties of ® we refer to Gotz [57] and Hillston [73].

We now provide a semantics of PAg by defining a mapping X[B] which associates a simple
stochastic bundle event structure with each expression B of PAg. X is an orthogonal extension
of the mapping of PA to extended bundle event structures (cf. Chapter 2). Let &5 be a function
associating to a stochastic behaviour B its corresponding non-stochastic behaviour ®s(B) by
simple omitting the rates in B. In the rest of this section let X[B;]| = ((E;, ~,—i, L), Ri),
for 2 = 1,2, with E; N Ey = &. We assume ® to be commutative, associative and have an
identity element, denoted u. That is, for all A € R* we have \®@u=u® \ = \.

8.7. DEFINITION. (Causality-based semantics of PAg)

X[] is defined recursively as follows:

0)1,2)

1 £ (E[os(
X[(N) a; Bi] = (E[®s((A) a5 B))],Ri U { (e, A) })
X[B,+ B,] & (E[®s(B1+ By)],R1URy)
X[B\G] £ (E[®s(Bi\G)],R1)
X[Bi[H]] £ (E][®s(Bi[H])],R4)
X[B:||l¢B;] = (E]®s(Bil||l¢B2)],R) where
R((e1,ea)) = Ri(er) ® Ra(ey) such that Ri(x) =u

Simple stochastic event structures 179

8.8. EXAMPLE. The definition of X is exemplified by providing the semantics of the
following stochastic behaviours (cf. Figure 8.2):

(@) B = (M) a; (A2) b5 0]([5(A3) ¢; (M) b5 0

() B2 = (1) a; (p2) b; 01y ((u) b5 0+ (u3) d; 0) , and
(¢) Bi|ltapy B2

M A20My H1 Uy MO up (A20MN) O k2
a b a b a b
c d c d
)\3 H3)\3 H3
() (b) (c)

Figure 8.2: Examples of simple stochastic event structure semantics.

O

Actions with rate u, the identity of ®, do not contribute to the resulting rate of a synchro-
nization. That is, (u) a; 0|, (A) a; O results in action a with rate u®\ = A. Such actions are
referred to as passive and often occur in performance modelling to model service-like activities.
For passive actions only one process determines the rate of synchronization while the other
participating processes do not impose additional timing constraints.

We conclude this section by discussing immediate actions. In performance modelling actions
that are irrelevant from a performance evaluation point of view are often considered to take
place immediately thus not imposing any additional delay on the system’s execution. This
has led to the notion of immediate transitions in stochastic Petri nets [4], and similarly to the
notion of immediate actions (i.e., actions with rate oo) in stochastic process algebras (e.g.,
Bernardo et al. [14] and G6tz [57]). In our model such actions can easily be incorporated by
extending the definition of ® such that A ® co = co ® A = oo for all A € R" U {00 }. That
is, 0o is a zero element of &.

8.2.3 Event-based operational semantics for PAg

Various stochastic extensions of process algebras are known from the literature [58, 68, 14, 71,
72, 30]. These formalisms have in common that they are based on an interleaving semantics
(i-e., a stochastic extension of labelled transition systems) and that distribution functions are
restricted to be exponential. The main difference among these stochastic process algebras is
the way in which the rate of a synchronized action is computed (see also later on).

In order to compare our simple stochastic event structure model to these existing approaches
and to investigate the ‘compatibility’ of our proposal with the standard semantics of PA

180 Chapter 8: The stochastic timing module

(provided in Chapter 1) we define an operational semantics for PAg that corresponds to the
noninterleaving semantics. The approach we follow is similar to the approach taken for the
deterministic timing case (Chapter 5 of this thesis). Thus, we define a transition system in
which we keep track of the occurrence of actions in an expression of PAg. This results in a
stochastic event transition system.

In order to define an event transition system each occurrence of an action-prefix is subscripted
with an arbitrary but unique event occurrence identifier, denoted by a Greek letter. The
transition relation —— is defined as the smallest relation closed under all inference rules
defined in Table 8.1. B -©23),; B’ denotes that behaviour B can perform event e, labelled a
with rate A and evolve into B’.

(A) aé_ ; B (é"ay)‘) > B
B (£,a,)\) Bi B (£,a,)\) BI
B, + B, 6o, B B, + B, (Ged),, By
-B]_ (é"a!)‘) 5 Bi G 32 (£,a,)\) > Bé G
(&)aN) .. pr (a ¢ G) (n8).a0) , (agG)
Bl||G’BZ—»Bl||GBZ Bl||GBZ—>'>Bl||GBz
B, (£,8,)) , B! A B, (Vo) B, (. G)
a
B, ||G B, ((FOERCTIN B! ||GBé
B (é"a!)‘) 53 B’ B (£,a,)\) > B’
(€a) (a ¢ G) (€rN) (a €G)
B\G#»B’\G B\G#»B’\G
B (£,a,)\) 5 B’
B[H] (&H(a)N) ,, B’[H]

Table 8.1: Event-based operational semantics for PAg.

Using the transition relation — the notion of (stochastic) event trace can be defined in the
usual way. As the transition system induced by — is deterministic, the transition system for
B can be represented by its set of stochastic event traces 7g[B]. This set can be characterized
in a denotational way, and subsequently proven to coincide with the set of stochastic event
traces of the corresponding event structure X[B]. This proves the consistency between the
operational semantics and denotational semantics in terms of event structures.

8.9. THEOREM. VB € PAg : Ts(X[B]) = 75| B].

PROOF. In a similar way as for the deterministic timing case (see Chapter 5). O

Generalized stochastic event structures 181

8.2.4 Related approaches

From the event transition system defined by —» we can easily obtain the standard inference
rules for PA by omitting the rates and event identifiers. In addition, the transition rules
strongly resemble the operational semantics of existing stochastic process algebras, and for
various algebras we obtain identical rules when substituting the appropriate operator for ®.
This provides adequacy for our simple stochastic causality-based model.

In one of the first stochastic process algebras, MTIPP (Markovian Timed Processes for Per-
formance Evaluation) by Herzog et al. [58, 68|, the rate of a synchronized action is simply the
product of the rates of the components, thus A ® u = X - u. For Bologna’s variant (B-MPA)
of Bernardo et al. [14] the resulting rate is the maximum of the individual rates under the
condition that at least one of the participating behaviours must be passive with respect to the
interaction, thus, A ® p = max(\, u) given that A = u or y = u. In D-MPA of Buchholz [30]
a somewhat different approach is taken—each action label a is assigned a fixed transition rate
tta, and (r) a; B (r € R") denotes a behaviour that may engage in a where the time before a
is performed is exponentially distributed with rate r - y1,. When (r1) a and (ry) a synchronize
the time before interaction a happens is distributed with rate r; - ry - .. Using ® as product
on r; (rather than on rates) and assuming that u, is given, the same scheme can be obtained
with the rules of Table 8.1.

Another prominent stochastic process algebra is PEPA (Performance Enhanced Process Alge-
bra) developed by Hillston. In the initial proposal for PEPA [71] the expected delay (i.e., the
reciprocal of the rate) of the interaction is assumed to be the sum of the expected duration of
the action in each of the participants, i.e., A ® = (A - u)/(A + u). In the final proposal for
PEPA [72] the rate of an interaction is computed by taking into account the total capacity of
a behaviour to participate in actions with a certain label (the so-called apparent rate). Since
apparent rates are based on the entire behaviour of a participant rather than solely on the
(local) rate of an event this synchronization policy cannot be modelled using ®.

As noted before, desired algebraic properties of ® are associativity, commutativity and the
existence of an identity element. (Algebraically speaking, this means that (IR*, ®) is a com-
mutative, or Abelian, monoid.) For modelling immediate actions ® should also have a zero
element. Besides these properties [57, 73] require ® to be distributive over the addition of
rates in order to consider (A) a + (¢) @ and (A+p) a to be equivalent, also in the context of
parallel composition (which leads to the distributivity). It is interesting to note that in our
model rates are associated to events rather than to actions, and the two a actions in the choice
expression above are modelled by distinct events. So, it seems that distributivity of ® over
+ is not a necessary requirement in our model unless distinct events are identified by some
congruence relation.

8.3 Generalized stochastic event structures

The main benefit of the model of the previous section is that it is a rather simple extension of
bundle event structures which corresponds quite closely to existing stochastic process algebras

182 Chapter 8: The stochastic timing module

such as MTIPP [58], a preliminary version of PEPA [71], D-MPA [30], and B-MPA [14]
(depending on the choice for ®). Unfortunately, for keeping the model within the domain of
exponential distributions we were unable to let the stochastic variable that determines the
delay of an interaction be the maximum of the individual stochastic variables, whilst this
seems quite reasonable and would be a straightforward generalization of our deterministic
timing model.

In addition, exponential distributions are a bit restrictive in performance modelling and there
is a considerable need for more realistic (i.e., nonmemoryless) distributions. Especially in the
analysis of high-speed communication systems or multi-media applications where the corre-
lation between successive packet arrivals is no longer negligible and packets tend to have a
constant length the usual Poisson arrivals and exponential packet lengths are no longer valid
assumptions.

In this section we replace the deterministic times associated to bundles and events in our de-
terministic timing model (cf. Chapter 4) by stochastic variables having arbitrary distributions,
and investigate what the required (algebraic) properties of such distributions are given that
the treatment of synchronization is similar to the deterministic case.

8.3.1 The model

Distribution functions are added to bundle event structures in two ways. A distribution
function associated with event e determines the time between the start of the system and
the enabling of e, while a distribution function associated to bundle X +— e determines the
relative time between the enabling of e and its causal predecessor in X.

The interpretation of bundle {e,} — e, decorated with distribution F is that if e, has
happened at a certain time ¢, then the time at which e; is enabled is determined by ¢,+U
where U is a stochastic variable with distribution F'.

If more than one bundle points to an event the following interpretation is chosen. For instance,
suppose {e, } — e. and {e, } — e, with distribution F' and G, respectively. Now, if e, (ep)
happens at ¢, (¢,) then the time of enabling of e, is determined by the stochastic variable
max (t,+U, t,+V), where U (V) has distribution F (G).

As a final example, consider { e, } — e, decorated with distribution F' and e, having distribu-
tion G. Using a similar reasoning as above, we infer that the stochastic variable max (U, t,+V)
determines the time of enabling of e, given that e, happens at time ¢,.

Let DF denote an arbitrary class of distribution functions.

8.10. DEFINITION. (Stochastic event structure)

A stochastic bundle event structure ¥ is a triple (£, F,G) with £ an extended bundle
event structure (E,~»,+—,1l), and F : E — DF and G : — — DF, associating a
distribution function of class DF to events and bundles, respectively. O

We denote a bundle (X, e) with G((X,e)) = F by X > e. Event traces are considered as
sequences of events where each event e; is associated with a stochastic variable U; that uniquely

Generalized stochastic event structures 183

determines the minimal enabling time of event e;. The stochastic variable U; is determined by
the distribution function associated with e; (i.e., F(e;)), the distributions linked to all bundles
pointing to e; and the stochastic variables U; of the causal predecessors of e; in the trace (as
these determine the time of occurrence of e;).

8.11. DEFINITION. (Random event trace)

A random event trace of stochastic event structure ¥ = (£, F,G) is a sequence o of
events (e1,Uy)...(en,Uy,) with e; € E, and U;, for all 0 < i < n, a stochastic variable
with distribution function in class DF iff

1. e1...e, € T(E), and
2. Vi:U; = Max({Ug,) } U V; UW;) where
Vi={Us+U; | 3X:X S e; A XN[oj] ={e;}} and
Wi:{Uj|36j€[O'i]16jW6i}.
O

Notice the resemblance of this definition of with the definition of timed event trace in Chapter
4 (Definition 4.5). For distribution function F, Ur denotes the corresponding stochastic
variable. In general it is not straightforward to obtain a closed formula for U; since statistical
independence of its constituents cannot always be guaranteed. The stochastic variable U =
(Ui, ...,U,) spans an n-dimensional hyperspace and has joint distribution function

1 Tn
Fz(T) :/_oo.../_OOF'ﬁ(yl,...,yn)dyn...dyl.

8.12. ExaMPLE. Consider the stochastic event structures in Figure 8.3. The event dis-
tribution of event e, is denoted F, and is omitted in the figure for simplicity. For (a) legal
traces are (eq, U,)(ep, Up) and (ep, Up)(eq,U,) with U, = Up, and U, = Up,. Note that the
stochastic variables are equal for both traces. For (b) (e,, Us,)(ep, Up) is a trace with U, = Up,
and U, = max(Up,, Ug+U,). Finally, for (c) (es, Us)(es, Up)(ec, Ue) is a trace with U, = Up,,

Ub = UFL, and Uc = MaX{ UFC, Ug+Ua, UH+Ub }]
a a b
G G H
ae eb be c
(@) (b) (©)

Figure 8.3: Some stochastic bundle event structures.

184 Chapter 8: The stochastic timing module

8.3.2 A generalized stochastic process algebra

In this section we use the model of the previous section as a semantical model for a generalized
stochastic process algebra. The aim of this exercise is to investigate what the desired algebraic
properties of distribution functions are. Let F' be a distribution function in DF. The syntax
of behaviours in PAgg is now defined as follows:

8.13. DEFINITION. (Generalized stochastic process algebra PAgs)

B:=0||(F)a;B|B+B|B>B|B[>B|B|B|BH |B\G. O

This syntax is identical to the syntax of PAz, the timed process algebra of Chapter 4, except
that time annotations are replaced by distribution functions from DF.

a a a
o ||a o = [J
F G F.G
a F b a G b a F.G b
o———H»® ”a,b o—o = o——— 0
a . b a G b
® y [) = o—»0
F G F u

Figure 8.4: Examples of composing stochastic event structures.

In a similar way as for the exponential distribution case we define a mapping g[B | which
associates a stochastic bundle event structure to expression B. This provides us a causality-
based semantics of PAgs. Let us start by considering some examples (cf. Figure 8.4). In
the upper picture we are faced with the question what the resulting distribution of a in
(F)a; 0|l,(G)a; 0will be. When we adopt the synchronization paradigm of the deterministic
timed model max(Ur, Ug) would determine the timing of a. This results in distribution F -G.
A similar reasoning applies to the next picture (where, for simplicity, irrelevant distributions
are omitted). Finally, in the lower picture the main issue is what the resulting distribution, H
say, of b will be. In the deterministic timed case b would be associated time 0, the unit element
of max. Hence, in the stochastic case H = u, the unit element of -. This motivates that we
require the class DF of distribution functions to be closed under product (-) and to have an
identity element u for this operation. Recall that the product of distributions corresponds to
the maximum of their stochastic variables under the assumption of statistical independence.

In the following definition let Es[B;| = £; = ((Ei, ~4, =4, 1), Fi, Gi), for i = 1,2, with
E, N E;, = @. We assume that the stochastic variables corresponding to the bundle and event
distributions in ¥; and X, are statistically independent. The positive events of ¥ are those
events that have a distribution function different from u, i.e., pos(X) ={e € E | F(e) #u}.
Let pin(¥) = pos(X) U init(X). Let Ey denote the universe of events.

Generalized stochastic event structures 185

8.14. DEFINITION. (Semantics of 0, +/, and (F) a;)

&s[o] (€' 25(0)], 2, 2)

Eslv1 (€'[2s(\V)], {(es,u) },)

Es[(F) a; Bi] ((E,~1,—,l1 U{(eq,a)}),F,G) where

E; U {e,} for some e, € Ey \ E;
=1 U ({{ea}} x pin(Xy))
{(ea; F) } U (Bx x {u})
= GiU{(({ea} €), Fi(e)) | e € pin(31) }.

> 1> 1>

E
—
F
g

O
The semantics of 0 and 4/ is self-explanatory. In Es[(F') a; B;] a bundle is introduced from
a new event e, (labelled a) to all initial events of ¥; and, in addition, to all events in ¥; that
have a distribution function different from u. The distribution of these events is now relative
to eq, so each bundle { e, } — e is associated with a distribution Fi(e), and the distribution
F(e) is made u. The distribution F(e,) becomes F'. In the untimed and exponential case (cf.
Chapter 2 and Definition 8.7) it suffices to only introduce bundles from e, to the initial events
of ¥;. Introducing bundles from e, to all events in pin(%,) is, however, semantically equivalent
(as shown in Chapter 2) and is used here only to make distributions of events relative to e,.
To exemplify this, Figure 8.5 depicts (a) Es[B], and (b) Es[(F) a; By].

d d
G
e
u
b c I
K J H
(@):Byq (b):(F)a;B

Figure 8.5: Example of stochastic action prefix.

8.15. DEFINITION. (Semantics of \, [], +, >> and [>)
Es[Biop By] (E']Ps(BropBy)], Fi U F2,G1 UGs), op € {+, [>}
Es[op B1] (E'[®s(op B1)], F1,G1) for op € {\,[]}
Es[By >> By] ((Ey U Ey,~>,—,1), F,G) where
= o U oy U{(e,€) |e,€e € exit(Xy) A e#€e'}

> > (>

= = 1 U e U ({exit(X)) } x pin(X,))

o= ((hU)\ (exit(3) x {6})) U (exit(X1) x {7})
F = FU(Eyx{u})

G = GiUG U{((exit(X1),e),Fa(e)) | e € pin(X,) }.

186 Chapter 8: The stochastic timing module

Finally, we explain the semantics of the parallel composition operator. Events of Es[B ||g B2 |
are constructed in the same way as in Definition 8.7. The distribution associated with a bundle
is equal to the product of the distribution functions associated with the bundles we get by
projecting on the i-th components (i=1, 2) of the events in the bundle, if this projection yields
a bundle in Es[B;]. The distribution of an event is the product of the distributions of its
components that are different from x.

8.16. DEFINITION. (Semantics of ||g)

85[[B1 ||G’ BQ]I = (8’[[(1)5(31 ||G Bz)]],f,g> where
F((e,e2)) = Filer) - Faler) with Fi(*) = u.

G((X,(e1,e2))) = Gi((pri(X),e1)) - Ga((pry(X),e2))
with G;((2,e;)) = u, for i=1, 2.

8.3.3 PH-distributions

We conclude that the desired properties of the class of distribution functions that is of in-
terest to us are that it should be closed under product and have an identity element for
product. An interesting class of distribution functions that satisfy these constraints are the
phase-type (PH-) distributions. PH-distributions can be considered as matrix generalizations
of exponential distributions and are well-suited for numerical computation. They are used
in many probabilistic models that have matrix-geometric solutions, have a richly developed
theory due to Neuts [109, 110], and include frequently used distributions such as hyper- and
hypo-exponential, Erlang, and Cox distributions.

Intuitively, a PH-distribution is characterized by the time until absorption in a finite-state
continuous-time Markov process with a single absorbing state?. Consider a continuous-time
Markov chain (cf. Figure 8.6) with transient states {1,...,m} and absorbing state m+1,
initial probability vector [a, m1] with al + ay,+1 = 1, and (infinitesimal) generator matrix

T 1°

where T is a square matrix of order m such that T(i,7) < 0 and T(¢,5) > 0(i # j). The row
sums of Q equal zero, i.e., T1 +T° = 0.

T(4,7) (i # j) can be interpreted as the rate at which the current state changes from transient
state ¢ to transient state j. Stated otherwise, starting from state ¢ it takes an exponentially
distributed time with mean 1/T(i,) to reach state j. T°(7) is the rate at which the system
can move from transient state i to the absorbing state, state m+1. —T(i,7) is the total
rate of departure from state i, or, equivalently, the residence time in state 7 is exponentially
distributed with rate —1/T(i,7). In general, the transition rates may depend on the time at

2Requiring a single absorbing state is not a severe restriction as Markov processes with more than one such
state can easily be converted into a Markov process with a single absorbing state.

Generalized stochastic event structures 187

transient states
1,---,m
‘041 ‘012"' ‘Oém Om41

Figure 8.6: Schematic view of a PH-distribution.

which a system is considered. In this dissertation we confine ourselves to Markov chains whose
behaviour is invariant to time-shifts. That is, at any time the rate to go from one state to
another is the same. Such processes are often referred to as time-homogeneous Markov chains.

The probability distribution F(z) of the time until absorption in state m+1 is now given by 3

Flz)=1-qa-e™ 1 ,

for x > 0, and F(z) = 0, for £ < 0. The pair (o, T) is called a representation of F. The
corresponding probability density function equals

F,(.T) :g_eTm_TO ,

for x > 0, and F'(z) =0, for z < 0. The moments u; of F(z) are finite and given by
i = (~1) il (@- T 1) fori=1,2,...

The first moment of a stochastic variable corresponds to its expectation, and the difference
between the second moment and the square of the first moment corresponds to its variance.

Note the resemblance of the expressions for F(z), F'(z) and p; to the corresponding ex-
pressions for exponential distributions. In fact, for m=1 we obtain the results for regular
exponential distribution. PH-distributions can thus be considered as matriz generalizations
of the exponential distributions, which makes them suitable for numeric computations.

8.17. DEFINITION. (Phase-type distribution)

A continuous distribution function F on [0, 00) is called of phase-type (PH-distribution)
iff it is the distribution of time to absorption in a continuous-time Markov chain as
defined above. O

8.18. EXAMPLE. Example PH-distributions are the exponential, Erlang, hyper- and hypo-
exponential, and Coxian distributions. Important to note is that these well-known (PH-type)

3For square matrix T of order m, eT? is defined by eT* =1I,, + Tz + T? ”;—? + T“g—? +..., where I,,, denotes

the identity matrix of order m and T"’z—’: is matrix T* with each element multiplied by ?c—’:

188 Chapter 8: The stochastic timing module

plo\
A Ay
OO0 »OD OO0
Pao/
(a) (b) (c)
A1P1 N A2
)\1(1P1)T A2(1=p2) As
O
(d)

Figure 8.7: Some example PH-distributions.

distributions are acyclic while the definition of PH-type distributions also allows for cyclic
Markov chains. Figure 8.7 illustrates an (a) exponential distribution with rate A, (b) a 3-
stage hyper-exponential distribution with rates \;, for i=1,2,3 (c) a 2-stage hypo-exponential
distribution with rates A;, for i=1,2, and (d) a 3-phase Coxian distribution. Representations
of (b) and (d) are) = [p1, P2, ps] With pi+pa+ps =1, g = [1,0,0], and

—)\1 0 0 —)\1)\1 *P1 0
Tey=| 0 —-Xx 0 |, Tagy=] 0 =X X-p
0 0 —)\3 0 0 _)\3

If U and V are statistically independent stochastic variables with PH-distributions G and H
respectively, then the distribution F' of W = max(U, V) is equal to the product of G and H
and is again a PH-distribution. The product of two PH-distributions is calculated as follows.

8.19. THEOREM. Let PH-distributions G, H have representations (a, T) and (3, S) of orders
m and n, respectively. Then F(z) = G(z)-H(z) is a PH-distribution with representation
(7,L) of order m - n + m + n given by

7= [Q ® é’ /8n+lg7 am+1é] and
TeL+1,88 L,©5° I'®l,
L = 0 T 0
0 0 S
PROOF. See Neuts [109, Chapter 2]. O

® denotes the tensor (or Kronecker) product and is defined below. Note that T®I,+ I, ®S
is sometimes also referred to as the tensor sum of T and S, denoted T @ S. T @ S represents

Generalized stochastic event structures 189

the generator matrix of a Markov process which is the Cartesian product of the Markov
processes represented by T and S. Tensor algebra is extensively discussed in Davio [38]. The
PH-distribution consisting only of the absorbing state is the identity under product.

8.20. DEFINITION. (Tensor product)

The tensor (or Kronecker) product of two matrices A and B of orders r; x ¢; and 73 X ¢z,
respectively, is defined as C = A ® B with C of order riry X ¢1¢y and

C((i1—1)ry + ia, (j1—1)co + j2) = A(i1, j1) - B(i2, Ja)
where 0 < i < rg, 0 < J < ¢ for k=1, 2. O

The resulting matrix C can be considered to consist of r1¢; blocks each having dimension
r9 X Co, that is, the dimension of B:

A(1L,1)-B A(1,2)-B ... A(L,c) B

A(T’l,]_)'B A(T‘]_,2)'B A(T’l,C]_)'B

The maximum of two PH-distributions is exemplified in the following example.

8.21. ExaMPLE. Exponential distributions G and H with rates A and g have represen-
tations ([1],[—A]) and ([1],[—u]), respectively. The maximum F of these distributions has
representation (v, L) with v = [1,0,0] and

—(A+p) oA
L= 0 -2 0
0 0 —u
p1 = D1
O—=-0
p2 Lo %)

(a) (b) (c)

Figure 8.8: Maximum of a 1- and 2-stage hyper-exponential distribution.

As a second example let G be an exponential distribution with rate A and H a 2-stage hyper-
exponential distribution with rates u; and ps, and initial probabilities p;, ps with p;+p, =1

190 Chapter 8: The stochastic timing module

(cf. Figure 8.8(a) and (b)). The maximum F' has representation (v, L) with v = [p1,p,,0,0, 0]
and

—(\ +) 0 wmooA 0
0 —(A4+p2) p2 O A
L= 0 0 -2 0 0
0 0 0 —m 0
0 0 0 0 —pu
The corresponding Markov process is depicted in Figure 8.8(c). O

We conclude the exposition on PH-distributions by an observation. When considering Markov
chains as ordinary finite state automata where transitions are labeled with rates, computing
the product of two PH-distributions boils down to computing the product automaton of the
constituent automata (cf. Figure 8.8). From the work of Plateau & Fourneau [119] it is known
that the product chain of two continuous-time Markov chains with generator matrices Q and
R has generator matrix Q @ R. This means that the product of two PH-distributions G and
H with generator matrices Q and R, respectively, is equal to F' with generator matrix Q @ R.
This is a much simpler characterization than given in Theorem 8.19.

8.4 Concluding remarks

In this chapter we have made an investigation of stochastic extensions of a process algebra in a
causality-based setting. We presented a simple event structure model restricted to exponential
distributions and a more general one involving PH-distributions. The simple semantic model is
shown to be compatible with the standard operational semantics of (ordinary) process algebras
like LOTOS and CSP and to closely resemble existing stochastic extensions of interleaved
models like MTIPP, B-MPA, D-MPA and a preliminary version of PEPA.

The model involving PH-distributions evolved from a rather straightforward generalization of
the deterministic timed model of Chapter 4. This results in associating distributions to events
and bundles. Similar to the timed case it can be proven that a model with bundle distributions
only suffices in case all initial actions of a specification have distribution u, and all occurring
parallel compositions satisfy the constraint that argument behaviours are able to participate
in initial synchronization actions.

Another interesting class of distribution functions that satisfies our constraints is introduced by
Sahner & Trivedi [131]. Here, the product of distribution functions of ‘exponential polynomial
form’

F(z) =Y a;-z" -e"* for z > 0.

for k; a natural and a;, b; real or complex numbers, is used to model the concurrent execution
of groups of tasks. Cox, exponential, Erlang, and mixtures of exponential distributions also
fall into this class of distributions. The applicability of such distributions in the context of
our work is for further study.

Concluding remarks 191

To our knowledge only a few process algebras exist supporting a wider class of distribution
functions than exponential ones. Ajmone Marsan et al. [3] define a stochastic extension of
LOTOS in which random variables with arbitrary distribution functions specify the time
lapse between actions. Once an action becomes enabled an experiment is carried out, the
outcome of which represents the actual delay of the action. The main limitation of this
proposal is that all stochastic timing constraints must be specified at ‘top level’, thus reducing
compositionality and avoiding the issue of how to combine local distribution functions in
case of synchronization. Gotz et al. [59] discuss a generalization of MTIPP which supports
arbitrary distribution functions. In order to associate the appropriate distribution function to
actions in the interleaved semantic model, they introduce the notion of ‘start references’. Such
references are used to keep track of residual lifetimes of stochastic variables. In our model a
similar notion is not needed, and general distributions could be incorporated in a more natural
way. In the thesis of Rettelbach [128] a variant of MTIPP is discussed that allows for Erlang
distributions. Here a special invisible action is used in the operational semantics to let the
Erlang distribution move from one phase to another.

Though this chapter provides the first basic ingredients to study the (semi-) automated devel-
opment of performance models out of system specifications in a causality-based setting, there
are a number of issues to be settled. To mention a few, we did not yet address the issue of
how to obtain a performance model from an event structure representation while exploiting
the explicit parallelism present in the semantics. Some examples of how this could be done
starting from an event structure with deterministic times and probabilistic choices can be
found in Chapter 9. It has to be investigated how this approach carries over to the stochastic
case.

A comparison with Petri nets is also considered to be useful. The relationship of bundle
event structures with Petri nets has been studied by Boudol & Castellani [25] and it would be
interesting to extend this study to (nonexponential) stochastic Petri nets. A problem here is
that there is currently a lot of research going on in the field of nonexponential stochastic Petri
nets and there is no consensus yet on the incorporation of general distributions into nets (see,
for instance, Trivedi et al. [143]).

192 Chapter 8: The stochastic timing module

9 The probability module

This chapter presents a probabilistic variant of extended bundle event struc-
tures, in which internal events (i.e., events labeled 7) can be assigned a fixed
probability. In this way, a causality-based model is obtained that allows
for the specification of (internal) probabilistic behaviour. For probabilistic
event structures the notion of cluster, a set of mutually conflicting internal
events such that the sum of the probabilities associated to these events is
1, is defined. A cluster corresponds to an independent stochastic exper-
iment. A probabilistic process algebra PAp is introduced and assigned a
causality-based and corresponding event-based operational semantics. The
integration of the probabilistic model with the deterministic timed model
(of Chapters 4 and 7) is briefly discussed. By means of example it is shown
how to obtain a performance model (i.e., a discrete-time semi-Markov chain)
from a timed probabilistic event structure.

9.1 Introduction

It is widely recognized that the behaviour of systems cannot be modelled adequately by only
providing a means for describing the possible orderings of the execution of actions; issues like
time and probability play an important role as well. In this chapter we equip extended bundle
event structures with a notion of probability. In this way we facilitate the specification of reli-
ability issues; quantification of concerns like the possibility that an unreliable communication
medium loses or garbles a message, or the possibility that a system component exhibits some
faulty behaviour now becomes possible.

The aim of this chapter is to investigate how probabilities can be introduced in a causality-
based framework in a simple though practically useful way. The basic idea is to use probabil-
ities to model (discrete) stochastic experiments that are (statistically) independent from the
context in which they are considered. In order to facilitate this, some events are equipped with
probabilities—we will call such events probabilistic events—and these events are required to be
internal, i.e., labelled 7. A probabilistic event models an outcome of a stochastic experiment.
Since a realization of an experiment usually has a single outcome, we require all probabilistic
events that constitute the range of outcomes to be mutually in conflict. Such a group of events
will be called a cluster.

Since all probabilistic events are internal, their probability of appearance can be determined
without the need for conditioning probabilities on the possible behaviour of the environment.
This is a simplifying assumption. We believe that still an interesting model remains, be-
cause there are lots of applications for which the description of internal probabilistic behaviour

193

194 Chapter 9: The probability module

suffices. Typically the environment has no control over probabilistic phenomena one often
encounters in practice: for instance, the fact that a system component spontaneously fails
(like garbling a message) is usually due to some internal misbehaviour completely out of the
environment’s control [122]. There exist various probabilistic variants of formal models that
do allow the resolution of experiments to be determined by the environment. This leads to
more complicated models since probabilities must be adjusted depending on the environment
in which they are considered. In addition, it seems not clear (yet) how the environment will
influence the probabilistic behaviour of systems; different perspectives can be taken which re-
sult in different probabilistic models. An overview and classification of such models is provided
by Van Glabbeek et al. [53].

The process algebra PA of Chapter 1 is enriched with a probabilistic choice operator, denoted
+,, where B; +, B, denotes a behaviour that nondeterministically behaves like By (with
probability p), or like By (with probability 1—p), under the condition that this choice can be
made autonomously, i.e., without interference of the environment. The fact that this choice
can be made without participation of the environment is met by imposing some appropriate
syntactical constraints. We investigate the use of the probabilistic causality-based model for
providing a denotational semantics for this process algebra, called PAp. Like for the timed,
urgent, and (simple) stochastic case a consistent event-based operational semantics for PAp is
presented.

To our knowledge this constitutes the first attempt towards enhancing a partial-order model
with probabilistic information. Current probabilistic (asynchronous) process algebras all use
probabilistic extensions of labelled transition systems as an underlying semantical model. It
is quite common to distinguish between probabilistic and nonprobabilistic transitions in these
models. The main problem with this approach is the intertwining of these types of transitions.
That is to say, it is not clear what the intended meaning is of a probability attached to a
transition in the presence of a competitive nonprobabilistic transition. Typical behaviours
that cause such situations are combinations of parallel composition and probabilistic choice,
as in

(13 By 4+, 7; Ba)|||a; Bs

The fact that there is one global state in which either a or one of the two probabilistic
alternatives can happen makes it difficult to interpret p as the probability that B; will be
chosen. There have been several solutions proposed for this problem, some of which we will
discuss later on in this chapter, but most of them loose the property of backwards compatibility
with the nonprobabilistic semantics. We hope to show in this chapter that a causality-based
model, which has no direct notion of global state, does not has these problems.

This chapter is further organized as follows. Section 9.2 introduces the notion of cluster and
probabilistic event structure and carries notions like event trace, remainder and configuration
over to a probabilistic setting. Section 9.3 presents the probabilistic process algebra PAp;
the syntactical constraints of the formalism are introduced and justified, and a causality-
based denotational semantics and event-based operational semantics for this formalism are
presented. Section 9.4 discusses a possible way in which the probabilistic and (simple) timed,
urgent models of Chapters 4 and 6 can be integrated. This integration is used in Section 9.5 to

Probabilistic event structures 195

show by means of example how performance models, in particular discrete-time semi-Markov
chains, can be obtained from timed probabilistic event structures. Section 9.6 puts our work
and results in the context of several other proposals for probabilistic process algebras and
addresses options for further work. Finally, Section 9.7 summarizes the technical results of
this chapter.

9.2 Probabilistic event structures

This section deals with probabilistic event structures. Section 9.2.1 introduces the basic ideas
and the notion of probabilistic event structure. The status of such event structure after the
execution of a sequence of events is presented in Section 9.2.2. Section 9.2.3 shows how
probabilities can be calculated for sets of executions of probabilistic event structures.

9.2.1 What are probabilistic event structures?

The basic idea is to incorporate fixed probabilities in event structures by associating proba-
bilities with events. Suppose we have an event e and we decorate this event with probability
p, p € (0,1), that is 0 < p < 1. The intuitive interpretation is that e happens with likelihood
p provided that it is enabled. Thus, p is a conditional probability.

A group of events, each event having a fixed probability, intends to model an independent
stochastic experiment, that is, the probability assigned to an event is independent from its
context. An experiment consists of a set of possible outcomes. Each outcome has associated a
real number which represents the probability of its occurrence when the experiment is carried
out. Each realization of the experiment has precisely one outcome.

In order to model stochastic experiments, events are grouped into clusters of mutually con-
flicting events.

9.1. DEFINITION. (Cluster)
For event structure £ = (E, ~,—,1), set Q C F is a cluster of &, iff

1. |Q|>1

2.VeeQ:lle)=1

3. Ve,el €Q:e#e = e#e

4. VeeQ,e e E:e~e = €@

5. Ve, e Q, X CE:X+—e = Xre¢€.
0

The first constraint requires a cluster to consist of at least two events; this is convenient for
technical reasons and poses no real practical constraint. In order to guarantee that stochastic
experiments represented by clusters are indeed independent from their context we require all
events in a cluster to be internal (i.e., labelled 7). In this way we are sure that such events

196 Chapter 9: The probability module

are not subject of interaction anymore, which would make their probability dependent on the
context in which they will be embedded. According to the third constraint events in a cluster
mutually exclude each other such that only one event (i.e., the outcome of the experiment) can
happen. In addition we require that events in a cluster are not in conflict with events outside
the cluster; allowing such conflicts would destroy the interpretation that an event probability
represents the likelihood that this event happens (once enabled). This is stated by the fourth
constraint. Finally, all events in a cluster must be pointed to by the same set of bundles.
Together with the fourth constraint this guarantees that if an event in a cluster is enabled all
events in this cluster are enabled.

A probabilistic event structure is an event structure in which some events are assigned a
probability. We assume a (partial) mapping 7 that decorates an event with a probability in
(0,1). The interpretation is that an event e with m(e) = p happens with probability p once it
is enabled.

9.2. DEFINITION. (Probabilistic event structure)

A probabilistic event structure is a tuple (€, 1) with

e &£, an extended bundle event structure (E,~», 1)

o 7: E —,(0,1), the probability function

such that for all e € dom()

3Q Cdom(m):e€ @ A Qisacluster A Y m(e)=1.
e'eqQ
0

—, indicates a partial function. The constraint requires the domain of 7 to consist completely
of clusters such that the sum of the probabilities assigned to all events in a cluster equals one.
In this way, cluster @ in (£,7) can be considered to represent a stochastic erperiment for
which the probability of outcome e € @ equals 7(e).

For depicting probabilistic event structures we use the following conventions. The probability
of an event is depicted near to the event. For convenience, we often omit the event label
for e € dom(r) and indicate the mutual conflicts between events in a cluster by a grey
shaded surface. We use II, possibly subscripted and/or primed, to denote a probabilistic
event structure and EBESp to denote the class of probabilistic event structures. cl(II) denotes
the set of clusters of II that are assigned a probability. (Note that it is not required for each
cluster of II to be contained in the domain of r.)

9.3. EXAMPLE. Some example probabilistic event structures are depicted in Figure 9.1.
Figure 9.1(b) contains a single cluster of 4 events with m(e;) = 1, m(es) = 15, m(es) = 3

and 7(es) = 3. Figure 9.1(c), referred to as II, contains two clusters. That is, cl(II)

{{61)62 }a{63,€4,€5 } }
The structures in Figure 9.2 are not probabilistic event structures. Figure 9.2(a) violates the
requirement that the domain of 7 consists of clusters only—e;, e3 € dom(r), but - (e; # e3).

Probabilistic event structures 197

1/3 2/3 2/3

1/2

1/3

1/4
(@) (b) (©) %

Figure 9.1: Some example probabilistic event structures.

Cc
1/3 1/6 1/2 1/3 2/3
T
T I;l T[] e ‘Ieg T|© T &
a I b c a b
(@) (b)

Figure 9.2: Some example event structures that are not probabilistic.

Since e1,es € dom(m) but have different enablings, Figure 9.2(b) violates the constraints of
being a probabilistic event structure. O

The set of event traces of II is simply the set of event traces of £; the probabilities do not affect
the possibility of events to happen, they only quantify the probability of happening. This also
means that the set of configurations of I, Cp(II), is simply equal to C(€), and lposets of II
can be generated according to the recipe for plain event structures (cf. Chapter 2).

9.2.2 Probabilistic remainder

The definitions and results in this section are all relative to II = ((E,~»,+,1), 7). The status
of a probabilistic event structure after the execution of a sequence of events is defined as
follows:

9.4. DEFINITION. (Probabilistic remainder)
The probabilistic remainder l[o] = (€', 7') of I1 = (€,) after event trace o is
o &'=¢E[o] = (F',~',—,l'), and
e m'=n[(E'\{e €FE |Jeca:e#c}).
U

The first component is equal to the remainder of £, see Definition 2.28. All events in ¢ are
removed from the domain of 7 (i.e., 7 [E', where E' = E \ 7). In addition, the probabilities

198 Chapter 9: The probability module

of events in conflict with some event e in ¢ are removed, because the stochastic experiment
(= cluster) of which e is part of has happened. Notice that the remaining events of this
experiment cannot happen anymore as they were in mutual conflict with e. This is established
by introducing an empty bundle pointing to those events in the remainder; see Definition 2.28.

9.5. EXAMPLE. The notion of probabilistic remainder is exemplified in Figure 9.3. After
the execution of e, the (only) cluster is enabled, and after the execution of e3 (labelled 7) the
cluster is ‘broken’ and events e; and e, are removed from dom(). O

Figure 9.3: Example remainder of a probabilistic event structure.

As a next step we prove that the probabilistic remainder of a probabilistic event structure
is again a probabilistic event structure. We first need some results concerning clusters in
remainders. The first lemma states that a cluster is unaffected if no event in it is executed.

9.6. LEMMA. Vo € Tp(I1),Q € () : QNz =& = Q € cl(TI[o]).

PROOF. Let o € Tp(II) and assume @ is a cluster in II such that Q N7 = &. Let I[o] = ((E',~'
,—",1"), "), We systematically check all requirements for @@ being a cluster in II[o].

1. Giventhat Q N =0 wehave QCE< QCE\c< QCE.
2. | Q| > 1 follows immediately from @ Ng = @ and Q € cl(II).
3. Foralleec Q:l'(e)=(TE")(e)=I(e)=r.

4. For all e,e’ € Q : e # ¢ = e#'e' follows immediately from the fact that ~'=~» N(E' x E")
and @ is a cluster of II.

5. For alle € Q,e' € E' : e ~' ¢ = €' € Q. Follows immediately from the fact that ~»'=~~
N(E'" x E') and @Q is a cluster of II.

6. For all e,e’ € Q, X C E' : X —»' e = X ' ¢. From Definition 2.28 we know that the
interesting cases are when either (a) an existing bundle X +— e is removed or (b) a new one
@ —' e is introduced.

(a) If a bundle X pointing to some event in @ is removed (since X N = {e; }), then all
bundles originating from e; are removed in II[o]. Since all events in @ have the same
bundles pointing to them in II this means that all bundles X +— e with e €) are removed.

Probabilistic event structures 199

(b) If a new bundle X = & pointing to some event e € @ is added, this can only be because
there exists e’ such that e ~» e'. Since @ € cl(II), ¢” ~ €' for all " € @, so bundle

r o n

@ —' €" is present in II[o] for all e” € Q.
This proves that all events in @ have the same bundles pointing to them in II[o].

7. Sum of the probabilities in Q equals 1. Since QNT = & we have QNdom(7') = QNdom(7) = Q,
and 7'(e) = mw(e) for all e € Q.
[l

The following lemma says that once an event in a cluster is executed the entire cluster is
‘broken’. Let II[o] = (&', 7).

9.7. LEMMA. Vo € Tp(Il),Q € cl(Il) : QN7 # @ = Q Ndom(n') = @.

PROOF. Let o € Tp(II), Q € cl(II) such that Q N& = {ey,...,ex }, for £ > 1. Since @ is a cluster
of IT we have for all e € that e#e; for 0 < j < k. From Definition 9.4 it follows that all these
events are removed from dom(r), and so @ N dom(w') = & . O

9.8. THEOREM. VII € EBESp and o € Tp(II) : II[o] € EBESp.

PrROOF. Let II' =1II[o] = (£',#'). It is quite evident that &' = £[o]| satisfies the requirements for
being an extended bundle event structure. Besides, 7’ satisfies the constraints of Definition 9.2 since
cl(IT) C cl(IT")—if some event in a cluster @ in II appears in @, then all events in @ are removed
from the domain of 7 (cf. Lemma 9.7), and if no event in @) appears in @, then @ is unaffected (cf.
Lemma 9.6). So, dom(7n') consists only of clusters @ with > ., 7'(e) = 1. O

9.2.3 Probability measure on configurations

In this section we provide a means to calculate probabilities for the dynamic representations
of an event structure, namely configurations.

As a first observation we remark that in general, 7 being a partial function, the set Cp(II)
of all configurations of II does not generate a random space—there are configurations for
which it does not make sense to speak about probabilities. For instance, what is the proba-
bility of configuration { e, } of Figure 9.1(a)? There are also sets of configurations that are
indistinguishable from the probabilistic point of view. For instance, again with reference to
Figure 9.1(a), the following configurations are probabilistically indistinguishable:

1 :{61},62:{Bl,ec},63:{Bl,ea},C4:{€1,€a,6c} .

In other words, whenever it is known that some configuration in V' = { ¢, ca, c3, ¢4 } has hap-
pened (i.e., its events have happened) it does not make sense to reason about the probability
that a particular element of V' has happened. All configurations in V' share a common feature,
viz. the fact that e; has happened; moreover, the probability of appearance of e; is % So, the
only question which makes sense in this example is ‘What is the probability of having any
configuration that contains e;?’. Below we associate probabilities to sets of configurations.

We first capture the notion of being probabilistic indistinguishable. For C' € Cp(II) let
C Ndom(r), the stochastic choice of C', denoted by sc(C).

200 Chapter 9: The probability module

Equivalence class [C]~ sc(C) Pr{[C]=}
a,{e} 1%} undefined
{61}v{elaeb}a{elvea}a{elveaaeb} {61} 2/3
{62}7{62’%} {62} 1/3
{ezes},{ea 3,65} {eaes} 1/6
{eas,es},{€2,€4,€p} {es,e4} 1/12
{ez,es5},{ea 5,65} {eases} 1/12

Table 9.1: Equivalence classes, stochastic choices and probabilities for Figure 9.1(c).

9.9. DEFINITION. For C1,Cy € Cp(II) let = be defined as C; = Cy < sc(Cy) = sc(Cy). O

It is easy to verify that = is an equivalence relation. Let [C]_ denote the equivalence class
of C under =. That is, [C]= ={C" € Cp(ll) |C = C'}.

The probability of a set of configurations is defined for equivalence classes of configurations
(under =) that contain a nonempty set of probabilistic events sc(C) = {e1,...,er }. The
probability of such set of configurations is then equal to 7(eq) - ... 7(ex).

9.10. DEFINITION. (Probability measure on sets of configurations)

For C € Cp(IT) such that sc(C) # @, let Pr{[C]=} £ [.es(c)7(e€)- O

9.11. ExaMPLE. Consider the probabilistic event structure of Figure 9.1(c). The equiv-
alence classes under =, stochastic choices, and probabilities Pr{ [C]- } of this structure are
summarized in Table 9.1. O

9.3 A probabilistic process algebra

This section introduces a probabilistic process algebra PAp and provides a causality-based
semantics using probabilistic event structures. Section 9.3.1 introduces the syntax of PAp
including the syntactical constraints for probabilistic processes. Section 9.3.2 presents the
causality-based semantics. Some properties of this semantics are proven in Section 9.3.3.
Finally, Section 9.3.4 presents an event-based operational semantics for PAp and investigates
the relationship of this semantics with the causality-based interpretation.

9.3.1 Syntax

In order to express probabilities PA is extended with a probabilistic choice operator, denoted
+,, for p € (0,1). Under the assumption that the choice between B; and B, cannot be
influenced by the environment, behaviour B; +, B, nondeterministically behaves like B;
(with probability p) or like By (with probability 1—p).

A probabilistic process algebra 201

9.12. DEFINITION. (Probabilistic formalism L)

B:=0||a;B|B+B|B+,B|Bl«B|B[H|B\G|B>B|B[>B. O

+, and + bind equally strong. Throughout this chapter p,q and r denote elements in (0, 1).

In PAp we distinguish between a standard and a probabilistic choice. We believe that this
distinction is important—from a design perspective it is necessary to express choices for which
the probability of an alternative is left unspecified. Such quantitative knowledge may either
be absent at the current stage of design or it may be deliberately left unspecified. Therefore,
one should not be forced to associate such quantity with an alternative. When going from an
abstract specification to a more concrete specification it seems useful to consider the refinement
of + by +,. (This is not to say that in the final stage of the design trajectory all standard
choices are replaced by probabilistic ones.) For these reasons we have decided to extend PA
with a probabilistic choice rather than to replace the standard choice by a probabilistic one.

The assumption that the probabilistic choice between B; and B cannot be influenced by the
environment is forced by syntactical constraints on B; and B;. These constraints guarantee
that By +, B, induces an ndependent stochastic experiment. Below we define the syntactical
constraints. Besides the syntactical constraints for +, we must be careful with the mixture
of + (or [>) and +,. For instance, constructs like

a; 04 (1;b;0 +94 7;¢;0)

are abandoned, since the probability of the appearance of, for example, 7; b; 0 cannot be
determined. Also

a;/[>(1;0;0 4999 7; c; 0)

is not an allowed expression, since the probability of 7 ; b depends on whether a ; / terminates
successfully or not.

Before characterizing the expressions belonging to PAp we introduce two subsidiary predicates
pc and ppc. ppc(B) is true iff B is a (pure) probabilistic choice at ‘top’ level.

9.13. DEFINITION. Let ppc: £L — Bool be defined as follows:

ppc(B; +, Ba) = (ppc(By) V By =7; B)) A (ppc(By) V By =17; Bj)
ppc(B; >> By) £ ppc(By)
ppc(op B) = ppc(B) for op € {\,[]}.

ppc is false for all other syntactical constructs. O

pc(B) is true iff B has a probabilistic choice at the ‘component’ level.

202 Chapter 9: The probability module

9.14. DEFINITION. Let pc: £ — Bool be defined as follows:

pc(B; +, B;) = true
pc(By >> By) 2 pc(B)
pc(Bille Ba) £ pc(Bi) V pc(Bs)
pc(op B) = pc(B) for op € {\,[]}.
pc is false for all other syntactical constructs. O

9.15. DEFINITION. (Probabilistic process algebra PAp)

PAp 2 { B € L | ppa(B)} where ppa : L — Bool is defined as:

ppa(0) 2 true
ppa(y/) £ true
ppa(op B) = ppa(B) for op € {a;,\,[]}
ppa(Biop By) = ppa(Bi) A ppa(By) for op € { |l¢,>>}
ppa(B; + By) = —pc(Bi) A —pc(By) A ppa(Bi) A ppa(By)
ppa(By +, Ba) 2 ppc(By+, By) A ppa(Bi) A ppa(B,)
ppa(By[> By) 2 -—pc(By) A —pc(By) A ppa(By) A ppa(By).

O

B is a legitimate expression of PAp if its components are legitimate expressions. The compo-
nents of a probabilistic choice should start with an internal action 7, or should be probabilistic
choices. In a standard choice or disrupt both argument behaviours may not contain a proba-
bilistic choice at the ‘component’ level.

Examples of expressions that belong to PAp are

(T5a;0 493 75;0;0)]|]pc;b;0
a;04b;(1;a;0 4999 75 c; 0)
75050 +o3 (7;0;0 404 75¢;0)

Notice that probabilistic choices can be used in the context of parallel compositions.

Probabilistic choices are restricted to be performed between behaviours the first actions of
which are required to be unobservable actions. For instance, a; By +, a; By and a; By +,
7; By are not taken into consideration here, although their nonprobabilistic counterparts
express instances of nondeterminism. The reason for this choice is to keep our model as simple
as possible. On the other hand, we also have the following equations, where ~;, denotes testing
equivalence ([111], see also Chapter 1),

a;Bi+a;By =4 T;0;B1+7;a; B,
a;B1+7; By = 7;((a;By)+ By)+7; By
Thus all forms of nondeterminism can be rewritten in the required format of our formalism,

while preserving the notion of testing equivalence. As a consequence the proposed model is
expressive enough as long as reasoning modulo testing equivalence is acceptable.

A probabilistic process algebra 203

9.3.2 Causality-based semantics

In this section we give a causality-based semantics to PAp. We do so by defining a mapping
Ep[] : PAp — EBESp.

9.16. DEFINITION. Let ®p : PAp — PA be defined as follows

3p(0) £ 0
Be(y) 2
®p(opB) = op®p(B) for op € {a;,\,[]}
®p(B; +, Bs) = ®p(B1) + ®p(Bs)
®p(BiopBy) = ®p(Bi)op ®p(Bs) for op € {+, |lg,>>, [>}.

O

So, ®p associates to a probabilistic behaviour B in PAp its corresponding nonprobabilistic
behaviour ®p(B) in PA by simply transforming all occurrence of +, in B into +.

In the following definition let Ep[B;]| = II; = (&;,m;), for i=1,2. The definition of £] | is
provided in Chapter 2. The function init which is defined for event structures in Chapter 2 is
used for probabilistic event structures in the same way.

9.17. DEFINITION. (Causality-based semantics of PAp)
Let Ep[| : PAp — EBESp be defined as follows:

ér[0] = (£[2p(0)],2)
Erlvl = (€l2r(V)],2)
EplopBi] £ (E]®p(op B1)],m) for op € {a;,\,[]}
Ep[BiopB,] £ (E]®p(Biop B,)],m Uy for op € {+,>>, [>}
Ep[By +p B2] = (5[[@,;(3 +p Bs)],) where
T = (B4 \ init(ITy)) U m | (B2 \ init(II,))
U {(e p) | e € init(Il;) \ dom(m) }
U{(e,p-m(e)) | e € init(Il;) N dom(my) }
U {(e,1—p) | e € init(Ily) \ dom(ms) }
U { (e, (1—p) - ma(e)) | e € init(IIy) N dom(my) }

>

Ep[Bi|lc Bz (€[®p(B1llg B2)],) with
T = {((e;%),p) [(e,p) €m A (e,x) € E}U
{((x,e),p) | (e,p) Em2 A (x,€) € E}.
[

Apart from the probability part m the semantics of the probabilistic expression B=B; +, B,
is equivalent to the semantics of the nondeterministic choice. For noninitial events of B, 7 is
defined as the union of m; and 5. For initial events the situation is slightly more complicated.

204 Chapter 9: The probability module

All probabilities of initial events of B; must be multiplied with p and those of B, with 1—p.
In order to do so we have to distinguish between events that are already assigned a probability
in B; or B, and those that are not.

In Ep[By ||g B2] events are assigned a probability when one of their components is equal to
* and the other component is assigned a probability in £p[B;], for i=1, 2.

9.18. EXAMPLE. Figure 9.4 shows the probabilistic event structures corresponding to
(a) By = 7;b;0 +1/3 750, (b) By = 750 442 (75b0; (750 +2/5 7;0) 4+1/2 7;0), and
(c) By +1 /6 Bz. The reader should be able to find corresponding expressions of the event

structures of Figure 9.1 without great difficulty. 0
€
€ €
1/3 2/3 1/2 1/9
b
2/5
2/5
@) (b) (c)

Figure 9.4: Example of semantics for probabilistic choice.

The probabilistic extension is backwards compatible with the plain case, in the sense that the
semantics €] | of a behaviour in PA is fully preserved in the definition of £p[|.
9.19. THEOREM. Compatibility theorem

VB € PAp: L(Ep[B]) = L(E[®p(B)]).

PROOF. Let Ep[B] = (£, n). By definition L(Ep[B]) = L(E). From Definition 9.17 it immediately
follows that &€ = £[®p(B)]. O

9.3.3 Properties

As a next property we would like to prove that for all B € PAp its causality-based semantics
Ep[B] is a probabilistic event structure. This means that £p[B]| must satisfy the constraints
of Definition 9.2. We first prove that for expressions B that do not satisfy the pc predicate
do not contain any initial probabilistic event in Ep[B].

9.20. LEMMA. For B € PAp let Ep[B] =II = (£, 7). Then we have:

= pc(B) = init(II) N dom(m) = @.

A probabilistic process algebra 205

PROOF. By induction on the structure of B.

Base: For B = 0 and 4/ the lemma trivially holds since dom(n) = & for these cases. For B = a,; B,
we have init(IT) N dom(w) = { £} N dom(m,) = &.

Induction Step: Assume the lemma holds for B, and B, and suppose —pc(B). Let Ep[B;]| =1II; =
(&i,m;), for i=1,2. We only consider +, +,, >>, and ||¢; the proofs for the other constructs are
similar and omitted.

1. Choice: B = B; + B,. For this case we infer:

init(Ep[By + B2]) N dom(7)

= { Definition 9.17 }
(init(I1;) U init(Il)) N (dom(m;) U dom(rs))

= {ENE, =92}
(init(I1;) N dom(m,)) U (init(Ily) N dom(ms))

= {By+B;€PAp = -pc(B;) A —pc(B,); induction hypothesis }
6]

2. Probabilistic choice: trivial, since the premise does not hold.

3. Enabling: B = B; >> B,. For this case we infer:

init(Ep[By >> B,]) N dom(n)

= { Definition 9.17 }
init(I1;) N (dom(m;) U dom(m,))

= {ENE,=0}
init(I1;) N dom(my)

= { =pc(B; >> By) & —pc(By); induction hypothesis }
%]

4. Parallel composition: B = B ||g By. Then:
init(Ep[By ||g B2]) N dom(7w) = &
& { Definition 9.17 }
init(Ep[By ||g B2]) N ((dom(my) x {*}) U ({*} x dom(m,))) = &
< {{ei|(e1,*) € init(Ep[By ||g B2]) } C init(Il,); similar for II, }
(init(II;) U init(Il)) N (dom(m,) U dom(my)) = @
& { —pc(By|lg B2) & —pc(B1) A —pc(B2); induction hypothesis }

true

O

The following lemma says that the initial events of expression B for which ppc(B) holds
constitute a cluster.

206 Chapter 9: The probability module

9.21. LEMMA. VB € PAp : ppc(B) = init(Ep[B]) € cl(Ep[B]).

PROOF. By induction on the structure of B.

Base: For B =0 and B = 4/ the premise does not hold, so the lemma holds.

Induction Step: Assume the lemma holds for B; and B,. From the definition of ppc it is clear
that we only have to consider probabilistic choice, enabling, hiding and relabelling. For all other
constructs the predicate does not hold and the lemma is trivially true. Let Il = Ep[B] = (£, 7) and
I; = Ep[B;] = (&, m;), for i=1,2.

1. B = B, >> B,. For this case we have init(II) = init(II;) and cl(II;) C cl(I). From the
induction hypothesis we know init(Il;) C cl(II;), and so init(II) C cl(II). The proofs for hiding
and relabelling are similar and omitted.

2. B = B; +, B,. According to the definition of ppc there are four cases to be distinguished:

(a) By = 7¢; By and By = 7y ; Bj. From Definition 9.17 it follows that init(II) = {,v },
Y #E, and that £,1 are not in conflict with any other event. In addition, no bundles
point to £ and ¢, 7w(§) = p and 7(¢)) = 1—p, so the sum of probabilities in init(IT) equals
1. This proves that init(II) € cl(II).

(b) B is of the form B; +, By and B, = 7,; Bj. According to the induction hypothesis
init(Il;) € cl(II;). From Definition 9.17 it follows that init(II) = init(Il,) U init(Il,) and
that all events in init(Il;) are put in conflict with all events in init(II,). Besides, no other
conflicts or bundles are added. It directly follows that init(II) satisfies the constraints of
Definition 9.1. It remains to check that 3 ;. 7(e) equals 1:

> w(e)
e€init(II)

= { init(TT) = init(T1;) U init(TT,) }

> m(e)

e€init(Tl1) U init(II,)

= { Definition 9.17 }

> p+ > p-mi(e)

e€init(II;)\dom(my) ecinit(Il;)Ndom(my)
+ > =+ Y (1-p)m(e)
e€init(Ilz)\dom(ms2) e€init(Ilz)Ndom(7z)

= {init(TIly) = {¢ }; ¢ ¢ dom(7,) }
(1-p) + > p+ > p-mi(e)

e€init(II;)\dom(my) ecinit(Il;)Ndom(my)

= { init(Iy) € cl(II,) < init(Il;) N dom(m;) = init(II;) }
(1-p)+p- D mle)

e€init(Il;)

= { induction hypothesis }
1

A probabilistic process algebra 207

(c) B, is of the form B +, By and By = 7, ; Bj. Similar to the previous case.

(d) By is of the form B; +, By and B is of the form Bj +, By. According to the induction
hypothesis init(Il;) € cl(II;) and init(II,) € cl(IIy). Analogously to case 2. it follows in a
straightforward way that init(II) satisfies the constraints of Definition 9.1. It remains to
check that >, cnim) 7(e) = 1:

Y. (e
e€init(II)

= { see derivation above }

Z P+ Z p-mi(e)

e€init(II;)\dom(my) ecinit(Il;)Ndom(7y)
+ > =+ DY (1-p)m(e)
e€init(Ilz)\dom(m2) e€init(Ilz)Ndom(7z)

= { init(IL;) € cl(II;) < init(Il;) N dom(x;) = init(I;), for i=1,2 }
pe Y, mle)+(1-p)- D mle)
e€init(II;) e€init(Ilz)

= { induction hypothesis }
1

O

The previous two lemmas provide the ingredients to prove that for all B € PAp we have that
Ep[B] is a probabilistic event structure.

9.22. THEOREM. VB € PAp : Ep[B] € EBESp.

PROOF. By induction on the structure of B. For all B € PAp with Ep[B] =11 = (€, n) it
follows from Theorem 9.19 that £ is an extended bundle event structure. It suffices to consider the
constraints on w. According to Definition 9.2 this boils down to prove that dom() consists of clusters
Q, for which - ., m(e) = 1.

Base: For B =0 and B = 4/ the theorem follows directly since 7 = & for these cases.

Induction Step: Assume the theorem holds for B; and B,. Let Ep[B;] = II; = (&;, 7;), for i=1,2.
We prove the theorem for ;, +, 4+, and ||g. The proofs for the other operators are similar and
omitted.

1. B =a; By: trivial as cl(I) = cl(II;), # = m; and the theorem holds for B;.

2. B = B; + Bs: simple, since cl(IT) = cl(II;) U cl(Il;), 7 = m; U 7> and the theorem holds for B,
and B2.

3. B = B; +, B,. It follows from Definition 9.17 and Lemma 9.21 that cl(II) equals
{Q € c(Ily) | @Ninit(Il;) =@} U {Q € cl(Il) | Q Ninit(Il,) = &} U init(II).

From the induction hypothesis we know that for clusters in cl(II;) and cl(II;) the sum of the
probabilities is 1, and that for these clusters the probability function 7 is unaffected. From
Lemma 9.21 it follows that init(II) € cl(II).

208 Chapter 9: The probability module

4. B = B ||g Ba- According to Definition 9.17 cl(II) equals

{@x{+}Qecd)}U{{+}xQ[Qecll)}

In addition, dom(7) = (dom(m;)x{*}) U ({ * } xdom(m,)). From these two characterizations it
follows from the induction hypothesis that dom(7) solely consists of clusters. Since probabilities
in these clusters are unaffected it directly follows that the sum of the probabilities of events in
clusters equals one.

O

9.3.4 Event-based operational semantics for PAp

In this section we present an event-based operational semantics for PAp. This operational
semantics is derived in the same way as in Chapter 5 of this thesis for the timed case. Again
each occurrence of an action-prefix and successful termination is subscripted with a unique
event occurrence identifier, denoted by a Greek letter.

The operational semantics defines a probabilistic event transition system. We use two transition

relations: — and == for normal and probabilistic transitions, respectively. (ea), pr
denotes that B may perform event e labelled a and evolve into B’. This transition involves no
(e’T7p)

probabilistic event. B=—=—==- B’ denotes that B may perform probabilistic event e labelled 7
with probability p and subsequently will evolve into B'.

— and == are the smallest relations closed under the inference rules of Tables 9.2 and
9.3. These inference rules are inspired by a proposal of Langerak & Latella [91] to provide an
interleaving semantics to (a subset of) PAp.

The inference rules of Table 9.2 determine — . These rules are almost identical to those
of the (nonprobabilistic) event transition system for PA of Chapter 2, except for the two
nonsynchronization rules for parallel composition. We require that one component of B || B>
can only autonomously perform a (nonprobabilistic) action a if the other component cannot
perform a probabilistic event. In this way, probabilistic transitions have priority over other
transitions. This avoids that probabilistic and nonprobabilistic transitions are mixed; see
Theorem 9.25.

The probabilistic transition rules for PAp are listed in Table 9.3. There are no inference rules
for successful termination, action-prefix, choice and disrupt, since these syntactical constructs
cannot perform any probabilistic transition. For y/ and a; B this is quite obvious: the first
can only perform § whereas the second can only perform a. B; + Bs cannot perform a
probabilistic transition since it has no probabilistic choice at ‘component’ level, i.e., = pc(B)
and —pc(B;) hold. The same applies to By [> By. The first two rules for +, are the only
rules where ordinary transitions of component behaviours result in probabilistic transitions of
the composite behaviour. The second pair of rules for +, take care of adjusting probabilities.
If B; may perform event e with probability ¢, then B; +, By may do so with probability p-q.
The rules for enabling, hiding and relabelling are rather straightforward extensions of the rules
for the nonprobabilistic case. For parallel composition the components are required to jointly
perform probabilistic transitions, and while doing so their probabilities are multiplied. This

A probabilistic process algebra

209

Ve 9,0 ag; B e, B
B, &9, p! B, &9, B!
By + B, (&a), Bi By + B, (&a), Bé

B, &2, p! B, &9, B!

a#o6
By >> B, M)Bi >> B, () By >> B, (6,7)5 B,
B, &4, B B, &0, p
1 1 (U, % 6) 1 . 1
B:[> B, 4%, B! [> B, B.[> B, 9, B
B, &2, B! p_&a), p
B [> B, &%, B B[H] “&HE), pig]

B, (6,0)531
B, ||g B, 4225 By || By

(a g G® N —pc(By))

B, (£,a) B,
B, ||g B, (2L, B, || B;

(a g G® A —pc(By))

B, &9, B A B,-¥9, B!

- (a € GY)
B, ||g B, (&), B || B,
B_&a), pr B _&a), pr

(a ¢ G)

(a € Q)

B\ G-, B\ @ B\G-&, B\ G

Table 9.2: Nonprobabilistic transition rules for PAp.

210

Chapter 9: The probability module

B, (6,7)531

B, (6,7)535

)T 71—
B, +, B, B! By +, B, =t
B] (5,7’,(]) Bi _B2 (ng,Q) Bé
B]_ _|_p BZ (gyT’p'Q) Bi B]_ +p B2 (5,7’,(1—1’)'11) Bé
B, (6,7p) B
By >> BZ%B{ >> By
(&7p) (&mp)
B]_ S .B, B2 _ _B,
N (=pe(By)) CEOR (=pc(Br))
((§:¢),T: .)
By |l¢ B, > B} ||o By
B \ GL—T’I’)_> BI \ G B[H] (gy'r,p) B,[H]

Table 9.3: Probabilistic transition rules for PAp.

ensures that the sum of the probabilities of all outgoing transitions of a state equals 1; see
Theorem 9.26.

9.23. EXAMPLE. Consider B = (7¢; 0 493 7y ; 0) ||| ay; 0. Since probabilistic transitions
have priority over other transitions there is no possibility to initially perform (x,a). We do
have the following derivation:

(7¢5 0 403 T35 0) || ay; 0

(£:7,08) { (probabilistic choice), (parallel composition) }
0l[ay; 0
&x0) ;£ (action-prefix), (parallel composition) }
ol/|0 . =

9.24. EXAMPLE. Let B = (1¢;a;0 +¢2 7435 0;0) ||| (1y; 0 406 7p; 0). The initial state
of the transition system corresponding to B has four outgoing probabilistic branches labelled:

(a) ((€,x),7,0.48), (b) ((§;),7,0.32), (¢) ((¢,x),7,0.12), and (d) ((¢,¢),7,0.08). O

In the resulting transition system states can be partitioned into two groups: states that only
have outgoing probabilistic transitions and states that only have outgoing nonprobabilistic
transitions. There are no states that have both.

Time and probability 211

9.25. THEOREM. VB € PAp : B=£A V B—hH .

PROOF. Straightforward by induction on the structure of B. O

The following lemma states that the sum of the probabilities of all outgoing probabilistic
transitions of a state equals one.

9.26. THEOREM. VB € PAp: (Fe: B=o2s) o v g=1.
B »h

PROOF. Straightforward by induction on the structure of B. O

Let TSp(B) be the probabilistic event transition system of B obtained by applying the in-
ference rules to B. For £[B] a probabilistic transition system ETSp is constructed in the
following way. States of the transition system ETSp are reachable probabilistic event struc-
tures (or, derivates) of £] B] with £] B] being the initial state. There is a transition from II
to II" if II' = II[o] for event trace o with | o | = 1. We then have the following consistency
result between the causality-based semantics and the event-based operational semantics:

9.27. THEOREM. VB € PAp : (I)p(TSp(B)) Rte (I)p(ETSP(gp[[B]]))
PROOF.

®p(ETSp(EP[B]))
—is0 { Definition 9.17 }
ETS(E[B])
~ { Theorem 2.46 }
TS(B)
~;. { [91, Proposition 4.4] }
®p(TSp(B)) - B

Stated in words, take the probabilistic transition system for B obtained from the operational
semantics and construct a probabilistic transition system for the denotational semantics of B,
Ep[B], by considering event traces of length 1. If the probabilities in the transition labels
are omitted (by ®p) then the two resulting (plain) transition systems are testing equivalent.
Remark that this is not such a strong result; for the timed, real-time and urgent case we
obtained strong bisimulation equivalence! The reason for this is that in the operational se-
mantics of PAp probabilistic transitions have priority over other transitions. In this way, the
possibility to perform an observable action may be postponed since probabilistic choices have
to be resolved first. This phenomenon is not present in the noninterleaving semantics.

9.4 Time and probability

In this section we briefly discuss the integration of our probabilistic model EBESp, the deter-
ministic (simple) timed model EBESr, and its urgent variant EBESy;. The resulting integrated

212 Chapter 9: The probability module

model is used in the next section to illustrate how a performance model can be obtained from
an event structure model.

In order for clusters to model stochastic experiments we pose the restriction that all events in
a cluster are enabled at the same time. Under this constraint situations like

p 1-p
41 o—o0 7
€ €

cannot appear. Here it would be difficult to interpret this cluster as a stochastic experiment,
since before time 7 only event e; can happen and not e;. An alternative interpretation would be
to take the individual timing constraints into account only after having made the probabilistic
choice between the events. The main problem with this interpretation is that it is not a
plausible interpretation when also considering urgent events. Consider, for instance, the cluster

p 1-p
4 0—07
€ €

where event e, will never happen since it is excluded by urgent e; since D(e;) < D(e2). Making
first a choice among the events without taking the timing constraints into consideration would
make no sense here. Here, however, it seems quite reasonable to require e; and ey to have
identical timings; what would otherwise be the role of the event probabilities? For simplicity
we therefore require all events in a cluster to be enabled at the same time. At a syntactical
level it suffices to require all initial (internal) actions in a probabilistic choice to have the same
time delay. From an application point of view this is not a severe restriction as typically no
time constraints are put on internal probabilistic behaviour.

A timed, urgent, probabilistic event structure is an (extended bundle) event structure equipped
with the deterministic time, urgency and probability modules, D, 7, U and w, respectively.
The causality-based semantics of an extension of PA including () a; B, +, and Uy() can
now easily be provided by combining ;[| and €p[| in the most obvious way. It is now
straightforward to prove by induction on the structure of behaviour expressions that for all
clusters in the event structure corresponding to timed, urgent, probabilistic behaviour all
events in these clusters are enabled at the same time.

9.5 Performance analysis—two examples

This section presents two simple examples that illustrate how unreliable time-dependent sys-
tems can be specified using our formalism, and, more importantly, that exemplify how a
performance model can be generated from a causality-based model. The examples are kept
rather intuitive in the sense that no formal mapping between the event structures and the
performance model, that is, discrete-time semi-Markov chains, is given.

Performance analysis—two examples 213

9.5.1 Discrete-time semi-Markov chains

As we do not expect the reader to be fully acquainted with the notion of discrete-time semi-
Markov chains (DTSMCs) we give a brief explanation of such processes and explain how
limiting distributions can be obtained for such models. It is assumed that the reader is
familiar with the notion of discrete-time Markov chains and the notion of limiting distribution

(see also Appendix A). A more thorough treatment of semi-Markov processes can be found in
Ross [130] and Heyman & Sobel [70].

In a discrete-time Markov chain (DTMC) the state residence time (or sojourn time), that is, the
probability distribution of staying in a state for a certain time, is restricted to be geometrically
distributed. A discrete-time semi-Markov chain (DTSMC) allows residence times to have an
arbitrary distribution. This means that a DTSMC does not need to satisfy the memoryless
property (see Lemma 8.2), because the probability of going from one state to another depends
not only on the current state (as for memoryless distributions) but also on the amount of time
already spent in this state.

Apart from the fact that a DTSMC allows more general residence time distributions, it behaves
similar to a DTMC. In fact, when one abstracts from the residence time distributions in
a DTSMC one obtains a corresponding DTMC, referred to as the embedded DTMC. From
Appendix A we recall that the limiting distribution 7 of a DTMC with transition probability
matrix P can be computed by solving the following system of linear equations

m-P=m, Zmzl
i

m; is the limiting distribution of state ¢, that is, m; is the probability of being in state ¢ of the
DTMC ‘on the long run’. Note that the limiting distribution of a DTMC only exists if the
chain is regular (see Appendix A).

The limiting distribution of a DTSMC is calculated by first determining the limiting distribu-
tion of its embedded DTMC in the aforementioned way, and subsequently interpreting these
results for the DTSMC by taking into account the average residence times. Let U;; be a (dis-
crete) stochastic variable that determines the number of time units spent in state 7 if the next
state is j (i # j) and let R; be a (discrete) stochastic variable that determines the residence
time of state ¢ (i.e., the number of time units spent in state 7). Then

Pr{R, =k} & ZP(i,j)-Pr{Uij:k} :

Let r; denote the average residence time of state . That is,

ri =3 k-Pr{R; =k} .
k

Let T; denote the average number of time units between successive transitions to . The
limiting distribution ¢ of a DTSMC is now defined as:

214 Chapter 9: The probability module

9.28. DEFINITION. (Limiting distribution of a DTSMC)
The limiting distribution ¢; of state i of a DTSMC equals r;/T;. O

The limiting distribution of a DTSMC exists iff a limiting distribution exists for its embedded
DTMC. Let 7; be the limiting distribution of state 7 of the embedded DTMC. An alternative
interpretation is that m; denotes the limiting distribution of the DTSMC at hand being in ¢
at some transition instant, that is, at a moment of transition. Stated otherwise, m; can be
considered as the fraction of (transition) instants at which the DTSMC is in state ¢, considering
an infinite amount of transition instants. In order to obtain the fraction of time the system is
in state ¢ (i.e., ¢;), the average residence times must be taken into account. This gives rise to
the following relationship between m; and ¢;:

9.29. DEFINITION. (Alternative characterization of limiting distribution of a DTSMC)
For i a state of a DTSMC with limiting distribution 7; in the embedded DTMC:

A Tyt T
25T T

Pi
U

In the following examples we will use these definitions in the following way. Given some
DTSMC we first calculate the limiting distributions 7; of its embedded DTMC and determine
the average residence times r;. Using Definition 9.29 we subsequently determine the limiting
distributions ¢; of the DTSMC. Finally, we calculate T; by using Definition 9.28.

9.5.2 An unreliable coffee machine

As an example of deducing a performance model from a causality-based model we consider
an unreliable coffee machine. Although we have not dealt with recursive specifications up to
now, this example uses a simple form of recursion—tail recursion—to describe the iterative
behaviour of processes. (A formal treatment of recursion is provided in Chapter 10.)

The example consists of a coffee machine C' and a user U. U represents an impatient user—
after inserting a coin he wants to have coffee at his disposal within n time units, n € Time. If
coffee is not supplied within this time period a new coin is inserted, assuming that the coffee
machine suffers from some failure, and the process is repeated. For simplicity it is assumed
that consuming coffee takes no time.

U := Uy, (coin; (coffee; U + (n) to; U))
The coffee machine is quite realistic in the sense that it sometimes refuses to offer any coffee

even after a coin has been inserted. Let p be the probability the machine behaves in this
unreliable way. Furthermore, producing coffee is assumed to take k time units (k € Time).

C = coin; (1; C +, 7; (k) coffee; C)

Performance analysis—two examples 215

The overall system is specified by

S := U ||{ coincoffee} C

In order to make synchronizations on coffee possible we assume in the sequel that n > k. The

coin

coin

coffee 1-p

(@) (b) (©

Figure 9.5: Timed probabilistic event structures of (a) U, (b) C, and (c) S.

corresponding timed probabilistic event structures of U, C, and S are depicted in Figure 9.5.
These figures only explicitly depict the finite part of the event structure corresponding to the
“body” of the processes. Recursive calls should be considered as appropriate unfoldings of
the finite representations. To illustrate this principle Figure 9.6 illustrates for process U how
such unfolding should be performed. Each successive unfolding is obtained by instantiating
the original (finite) structure. The sequence of event structures obtained by unfolding in this
way is equivalent to the approximations of the denotational semantics of recursive processes
as defined in Chapter 10.

The way in which we obtain finite representations of infinite event structures is not formalized
here and is a subject for further study. Finite representations can be obtained in those cases
where the infinite event structure possesses a certain regular pattern, such as in Figure 9.6.
Unfortunately, it is not so clear to determine this regularity principle such that, for instance,
all processes for which a finite labelled transition system exist are captured. An initial attempt
to formally characterize this regularity can be found in Latella [93].

Assume now that we want to calculate the average number of cups of coffee, V., offered per
unit of time. In order to determine this quantity the following grouping of events is introduced
s1 = {eg,e,e4} and sy = {e3,e5} (see Figure 9.7(a)). s; represents the case in which no
coffee is offered, s, represents the case in which actually coffee is offered, i.e., the successful
case. The grouping of events imposes a particular view on the system. In this view one
abstracts from system characteristics that are irrelevant for the kind of performance analysis
one performs. For instance, for our purpose, it is not necessary to keep events e, and ey
separated as they both lead to the same situation, i.e., not offering any coffee. The groups
of events and probabilistic transitions between them can be considered as a DTSMC, see
Figure 9.7(b).

216 Chapter 9: The probability module

coin

coffee

coin

coffee
coin @ coin

coffee coffee

Figure 9.6: Unfoldings of the timed probabilistic event structure of U.

&

(a) (b)

Figure 9.7: (a) Grouping of events and (b) a corresponding DTSMC.

Under the assumption that an event takes place as soon as it is enabled (maximal progress),
we determine the average residence times as follows. From Figure 9.7(a) we deduce that & time
units are spent in state sy, so ry = k. For state s; there are two possibilities: if a transition is
taken from s; to sy no time is spent in sy, and if the system remains in state s; n time units
are spent in s;. The average residence time of s; thus becomes r; = (1-p) -0+ p - n.

Using standard means we obtain for the limiting distribution 7 of the embedded DTMC!:

1 _1-p

Using Definition 9.29 and the average residence times determined just above we obtain for the

1Since all states are aperiodic it follows that the embedded DTMC of Figure 9.7(b) is regular (cf. Appendix
A).

Performance analysis—two examples 217

limiting distribution of the DTSMC:

k-(1-p)
n-p+k-(1-p)

_ n-p
nep+k-(1-p)

¢1 a¢2:

(Note that for k=n one obtains ¢; = p and ¢ = 1—p.) According to Definition 9.28 the
average number T; of time units between successive transitions to s; equals r;/@;. Since s,
represents the successful case we obtain:

1 1—p
T neptk-(1-p)

For p — 0 the average number of time units between two coffee events approximates k, the
time to produce coffee.

9.5.3 Illustrating locality

One of the main advantages of using a partial-order model for performance analysis was—as
claimed in Chapter 1—the locality aspect, i.e., if one is interested in analyzing only part of a
system it is relatively easy to do so without considering other (irrelevant) parts. To illustrate
this we consider the following example:

Q:=(We; VIR d; V)
R:=(7;(dp) b; v/ +p 75 (da) a; /) ,and
P:=(1)s;(R|[[Q) >> P .

Here, () and R are independent processes that only synchronize their start and finish in each
‘invocation’ of P. R can autonomously choose whether to perform a b (with probability p)
or to perform an a (with probability 1—p). For the purpose of this example we assume that
R is ‘slower’ than @, i.e., max(d,,dy) > 2, and suppose we are interested in the average
delay between two events labelled a (or b). Similar to the previous example we consider the
timed probabilistic event structure corresponding to P (cf. Figure 9.8(a)) and group events
appropriately—s; = {eq,es,e6,e3 } and sy = {3, er,¢e9 }; note that events e, and e5 do not
belong to any group. The limiting distributions of the embedded DTMC (cf. Figure 9.8(b))
are:

1 _1-p
Using Definition 9.29 and the fact that ry = p - (1+dp) + (1—p) - 1 and ry = d, we obtain for
the limiting distribution ¢ of the DTSMC:

_ 1+dy-p by = d, - (1—p)
Ltda+(dy—do)-p ' 0 1dda+ (dp—dy)-p

$1

218 Chapter 9: The probability module

The average delay between two a events equals 75, the average time between successive tran-
sitions to s;. Using Definition 9.28 we get:

"2 :1+da+M

T, ="
27 gy 1-p

For p — 0 the average delay reaches 1+d,, which is optimal; for p — 1 the average delay
approximates oo and a’s are never generated.

(b)

Figure 9.8: (a) Timed probabilistic event structure of P and (b) a corresponding DTSMC.

Observe that the average delay between two subsequent a’s is analyzed without considering
the—for this purpose—irrelevant process) (more precisely, events e, and e5). This seems
reasonable as only R is involved in generating a events. Here we claim that this ‘locality’ aspect
is a direct consequence of the distinction between parallel composition and nondeterminism in
the probabilistic model. (The corresponding labelled transition system consists of 54 states,
and includes 9 transitions labelled a.)

9.6 Related and further work

Probabilistic process algebras have been studied quite extensively in the literature. Proba-
bilistic extensions of different process algebras have been proposed, such as ACP (by Baeten
et al. [8]), CCS (by, amongst others, Christoff [34] and Hansson & Jonsson [65]), CSP (by
Lowe [96, 97] and Seidel [135]), LOTOS (by, amongst others, Miguel et al. [102], Rico & von
Bochmann [129], Sisto et al. [138], and recently Nufez & de Frutos [115]), and synchronous
CCS (by Giacalone et al. [48], Van Glabbeek et al. [53] and Tofts [141]). For overviews of
probabilistic process algebras we refer to the theses of Christoff [35] and Hansson [64]. The
models underlying most of these process algebras are labelled transition systems in which
probabilities are associated with transitions. To our knowledge PAp is the first probabilistic

Related and further work 219

process algebra with a noninterleaving semantics. In this section we discuss and compare
several characteristics of our work with that in the literature.

9.6.1 Nondeterminism, probabilistic choice and parallel
composition

In order to be able to specify ‘real’ nondeterminism and probabilistic nondeterminism we have
chosen to equip PAp with both a standard and probabilistic choice (see also the discussion
in Section 9.3.1). Several probabilistic process algebras replace the standard choice by a
probabilistic one, usually +;,,. Since in an interleaving setting for finite processes parallel
composition can be reduced to choice using the expansion law, parallel composition implicitly
becomes probabilistic! For instance,

alllb=a; b+ b;a

In probabilistic ACP of Baeten et al. [8] parallel composition becomes even explicitly proba-
bilistic. There, P ||%? @ denotes a process in which an interaction between P and @ happens
with probability 1—¢, and an autonomous action of either P or () with probability q. Given
that an autonomous action occurs, P will perform such action with probability p and @ with
probability 1—p. A form of probabilistic parallel composition operator, where only the latter
probability (p) is indicated, is proposed for LOTOS by Sisto et al. [138], and independently by
Nufiez & de Frutos [115]. We believe that probabilistic information is typically associated with
alternatives in a specification, one excluding the other. Imposing a probability on causally
independent events—Ilike those resulting from parallel composition—seems not desirable from
a design point of view, since it disturbs their independence.

9.6.2 Related approaches

Other models that do incorporate both a standard and probabilistic choice operator, and
besides require probabilistic choices to be independent from the environment—Iike we do—
can be found in [65, 96, 102, 45].

Hansson & Jonsson [65, 64] distinguish in their timed probabilistic variant of CCS, called
TPCCS, between probabilistic (P) and action (A) states such that these two types of states
strictly alternate. In action states outgoing transitions possibly involve the participation of
the environment, but in probabilistic states they do not. This implies that probabilistic moves
are always performed autonomously. In our operational semantics we also distinguish between
A- and P-states, but do not require them to strict alternate.

Lowe [96] distinguishes between three types of states: action states (A), from which the process
may evolve by performing observable actions; probabilistic states (P), from which the process
may evolve probabilistically; and nondeterministic states (N) from which the process may
evolve nondeterministically. Lowe uses the resulting NPA transition systems (or graphs) as
a semantical model for a probabilistic variant of CSP. He allows only internal probabilistic
choices because ‘we do not believe that a probabilistic external choice is particularly useful in

220 Chapter 9: The probability module

its own right’. Lowe showed that none of the standard semantical models for CSP (like Hoare
traces and failures) can be extended to cover both +, and +, and concluded that ‘it seems
very hard to combine the two phenomena’ [97].

LOTOS-P, the probabilistic version of LOTOS proposed by Miguel et al. [102], models stochas-
tic experiments as internal actions. random x in B denotes a behaviour B possibly containing
free occurrences of variable x, where z is the outcome of a realization of an experiment. For
instance, an unreliable channel that may lose messages can be specified as

Chan := in; random z in ([z] — out; Chan + [~z — Chan).

Here it is assumed that z models the outcome of an experiment with two possible outcomes:
true or false. Each possible outcome is represented by a transition labelled 7. In this way
experiments are obtained that are independent from the environment.

Fang et al. [45] present a probabilistic process algebra, called PPARTY*, where probabilities
are associated with internal activities of a process. Probabilities are linked to time by forcing
that a probabilistic transition takes one unit of time. They do, however, incorporate a (binary)
parallel composition operator |, where B; | B, terminates as soon as either By or B, terminates.
As a result, for instance, a | (7 +, 7) will never resolve the probabilistic choice, since a is first
forced to occur (normal transitions have priority over probabilistic ones) which results in the
termination of the entire process.

9.6.3 Reactive, generative, and stratified models

Several models allow a probabilistic choice to depend on the environment, in the sense that
the probability of choosing one alternative or the other may depend on interactions with the
environment. There are different ways in which to resolve such probabilistic interactions.
Van Glabbeek et al. [53] consider three approaches: reactive, generative and stratified; in
decreasing order of abstractness. In the generative case the entire set of alternatives in a state is
equipped with a single probability distribution. The probabilities are conditioned on the set of
actions accepted by the environment. Choices involving possibly different actions are resolved
probabilistically. In the reactive model a separate probability distribution is associated with
each action, and choices between different actions are resolved by the environment. (We do
not discuss the stratified model here.) In a similar way as pointed out by Hansson [64] our
model can be considered to fit within the realm of the reactive models. For example consider
the following probabilistic variants of event structures:

Related and further work 221

e of
1/4 3/4
c f a b
3/5 2/5
L d c
@) (b)

(a) represents a reactive probabilistic process which initially can either perform an event
labelled a or b.2 (b) represents the corresponding event structure in EBESp. If a is performed
both event structures will with probability % be able to perform an event labelled ¢ and with
probability g an event labelled d. A similar reasoning applies to the case when b is performed.

9.6.4 Compatibility with nonprobabilistic semantics

Given an expression B € PAp and its nonprobabilistic image ®p(B) we have the nice result
that omitting the probability information in Ep[B], the probabilistic event structure cor-
responding to B, results in exactly the ‘plain’ event structure semantics of ®p(B). Thus,
the semantics of PAp is a complete conservative extension of the semantics of PA. A similar
result has been reported for LOTOS-P [102], the probabilistic variant of LOTOS in [138],
and probabilistic ACP [8]. It is interesting to note that for the interleaving semantics for a
subset of PAp (using identical syntactical constraints as we have) in [91] such result is not
obtained—Langerak & Latella could only prove the transition system of ®p(B) and the tran-
sition system obtained by removing the probabilities from the probabilistic transition system
of B to be testing equivalent.

9.6.5 Further work

Probabilistic event structures can be seen as a causality-based denotational model for system
behaviour involving probabilities. An issue for further study is to see how to obtain from the
causality-based semantics of PAp more abstract semantics in the form of equivalences (congru-
ences) and pre-orders (pre-congruences) that would reflect natural notions of transformation
and implementation for probabilistic systems well.

Another direction to extend this work would be a further enhancement of expressive power.
Interesting topics from an application point of view would be to allow for the assignment of
probabilities to noninternal events (for instance, in the reactive sense), to work with intervals
of probabilities, as can be found in Wang [150], or to incorporate an operator like [>, that

2Evidently, this is not a probabilistic event structure; for the sake of this example we allow probabilities to
be assigned to noninternal events and are not restricted by the cluster concept.

222 Chapter 9: The probability module

allows for the quantification of the probability a behaviour is disrupted by another one, as can
be found in Sisto et al. [138]. We believe that for [>, a probabilistic extension of ~» would be
appropriate; the interpretation of e % ¢’ being that e will be disabled by e’ with probability
p once both e and €’ are enabled.

We have illustrated the use of our semantic model to obtain a performance model in the form
of a discrete-time semi-Markov chain in two simple examples. There, the explicit presence of
parallelism in the semantics helps in obtaining the performance model. It should be noted,
however, that this connection is most readily exploited in the form of graphs (as used in the
example), whereas the semantics of infinite behaviours is in reality given by infinite event
structures (see Chapter 10). Under a regularity assumption, which applies in the case of tail
recursion as used in the examples, such infinite structures can be finitely represented by graphs,
which are subsequently transformed into performance models. It would be most interesting
and useful, however, to represent infinite behaviour directly in terms of such a graph-based
semantics. A first attempt in this direction can be found in Latella [93]. Although the structure
of a performance model ultimately depends on the performance metrics one is interested in,
such graph models could be a basis to study generic transformations to obtain Markov-like
performance models from them in a systematic way, and guidelines and heuristics for applying
them. Certainly, application of our method should first be attempted on larger, more realistic
examples (e.g. broadband networks, multi-media), to develop a better feeling for what is really
required.

We have addressed the use of probabilities in our deterministic timed model and concluded
that under a simple additional constraint on the timing of cluster-events, clusters remain
to correspond to stochastic experiments. We believe that an analogous constraint would
also do in the stochastic setting of the previous chapter. It has recently been argued by
Brinksma [27] that in the realm of stochastic process algebras different choices exist: the
‘structural’ choice (+), and the ‘capacitive’ choice (denoted here as @) which reflects the more
usual interpretation of choice constructs in performance models like CTMCs (see, for instance,
Hillston [72]). @ can be characterized as

(F)a; Bi® (G) a; By = (F-G) a; (B1 +, By)

where p = Pr{Ur < Ug }. (Note that +, is an internal choice here.) Incorporating +, in
PA¢s, the stochastic process algebra of Chapter 8, would enable to express both @& and + in
a causality-based framework.

9.7 Conclusions

In this chapter we have developed a way of specifying probabilistic behaviour in (extended
bundle) event structures. We have defined the notion of cluster, a set of internal, mutually
conflicting events that have identical enablings and disablings. An event structure which only
assigns probabilities to events in a cluster in such a way that the sum of these probabilities
for each cluster equals 1 is referred to as a probabilistic event structure. By assigning prob-
abilities in this way clusters represent stochastic experiments, the outcome of which can be

Conclusions 223

determined independently from the environment. We considered the status of a probabilistic
event structure after the execution of a set of events and defined a probability measure for sets
of configurations. The mixture of deterministic time and probabilities has been investigated.
PA has been equipped with a probabilistic (internal) choice operator +,, p € (0,1), such that
B; +, B; nondeterministically behaves like B; with probability p or like B, with probability
1—p. The resulting formalism, PAp is assigned a causality-based semantics which is proven to
be a conservative extension of the semantics of PA. A corresponding event-based operational
semantics is presented which is shown to be testing equivalent to an ‘interleaving’ view of the
noninterleaving semantics. Finally, we have exemplified how a performance model could be
obtained from a (timed) probabilistic event structure.

224 Chapter 9: The probability module

10 Recursion

In order to specify real-life systems, recursion is a vital ingredient of any
specification formalism. This chapter provides an event structure semantics
for recursively defined processes. We consider the timed, real-time, urgent,
and the probabilistic variant, and show that the stochastic case can be
taken into account by a straightforward generalization of the deterministic
timed case. Recursion is dealt with using the well-known standard domain
theory. A complete partial order is defined on each type of event structure
and all operators on these structures (which correspond to operators in the
related process algebra) are shown to be continuous w.r.t. this partial order.
The semantics of P := B is then defined as the limit of a series of better
and better approximations. Finally, for PAr, PAg, PAy and PAp we give
an event-based operational semantics for recursively defined processes and
prove the consistency of this operational semantics and the denotational
causality-based semantics.

10.1 Introduction

In order to specify practically meaningful systems, recursion is indispensable. Until so far,
the different models introduced in this thesis do not incorporate a mechanism to cope with
recursion. The—quite standard—way to incorporate recursion is to extend the syntax of the
process algebra at hand with the construct B ::= P, where P is a process identifier, and to
assume a behaviour to appear in a context of a finite set of process definitions of the form
P := B, where B (the body) is a behaviour that possibly contains occurrences of P (or other
process identifiers). Occurrences of process identifiers in body B are referred to as process
instantiations.

A simple recursive specification is P := a; P which specifies a behaviour that infinitely many
times can perform action a. In this chapter we consider the event structure semantics of
recursive process definitions. That is, for P := B we are looking for event structures that
satisfy equations of the form & = Fg(€). For the example above, it is clear that an event
structure consisting of infinitely many events e, with e, +— e, ; for all n > 1, all labelled
a, is a solution. To obtain an event structure for arbitrary recursive process definitions, is,
however, not so evident.

Fortunately, there is a well-established piece of theory, referred to as domain theory, that deals
with the problem of constructing a denotational semantics for recursive definitions (see e.g.
the treatments of Manna et al. [100], Tennent [139], Gunther & Scott [63] and Schmidt [132]).

225

226 Chapter 10: Recursion

The basic notions and results from domain theory as used in this chapter are summarized in
Appendix B. Domain theory can be applied to our setting as follows.

As stated above we are looking for an event structure £ that solves & = Fp(€). That is,
£ is a fixed point of Fg. Here Fp is a function that substitutes an event structure for each
occurrence of P in B, interpreting all operators in B as operators on event structures. For
example, for P := a; P the result is Fg(€) = a; &, where @} is an operator that ‘prefixes’ an
event structure with an event labelled a.

From domain theory it is known that fixed points can be determined once it is known that
Fg is continuous w.r.t. a pointed complete partial order (denoted <) on event structures. Let
us first consider the order and then deal with continuity. A pointed complete partial order
(pointed c.p.o.) is a partial order with a least element, usually denoted L, such that each
totally ordered set (i.e., chain) of event structures has a least upper bound (L.u.b.). For chain
&1 <& ... the Lu.b. is denoted | |; £;. Fp is continuous w.r.t. < if and only if it preserves
L.u.b.’s:

Fo(l &) = | Fa(&)

Preservation of l.u.b.’s means that applying Fg on the l.u.b. of a chain & < &, < ...isidentical
to determining the Lu.b. of the chain Fp(&;) < Fp(€) < In general, preservation of
l.u.b.’s is not straightforward to prove. However, under the condition that two ordered event
structures with identical sets of events are identical it suffices, by a nice result of Winskel [155],
to prove continuity on events (which is easier) rather than continuity in the above sense. For
the models in this dissertation this condition applies (as proven in this chapter) and we can
adopt Winskel’s approach. Fp is continuous on events if and only if it is monotonic, that is,

& <& = Fp(&) I Fp(&s)

and, for each chain & <&, < ...
E (fB(U 5z)> CE <|_| fB(&'))

Here E(€) denotes the set of events of £. For example, @7 is continuous on events (and so,
continuous w.r.t. <) iff (i) it is monotonic—*prefixing’ an event to £ which is smaller than
&, should result in a smaller event structure than ‘prefixing’ the event to £&5—and (ii) the set
of events of e, prefixed to l.u.b. |; €; is a subset of the set of events of the l.u.b. of the chain
obtained by prefixing each &; with e,.

Given a pointed c.p.o. and a function that is continuous it is known from domain theory
that the set {£ | Fp(€) = € } has a least element, referred to as the least fized point, which
is unique and equals | |; F5(L), for i > 0. So, the equation & = Fp(£) can be solved by
means of approrimation. That is, £ is approximated, starting with the ‘worst’ approximation
1, then Fp(L), which—by monotonicity—approximates Fg(Fp(L)), and so on. L, Fg(L),
Fp(Fp(L)),...is asequence of better and better approximations which, by continuity of Fg,
converges to a limit | |; F5(L).

Extended bundle event structures 227

For Fp(€) = @;& we start the approximation with the empty event structure. In each
successive approximation we now extend the previously obtained event structure with a new
event labelled a pointing to the initial event(s) of this structure, and as a result, the lLu.b.
of this sequence will be an event structure consisting of an infinite chain of equally labelled
events (with label a):

In this chapter the above procedure is applied to timed, real-time, urgent, stochastic and
probabilistic event structures. In this way, we obtain a noninterleaving semantics for PA7,
PAg, PAy, PAgs and PAp that includes recursion. The event-based operational semantics of
PA7, PAg, PAy and PAp is extended with recursion and consistency between this operational
semantics and the denotational causality-based semantics is proven.

From the above description it is clear that the semantics of P := B may result in an event
structure of infinite size, i.e., with an infinite number of events. As a result bundles of infinite
size and an infinite number of conflicts can appear. Until so far, our event structure models
have been finite, but there are no severe difficulties in extending this to infinite event structures;
only in case of timed event structures we need to adapt the definition of time appropriately.
In this chapter it is assumed that infinite event structures can appear.

This chapter is further organized as follows. In Section 10.2 we start by recapitulating the
most important definitions and results of Langerak [89] concerning a pointed c.p.o. on extended
bundle event structures and the denotational semantics of P := B where B € PA. Section 10.3
considers recursive process definitions in PA7. Sections 10.4, 10.5 and 10.6 do the same
for PAy, PAg, and PAgs, respectively. Section 10.7 considers recursion in the probabilistic
setting. Sections 10.4, 10.3 and 10.7 also consider the extension of the event-based operational
semantics of PAr and PAg, PAy, and PAp with recursion. Section 10.8 presents the conclusions
of this chapter.

10.2 Extended bundle event structures

This section introduces a pointed c.p.o. on extended bundle event structures, explains the
approach of [89, Chapter 8|, and summarizes the main results. Section 10.2.1 introduces
the pointed c.p.o. <, provides a characterization of the l.u.b. of a chain of event structures
ordered under <, and presents some properties of this ordering and its limits. Section 10.2.2
considers the function Fp (see Section 10.1), proves continuity w.r.t. < for all operators on
event structures and defines the denotational semantics of P := B for B € PA.

10.2.1 A pointed complete partial order

10.1. DEFINITION. (Partial order on extended bundle event structures)
Let & = (E;, ~»i, i, ;) for i=1,2. Then & <&, iff

228 Chapter 10: Recursion

E, C E,

~p =~y N(EL X Ey)

1= {((X N Ey),e)[e€ By A X —ye}
=10 F;.

- W b

O

where [denotes restriction. It is straightforward to verify that < is a partial order. The con-
straint £y C FE, is self-explanatory. For conflicts we require that no new conflicts appear in &,
between events that are already in &£;. Similarly, the third constraint forbids the introduction
of bundles in & pointing to events in & for which there exists no projected bundle in £;. Note
that this constraint allows for bundles to grow in such a way that the old bundle is contained
in the new one.

10.2. LEMMA. (EBES, <) is a pointed c.p.o..

PROOF. Routine and omitted. O

It is easy to show that | = (&, @, &, &), the empty bundle event structure, is the least element
under <.

10.3. EXAMPLE. Consider the event structures of Figure 10.1, referred to as (a) &, (b)
&y, (c) & and (d) &4, and assume equally labelled events to be identical. We have & < &,
since By C Ey, ~1=~% N(E; X Ey), and ({eq,e.} N Ep) 1 €. It is also easy to check
that & < & (and, since < is a partial order, & < &3). Since {es,eq} —4 {e}, but

({easea} N Ey) /2 { €y } we have £, A &. O]
e d d
a a a
a b b b b
. >e c c c
(a) (b) (c) (d)

Figure 10.1: Extended bundle event structures with (a) < (b) < (c), but (b) € (d).

For chain & < & < ... let event structure | |; £&; be defined as follows. For the set of events
and conflicts, and the labelling function, we simply take the union of all events, conflicts and
labellings of the event structures in the chain. As bundles may grow this approach does not
apply to the set of bundles. Suppose some &; has bundle X; —; e. According to the definition
of < there is a series of bundles X; —; e, X;i1 1 e,... satisfying (X1 N Ey) = X, for
k > j. Then |; € has bundle (U, Xji,) — e.

Extended bundle event structures 229

10.4. DEFINITION. (Least upper bound (under <))
Let £& < & < ... be a chain, then ||; & 2 (U; E;, U; ~, —,U; l;) with

k

10.5. LEMMA. |];&; is the least upper bound of chain & <& <

PROOF. See [89, Theorem 8.2.5]. O

Some important and useful properties are listed in the following theorem. The fact that a
‘larger’ event structure allows more event traces is stated in the first part of the theorem. So,
< preserves sets of event traces. The second part of the theorem states that ordered event
structures with identical sets of events are identical. As we will see in Lemma 10.11 this
property is essential to prove that continuity (w.r.t. <) boils down to continuity on events.
The third part of the theorem says that the set of traces of the l.u.b. is simply the union of
the sets of traces of the elements of the corresponding chain.

10.6. THEOREM. Let gz = (EZ, iy, lz) for Z:]_, 2.
2. (51 <&, AN B = Eg) = £ = &,.

PROOF. See [89, Section 8.2]. O

The following result is used in the next sections. Let & = (Ej;, ~;, 4, ;) for i=1,2.

10.7. LEMMA. & <& = Iﬂlt(gg) NE = Iﬂlt(gl)

PROOF. ‘C’: by contradiction. Suppose e € init(E;) N Ey, but e ¢ init(£;). From e ¢ init(&;) we
infer that (3X,; C E; : X; +—, e). But then, since £ < &, there exists X, —, e (with X, NE; = X;).
This contradicts with e € init(&,).

‘D’ by contradiction. Suppose e € init(€;) but e ¢ init(€,) N E;. Since e ¢ init(€;) we have
(X, C Ey: Xy o5 e). From & <&, and e € E; we have (X, N E}) —; e, contradicting e € init(&;).
[l

10.8. LEMMA. For o a sequence of events in &: & < & = eny(0) N E; = eny(0).

PROOF. Straightforward and omitted. O

230 Chapter 10: Recursion

10.2.2 A fixed point semantics

In this section we define an event structure semantics for recursive process definitions of the
form P := B, where B possibly contains occurrences of P. These occurrences of P in B are
called process instantiations. For the sake of simplicity we restrict ourselves to single recursive

definitions using just one process variable (that is, P:=...P... P...). Asshown by, amongst
others, Manna et al. [100] the generalization to a set of process definitions (P :=...Q...P...
and Q :=...P...Q...) is rather straightforward.

Like in Chapter 5 we assume all action prefix and |/ occurrences to be subscripted with a
Greek letter. In addition, each process instantiation is uniquely identified in the same way.
For instance, P :=a; P+b; P becomes P := a¢; Py +b,; Py. The occurrence identifiers are
required to be globally unique.

Consider P := B and let the event structure corresponding to P be denoted £. Then the
objective is to find a characterization of £. The idea is to define a function Fp that substitutes
an event structure for each occurrence of P in B, interpreting all operators in B as operators on
event structures. To guarantee unique event names in the result of this substitution procedure
each event in the event structure corresponding to Py, a process instantiation in B, is prefixed
by ¢. So, if £ is the event structure corresponding to P, P, is replaced by ¢(&), the structure
obtained from & by replacing each event name e in E by ¢e and adjusting ~», — and [in an
appropriate way. This renaming of event structures is formalized as follows.

10.9. DEFINITION. For £ = (E,~»,+—,l) and ¢ an occurrence identifier let
$(€) £ (pE,~",",T')

with oF = {¢e | e € E }, ge ~' ¢e’ iff e ~ €', ¢X ' ¢e iff X — e and I'(ge) = I(e).
[

As a second step towards the definition of Fp all operators in B (like ;, 4+, >>, ...) must
be interpreted as operators on event structures. In Chapter 2 we have defined an event
structure semantics of PA. Since this definition is compositional we have in fact implicitly
defined operators on event structures. For example, [B; + By | = £[B] + €[B2 | where +
denotes the choice operator on event structures (rather than on expressions), and £[a¢; B] =
ag;E[B]. In the sequel we denote for operator op € PA the corresponding counterpart on
event structures by op.

Function Fg for P := B replaces all occurrences P, in B by ¢(€) and interprets all operators
op in B as operators op on (the substituted) event structures. E.g., for

P:=a¢; Pyla(ay; Py +co; 0)

Fg(€) is defined as

Fp(€) = a5 6(€) |la (@;59(€) +250)

Extended bundle event structures 231

We will not bother the reader with the full definition of Fp here. The important thing now
is that Fg(€) can be considered as a function of £. This enables the characterization of the
event structure semantics of P := B as the problem of finding a solution of the equation
Fg(€) = £. From Section 10.1 we recall that £ can be determined by means of approximation
if Fp is continuous w.r.t. <. In order to prove that Fp is continuous it suffices to prove that
its constituents, op and ¢() (Definition 10.9) are continuous, for all op. As suggested by
Winskel [155] we prove continuity on a set of events rather than on a c.p.o.:

10.10. DEFINITION. (Continuity on events)

Let (EBES, <) be a pointed c.p.o. and F' : EBES — EBES. F is continuous on events
iff F' is monotonic and for any chain & < & < ... we have E(F(L; ;) C E(l; F(&;)).
O

Here, E(&) for event structure £ denotes the set of events of £.

10.11. LEMMA. For (EBES, <) and F : EBES — EBES we have: F is continuous iff F' is
continuous on events.

PROOF. We concentrate on the proof of <, the proof for the other part is trivial. Let F be
continuous on events and let & < &, <... be a chain.
= { F is monotonic }
Vi: F(&) <X F(U; &)
= { U, F(&) is the Lub.of F(&) I F(&) ...}
L; (&) S F(U; &)
& { definition of < }
L: F(&) S F(U; &) A E(U; F(E)) € E(F(U; &)
& { F is continuous on events }
L, F(&) QF(U; &) A E(U; F(E)) = E(F(U,E))
= { Theorem 10.6 }
UzF(gz) = F(Uz 8@‘)

This proves that F' preserves L.u.b.’s and, so that F' is continuous (see also Appendix B). [l

10.12. THEOREM. @¢;,+, ||¢,-.. and ¢() are continuous on (EBES,).

PROOF. See [89, Theorem 8.3.8]. O

10.13. DEFINITION. For P := B a process definition let E[P] 2 ||; F5(L). O

10.14. EXAMPLE. As an example of the semantics of a recursive process definition, consider
P:=a; (b; P+c;d; P). L isthe empty event structure. Fg(L) is depicted in Figure 10.2(a).
By repeated substitution we obtain the event structure of Figure 10.2(b). O

232 Chapter 10: Recursion

a
a
b c b c
d a / d
(@ A
a
/T (o
d
a
(b)

Figure 10.2: Example of semantics for a recursive process definition in PA.

10.3 Timed event structures

In this section we apply the approach of the previous section to timed event structures as
introduced in Chapter 4. A partial order <; on timed event structures is defined as a conser-
vative extension of <I. The l.u.b. of a sequence of timed event structures is characterized as
a straightforward generalization of the untimed case. These ingredients, introduced in Sec-
tion 10.3.1, provide the basis for a fixed point semantics of PAr. This semantics is presented
in Section 10.3.2. In Chapter 5 we have proven the consistency between the causality-based
semantics of PA7 and an event-based operational semantics based on timed actions. The
extension of this study towards recursive behaviours is provided in Section 10.3.3.

10.3.1 A pointed complete partial order

We start by reconsidering the definition of time in Chapter 4. Since we now deal with event
structures that potentially have an infinite number of events there maybe an infinite number
of bundles pointing to an event. The enabling time of an event after trace ¢ was defined as
the maximum of a set of time instants. In order to deal with sets of infinite size we adjust the
definition as follows:

10.15. DEFINITION. For o a sequence of timed events (ej,t1)...(en,t,) with e; € E| t; €
Time for 0 < i < n, and e € en([o]), let

time(o,e) = Sup({D(e) } U H, U H,) where
H={t+t;|IXCE:X5e n XNlo]={e;}}

Timed event structures 233

Hy={t;|dejclo]:ej~e} .

O
Since infinite suprema cannot appear in our setting it suffices to consider finite suprema.
The definitions and theorems in this section are all relative to timed event structures I'; =
<EZ, Dz, Z) with 51 = (Ez, My g lz) for 7,:]_, 2.
10.16. DEFINITION. (Partial order on timed event structures)
I < Ty iff
1. & 468
2. Dz r E1 - Dl
3. Vee€ By : T((X,e)) = T1((X N Ey,e)).
O

In addition to the constraints for < (cf. Definition 10.1) we require that event delays of events
that are already in I'y are unaffected. Bundles can grow in such a way that the old bundle is
contained (as in the untimed case) and the bundle delay is kept the same.

10.17. LEMMA. (EBESr, <;) is a pointed c.p.o..

PROOF. Routine and omitted. O

It is easy to show that |; = (L, &, &), the empty timed event structure, is the least element
under <.

10.18. ExaMPLE. Consider the timed event structures of Figure 10.3, referred to as (a) I'y,
(b) I'y and (c) T's, and assume equally labelled events to be identical. We have that 'y <; Ty,
since £ < &, (see Example 10.3) and the timing of e,, e, and { e, } s e is preserved. 'y #4; I',
however, since I'; violates the third constraint from Definition 10.16—the timing of bundle
{ €as€c,€q } — €, should be 1 rather than 2 in order to let I'y <; I's. O

a 1
5
5 b
1
ae—rob
C
7
@) T ©

Figure 10.3: Timed event structures with (a) <; (b), but (b) €, (c).

The following lemma is needed to reduce continuity (w.r.t. <;) to continuity on events.

234 Chapter 10: Recursion

10.19. LEMMA. (F]_ <, Fz A E]_ = Eg) = F]_ = Fz.

PROOF. AssumeT'; <, T, and E; = E,. We prove I'y = I'; component-wise:

1. Fl S]trz A E1:E2 = 813]82 A E1:E2 = {Theorem10.6}51:52.
2. D]_ :D2 rE1:D2 rEQZDz.

3. F]_ S]t Fg = VeGEI:%((X,e)) :ﬁ((XmE]_,e))@{El :Ez} 7;:7;_.
0

For chain I'y I T'y < ... let |J;['; be defined as follows. The untimed part is constructed
according to Definition 10.4. The event delays are the union of all delays of the timed event
structures in the chain. [|;T; contains bundles of the form (U, X;in) — e where X, —; e,
X1 —j41 €, ... is a series of bundles satisfying (Xy11 N Ey) = X}, for £ > j. As all bundles
in a series retain the same timing the bundle delay is the union of the bundle delays of the

structures in the chain.

10.20. DEFINITION. (Least upper bound (under <))
Let I'y < Ty <... be a chain, then | |;T; = (U; &,U; Di, T) with

T={((UXwe),t)|3j:(Vk>j:Xpore A Xpwa NEp = Xi) }.
k

10.21. LEMMA. |J;T; is the least upper bound of chain I'; <; Ty <,

PROOF. The proof of this lemma is carried out in two parts. We first prove that | |, I'; is an upper
bound, that is, Vi > 0 : I'; <; ||, T;, and secondly, we prove that it is the least upper bound. Let

1. Vi > 0:T; < |, T';. From Theorem 10.5 we have &; <[], &;. In addition, it easily follows that
DIE;,=(U;D:;) | E;=D;. Let X — e a bundle in | |, I'; with e € E;; from the untimed case
we know that (X N E;) —; e. Then:

T((X,e))

= { Definition 10.4 }
T((Uy, Xx,e€))

= { Definition 10.20 }
T.((Uy Xi N Eyye))

2. We prove by contradiction that | |;T'; is the least upper bound under <,. Suppose there is
another upper bound I'' = (£', D', T') of the chain I'; <, T's <, ... such that IV <; | |, T";. This
means E' C |J, E;. Since I'" is an upper bound we have E; C E', for all ¢, so J, E; C E'. It
follows that |J, E; = E'. But then according to Theorem 10.19 I = | |, T';. Contradiction.

0

As a next result we prove that <; preserves timed trace sets. It is technically convenient to
have the following result:

Timed event structures 235

10.22. LEMMA. Let o a sequence of timed events in E; and e € en([o]). Then:
' < Ty = timey(o,e) = timey(o, €)

PROOF. Assume Iy <; Ty, let o be a sequence of timed events in E; and e € en([o]). From
Lemma 10.8 it follows en;([o]) = enx([o]) N E;. Thus, time;(o,e) and timey(c,e) are both defined.
Then:
time; (o, €)
= { definition of time }
Sup({D:(e) } U H; U H,) where
Hy={t+t; | 3X, CE : X;+51e A X;N[o] ={e;}} and
H,={t;|Je;€lo]:e; ~ e}
= {I') < T, usinge € E; }
Sup({ D»(e) } U H; U H,) where
Hy={t+t; | 3X, CEy: Xy v50e A XoNE =X, A XiN[o] ={e;}} and
H,={t;|Je;€lo]:e; ~,e}
= {[b]CE}
Sup({ D»(e) } U H; U H,) where
Hy={t+t; |3X, CEy: Xy +5e A X,N[o] ={e;} } and
H,={t;|3e;€lo]:ej ~ze}
= { definition of time }
timey(o,e) . O

10.23. THEOREM. I'1 <; 'y = TT(Fl) C TT(FQ)

PROOF. Straightforward from the fact that traces of £ are also traces of & (cf. Theorem 10.6),
and the fact that the enabling times of events in I'; are unaffected in I'; (cf. Lemma 10.22). O

The set of timed event traces of |]; I'; can be characterized as the union of the sets of timed
event traces of the event structures I'j <, I's <,

10.24. THEOREM. For I'y <; I'y <; ... a chain: TT(I_lz Fz) = Uz TT(Fz)
PROOF. D’ then we derive:

true
< { Lemma 10.21 }
Vi:T; < LT
= { Theorem 10.23 }
Vi:Tr(T;) C Tr(L; Ty)
= { set calculus }
Ui TT(Fi) c TT(Lli Fi)

‘C let 0 € Tp(L),Ty) for U, T = (£,D,T). Let I'y = (&, D, Ti) such that [¢] C Ej. Since
E =\, E;, T'; is a member of the chain. We prove that ¢ € Tr(I';) by systematically checking the
conditions of being a timed event trace. Let o = (e;,t1) ... (en,t,).

236 Chapter 10: Recursion

1. er...e, € T(E)
< { Definition 4.5 }
Vi:e; €en([oy])
& { Ty < ;T [o] € Ey; Lemma 10.8 }
Vi:e; €eng([oy])
< { Definition 4.5 }
er...e, € T(E)

2. Vi: tz = time(ai,ei)

& {Ty < U, T [0] € Ey; Lemma 10.22 }

Vi: tz 2 timek(o-iaei)

Hence, each timed event trace o in ||;I'; with [¢] C Ej belongs to Tr(I'y) which proves that
TT(LL‘ Fi) c UiTT(Fi)' O
A result that will be used in the next section is:

10.25. LEMMA. F]_ < FZ = pOS(FQ) N E]_ = pOS(Fl).

PROOF. ‘C’: by contradiction. Suppose e € pos(I';) N E; but e ¢ pos(Ty). Thus, D;(e) = 0. From
Iy <, Ty it follows that D, [Ey = D;. So, Dy(e) = D;(e) = 0, contradicting e € pos(Ts).

‘D’: similar to the above case and omitted here. O
10.26. COROLLARY. I'y <, Ty = pin(T'y) N By = pin(Ty).

PROOF. Directly from Lemma 10.7 and 10.25, using that pin(T") = init(T") U pos(T'). O

10.3.2 A fixed point semantics

In this section we consider the timed event structure semantics of P :— B where B € PA7. In
order to adopt the approach of Section 10.2.2 the crucial issue is to prove that the operators
(t) ag;, +, ... are continuous in the timed setting’.

10.27. LEMMA. For (EBESr, <;) and F : EBESr — EBES7 we have: F is continuous iff F
is continuous on events.
PROOF. Similar to the untimed case (cf. Lemma 10.11). O

According to this lemma it suffices to prove continuity on events. That is, are the operators
op monotonic w.r.t. <; (for instance, if I'y <; I'> do we have (t) a¢; Ty <; (¢) a¢;T'2) and do
we have that the set of events of op applied to the l.u.b. of chain I'y <; I'y <; ... is contained

1Strictly speaking we would need to distinguish between F for PA and F for PAr. Throughout this chapter
we will use the same notation for all cases for the sake of convenience.

Timed event structures 237

in the set of events of the lL.u.b. of chain op (I';) <; op(I's) <; ... 7 These issues will be
considered in this section.

We start by extending the renaming operator on event structure &£, ¢(£), to timed event
structures (cf. Definition 10.9).

10.28. DEFINITION. For I' = (£,D,7) and ¢ an occurrence identifier let
$(T) £ (¢(€),D',T") with D'(¢e) = D(e), and T'((¢X, ge)) = T((X, ¢)). N

10.29. THEOREM. (t) a¢;, +, ... and @() are continuous on (EBESr, <;).

PROOF. We prove that the operators are continuous on events, which—by Lemma 10.27—proves
the case. For the renaming operators ¢() these proofs are trivial and omitted. We prove the theorem
for (t) a¢; and ||—G The proofs for the other operators are similar and omitted here. In this proof
let T'; = (&;,D;, T;) with & = (E;, ~;,—,1;) for i=1,2. Similarly I} is defined.

1. Action-prefix. Suppose I'j <; T';, and let I'} = (¢) a¢;I; and Ty = (¢) a¢;I's. The proof
obligation is I'y <, 'y = T} <, I',. This is proven by systematically checking the conditions
of <, (cf. Definition 10.16).

(a) In order to prove & < &) it suffices to concentrate on the bundle constraints; the sets
of events, conflicts and labelling of events are identical to action-prefix for the untimed
case, so for these components the constraints hold (cf. Theorem 10.12). For the bundle
constraint we have—according to Definition 10.16—to check:

!
1

= { definition &7[| }
=1 U({{¢{}} x pin(Ty))
= { Corollary 10.26 }
—1 U{{&}} x (pin(T2) N E1))
= { Fl < Fz }
{(X NEye)|ec By AN Xye}U({{E}} x (pin(T2) N Ey))
= { definition &7[|; Bl = E; U {&} for i=1,2 }
{(XNEjel|ecE N X—he} .

g

(b) Dy 1 B, =Dy 1 ({€}UE) = {(6,1)} U (B x {0}) =D},
(c) For e € E} we derive
(XN Fye))
= { definition &7[| }
{ Ti(X3N Eje)) ifX;NEf—y e
D (e) if X; ={¢}
= {1 TyeckE }
{ Ti(X3N Eyye)) if X;NE —y e
Dy (e) if X, ={¢}
= { ry Iy }

238 Chapter 10: Recursion

L((X;,e)) i X; e
Ds(e) if X3 ={¢}
= { definition &7] }
T, ((X3,¢))

This proves that () a¢; is monotonic. It remains to prove:

E((t) a¢; L;Ty)

= { definition &7] }
{¢FUELT)

= { Definition 10.20 }
{¢Hu U ET)

= { set calculus }
U: ({ €} U E(TY))

= { definition &7] }
Ui B((t) ag;Ty)

= { Definition 10.20 }

E(U; () ag;T)

2. Parallel composition. Suppose I'y <; I';, and let I'} = I‘1||—GI‘ and I, = I‘2||—GI‘ where
I'=(&,D,T) with £ = (E,~,—,l). We prove I'} <, T', by checking the conditions of <.

(a) & < & follows directly from the untimed case (cf. Theorem 10.12) and the fact that
Er[] is a conservative extension of £'[].

(b) D} = D, [Ei. Recall that events are pairs (e, e;) where possibly one of the two events
equals ‘x’. We consider the following cases

i. (e1,eq) is a synchronization event, so e; € Ef and e, € E°.
Di((e1,e2))
= { definition &7[| }
max(D;(e1),D(es))
= {1t Ty = Di(er) =Ds(er) }
max(D2(e1), D(e2))
= {515182 = Engg,eleEf,deﬁnltlongT[[]]}
D;((e1,e2))
ii. (e;,e;) is a non-synchronizing event, say e; € E/ and e, = . Then
D;((ex, %)) = Da(er) = Di(er) = Di((e1, %))
iii. for (*,e;) with e; # * the proof is similar and omitted.
This proves D] = D;, | Ef.
(c) Let e = (e1,e2) an event in E). Then we derive:
’TZ’((Xéa (61, 62)))
= { definition &7[| }

Timed event structures 239

max(Tx((pry(X3), e1)), T ((pry(X3), €2)))
= {1y}

max(T;((pry(X3) N By e1)), T ((pra(X3), €2)))
= { calculus }

max(T;((pry (X3 N Ey),e1)), T ((pry(X5 N EY), €2)))
= { definition &7[] }

T/ (((X3 N EY), (€1, €2)))

This proves that ||—G is monotonic in the left argument. By symmetry, the proof for mono-
tonicity in the right argument is obtained by reversing the arguments in the above proof. The
fact that || is continuous on events follows from the fact that in the untimed case this holds
and the fact that the construction of the set of events in the timed case is identical to the
untimed case.

0

In the following definition let Gg be the timed counterpart of Fg. Gp is a function determined
by ©p and ¢(). From the previous theorem it follows that Gg is continuous on timed event
structures ordered under <;. This means that the semantics of P := B for B € PAr can now
be computed as the L.u.b. of sequence L, Gg(L:),G(Gr(Lt)),-- -

10.30. DEFINITION. For P := B a process definition let E7[P] £ ; G5(L,). O

10.31. EXAMPLE. As an example of a recursive process definition in PAr we consider
P:=3)a;((14)b; P+ (1) c; (7) d; P)

The first approximation of the timed event structure semantics of this definition is 1;, the
empty structure. The second approximation Gg(1;) is depicted in Figure 10.4(a). By repeated
substitution we obtain the timed event structure depicted in Figure 10.4(b). O

For P := B let ®7(P) the corresponding untimed behaviour of P. For instance, ®7(P) for
the process of the above example equals a; (b; P+ c¢; d; P). The next theorem extends the
compatibility result of Chapter 4 (Theorem 4.36). We first introduce

10.32. LEMMA. For all i > 0 and Gi(L:) = (&, D;, T;) we have L(E;) = L(Fg,) (L))-

PROOF. Straightforward by induction on ¢, using the fact that (t) a¢;,+, ||¢,... preserve lposet
equivalence (cf. Theorem 4.36). O

10.33. THEOREM. For Er[P] = (€,D,T) we have L(E) = L(E[P7(P)]).

PROOF. Let P:=B,&r[P] =L;,G5(L:) = (€,D,T) where G5(L;) = (£;,D;, T;). Then:
true

< { Lemma 10.32 }

240 Chapter 10: Recursion

@)

(b)

Figure 10.4: Example of semantics for a recursive process definition in PAr.

Vi: L(&) = L(]'—éT(B)(J—))

& {LE)=LE)=«TE) =T}
Vi:T(E) = T(]:éT(B)(J—))

= { set calculus }
UiT(gi) = UiT(féT(B)(J-))

< { Theorem 10.24 }
T &) =T(U; féT(B)(J—))

& {LE)=LE)=«TE) =T}
L(le &)= L(Ui]:éT(B)(J—))

< { Definition 10.20; Definition 10.13 }
L() = LE[®2(B)]) - 0

We conclude this section by discussing the notion of finite variability. According to Nicollin &
Sifakis [112] a behaviour possesses the so-called finite variability property iff it cannot perform
infinitely many events in a finite amount of time. Such behaviours are also known as non-Zeno
behaviours. Several timed process algebras explicitly abandon Zeno behaviours—behaviours
that may execute an infinite amount of events in finite time. For instance, in a former proposal
for timed CSP by Reed & Roscoe [124] a small delay is associated to each action such that
Zeno-processes cannot be expressed. In our case we permit Zeno behaviours, for instance,
P := (0) a; P is a behaviour that may perform infinitely many a actions in finite time. In
the same way as we are able to construct specifications in which deadlocks and/or livelocks
can occur we consider it sufficient to be able to verify that a specification has such (possibly
undesired) behaviour. Example algorithms to detect whether a recursive process definition

Timed event structures 241

allows Zeno behaviours can be found in the thesis of Hansson [64].

10.3.3 Event-based operational semantics

This section extends the event-based operational semantics of PAr with recursion. We follow
the approach of Langerak [89, Section 8.4]

It is assumed that each process instantiation of P is uniquely identified, as well as all occur-
rences of action-prefix and /. Different occurrences of the same process instantiation should
produce different event transitions. In addition, event transitions cannot be repeated. For
P := (2) a¢; Py we first have an event transition with (£, a,t) for t > 2; the next time that
action a occurs it should be labelled with a label different from £&. These complications are
resolved by using an event renaming operator that prefixes all events in a behaviour with a
certain occurrence identifier. ¢(B) is behaviour B where all event identifiers in B are prefixed

with ¢. For these renamed behaviours we have the simple rule that whenever B at),, pr
then ¢(B) can perform (§¢, a,t) evolving into ¢(B’). The inference rules for process instanti-
ation are presented in Table 10.1.

10.34. ExaAMPLE. For example, for P := B with B = (4) a¢; Py + (1) b, ; P, we have the
following derivation:

P 6811y, (7] P,) XBEL, T 61 Py])] {512, T (1 (4L Py))]

where ¢ is the empty prefix. The third transition is derived as follows:

B (&ad) 4[P¢]

= { SOS-rule for Py }
P, e, (4 Py))

= { SOS-rule for /[B] }
'[Py] a2k 1 (4 Py)]

= { SOS-rule for ¢(B) }
B('[Py]) 12420 6 (M [(*[Py))])

= { SOS-rule for ‘[B] }

(¢ Py])] -2, T o ([(Y[Py])])] - O
B (¢.a,t) B B (£a,t) |, B

P.=B
P¢ (¢6.0,t) ¢(B') ¢(B) (¢€,a,t) ¢(B')

Table 10.1: Additional transition rules for PAr.

The following theorem extends Theorem 5.10:

242 Chapter 10: Recursion

10.35. THEOREM. For P := B we have ®(TSy(P)) = TS(®r(P)).

PROOF. If we delete all event name information and timing information from the rules in Table 10.1
we obtain the following rules

B-% B B - B
pop =B 3o

The left-hand rule is the standard derivation rule for process definition and the second is a tautology.
O

Like for the nonrecursive case (cf. Chapter 5) the resulting timed event transition system is
deterministic. This implies that the operational semantics of a behaviour can also be given
by its set of timed event traces. In the remainder of this section we would like to prove that
the operational semantics coincides with the causality-based semantics given in the previous
section, in the sense that both semantic models generate identical sets of timed event traces.
In this study we could consider traces of infinite length (w-traces) but this would not enhance
expressivity. We can safely restrict ourselves to finite traces, since two transition systems
having the same set of finite traces also have the same set of infinite traces in case the transition
systems are deterministic.

In order to obtain the set of timed event traces of a process definition P := B the idea is to
define a function G that substitutes a set of timed event traces for each occurrence of P in B,
interpreting all operators in B as operators on timed traces. (Notice the similarity with Gg.)
We follow a similar procedure as in Section 10.2.2 and start by defining a renaming operator
on sets of timed traces.

10.36. DEFINITION. For T a set of timed event traces and ¢ an occurrence identifier let

B(T) £ {$(0) | o € T} where §(c) 2 ¢ and ¢((e,) o) 2 (de,t) $(o). O

As a second step towards the definition of G all operators in B (like ;, +, >>, ...) must be
interpreted as operators on timed event traces. In Chapter 5 we have defined a timed event
trace semantics of PA7. Since this definition is compositional we have in fact implicitly defined
operators on timed traces. For example, 7r[B; + By]| = 7Tr[B; | + Tr[B2] where &' denotes
the choice-operation on timed traces (rather than on expressions). In the sequel we denote for
operator op € PAr the corresponding counterpart on timed traces by op’. Gy for P := B
replaces all occurrences P, in B by ¢(T') and interprets all operators op in B as operators
op’ on (the substituted) timed traces.

10.37. DEFINITION. The depth of an event identifier is defined as follows:
1. dp(§) =1
2. dp(&e) =dp(e) +1
3. dp((e1, e2)) = max(dp(e1),dp(es)).

Urgent event structures 243

10.38. DEFINITION. A timed event trace o is an i-trace (i > 0) iff the depth of each event

in o is at most ¢, that is, Ve; € [o] : dp(e;) < 1. O

10.39. LEMMA. For P := B the set of i-traces of P equals G'%(@).

PROOF. By induction on . Similar to the untimed case [89, Lemma 8.4.6] and omitted here. [

The set of timed event traces of P is equal to the union of the sets of i-traces of P for all
i. That is, 7o[P] £ G"3(). The following theorem extends the compatibility result of
Chapter 5 towards recursive process definitions.

10.40. THEOREM. For P := B we have Tr(Er[P]) = Ir[P].

PROOF.

true
< { Theorem 5.18 }

Vi Tr(Gh(L0) = §'(2)
= { set calculus }

Ui Tr (G (L) = U; §'5(2)
< { Theorem 10.24 }
Tr(U; G5(Le) = U; §'5(2)
< { Definition 10.30; see above }

Similar as for the finite case this result can be strengthened towards strong bisimulation
equivalence of the transition system deduced from the operational semantics and the transition
system obtained from the denotational semantics by considering timed remainders after traces
of length 1.

10.4 Urgent event structures

This section treats the extension of PAy with recursion. It basically deals with the extension
of the material of Section 10.3 with the notion of urgency. Section 10.4.1 introduces the
pointed c.p.o. <,, characterizes the l.u.b. of a chain of urgent event structures ordered by
<, and considers some properties of this ordering. < and <; were shown before to preserve
trace sets. That is, & < & = T(&) C T(&;), and similarly for the timed case. It will
be shown that due to the presence of urgent events this property does not hold in general
for urgent event structures. Conditions will be provided under which trace set inclusion is
still preserved, and a somewhat weaker notion of trace set inclusion will be considered. This
is presented in Section 10.4.1. The denotational and operational semantics of P := B with
B € PAy is provided in Sections 10.4.2 and 10.4.3, respectively. The consistency proof of these
two semantics is also given in Section 10.4.3.

244 Chapter 10: Recursion

10.4.1 A pointed complete partial order

The definitions and theorems in this section are all relative to urgent event structures ¥; =
<Fz,uz> with Fz = <(Ez, iy 24, lz), DZ, Z> fOI‘ Z:]_, 2.

10.41. DEFINITION. (Partial order on urgent event structures)
\Ifl S]u \112 iff F]_ S]t Fz and Z/{]_ = Z/lz rEl]

In addition to the constraints for <; (cf. Definition 10.16) we require that the urgency predicate
for events that are already in ¥, is unaffected.

10.42. LEMMA. (EBESy, <,) is a pointed c.p.o..

PROOF. Routine and omitted. O
It is easy to verify that 1, = (L;, &) is the least element under <,.

For chain ¥; < ¥, < ... we define the following urgent event structure.

10.43. DEFINITION. (Least upper bound (under <,))
Let ¥; < W, <... be a chain, then ||, ¥; = (L, T;, U; Us). O

10.44. LEMMA. |]; ¥; is the least upper bound of chain ¥; <, ¥y, <,

PROOF. Similar to the proof of Lemma 10.21. O

Two urgent event structures that are ordered under <, and that have identical sets of events
are identical.

10.45. THEOREM. (\Ill <1, ¥y, A By = Ez) = U =V,
PROOF. From Theorem 10.23 and ul = UQ r E]_ = UQ r E2 = UZ' [l

For the timed case we had the nice property that a timed trace of I'; is also a timed trace
of ['y if Ty is smaller than T’y in the ordering (<;). This property conforms to the intuition
that possible executions of an approximation I';;; are consistent extensions of possible runs of
[;. As we will show below a similar property for urgent timed event structures does not hold
in general, since new urgent events in W, ,; may restrict (or, even prevent) the occurrence of
events in U;.

A timed event trace o of V¥; disappears in approximation ¥;,; if there is an urgent event
that could occur earlier than some event in 0. Stated otherwise, the only reason that a trace
disappears in a next approximation is by violating the third constraint of being a timed event
trace (cf. Definition 6.3).

10.46. LEMMA. For ¥; <, ¥, we have:

o € Ty(Vy) \ Ty(¥,) =

(Je € Ey,e; € [0] :Us(e) N e € eny([oy]) A timey(oy,e;) > timey(oy,€)).

Urgent event structures 245

PROOF. Assume ¥; <, ¥, and let 0 € Ty(¥;) and o ¢ Ty(P,). We systematically check the
conditions of o & Ty (Ps).

1. [o] € T(&). But & <&, and [o] € T(E,) implies that [o] € T'(&;). Contradiction.

2. there exists i such that —1(e;) and t; < time,(0;, €;) or Us(e;) and t; # timey(oy, ;). But, since
[0] C E; we have that U;(e;) = Us(e;) and time;(oy, e;) = timey(o;, €;), and since o € Ty (¥y)
it follows that the timing of e; is correct. Contradiction.

3. o0 is not time-consistent. Contradiction with o € Ty (¥;).

So, o satisfies three of the four conditions of being a timed event trace of ¥,, and o ¢ Ty (¥;) can
only be caused by violation of the third constraint. O

As a next step we investigate under which conditions trace sets are preserved and under which
conditions a somewhat weaker notion of trace inclusion (but still a rather intuitive notion) is
preserved. It is intuitively not hard to see that trace inclusion is preserved when the set of
urgent events does not ‘grow’ in subsequent approximations. This is shown in the following
lemma. Let U(¥) be the set of urgent events of ¥, i.e., U(¥) 2 {e € E |U(e) = true }.

10.47. LEMMA. (\Ifl <, ¥y A U(\Ifl) = U(\Ilz)) = TU(\Ill) - TU(\IJQ)

PROOF. Let 0 = (e1,t1)...(en,t,) in Ty(¥;). We prove that o € Ty (¥,) by systematically
checking the conditions of being a timed event trace of W,.

1. er...e, € T(E){ Theorem 10.6 }e; ...e, € T(E,)

2. Vi:(Up(e;) = t; =timei(oy,e;)) N (~Ui(e;) = t; > timey(oy,e;))
= {UT)=U(T;)andUs | B, = U, }
(Vi:Us(e;) = t; =timey(oi,e;)) AN (—Us(e;) = t; > timey(o;,¢€;))
& {[o]C E, = [o;] C Ey, for all i; Lemma 10.22 }
Vi:(Us(e;) = t; =timey(oy,e;)) A (—Us(e;) = t; > timey(oy,e;))

3. o is time-consistent since o € Ty (¥,).

4. Vi,e € By e €en(o;]) A Ui(e) = t; < timey(o;,¢€)
& {UW)=U,))
Vi,e € Ey e €en([o;]) A Us(e) = t; < timey(o;,¢€)
& {[o] C B, = [o;] C Ey, for all i; Lemma 10.22 }
Vi,e € Byt e €en([o;]) A Us(e) = t; < timey(o;,€)
< { Lemma 10.8 }
Vi,e € Ey:e € eny([o;]) N Us(e) = t; < timey(oy,e€)

246 Chapter 10: Recursion

10.48. COROLLARY. For chain ¥; <, ¥y <, ... with U(V¥;,,) = U(¥;), for i > 0:
To(%) = JTu(¥)

PROOF. Straightforward from the previous lemma and Theorem 10.45. O

<, corresponds to a weaker notion of trace set inclusion in case the introduction of new urgent
events is allowed, but only in such a way that the introduction of conflicts e ~» €', where €'
is a new urgent event and e an already existing one, is prohibited. In this case new urgent
events will not restrict the occurrence of already existing events, but the ‘old’ events may be
preceded by the new urgent events. For example, in
7 7 2
ob g, ob O a

(ep, 7) is not a timed trace of the ‘larger’ structure, but (e,, 2)(ep, 7) is—event e, is preceded
by a new urgent event, but is not excluded.

As a subsidiary notion we define an ordering relation on sets of timed traces, called weak trace
set inclusion. This ordering relation is based on restriction of timed traces on sets of events.

10.49. DEFINITION. For timed event trace o and set of events F, o [E is defined by

l.elE2¢
2. ((e,a,t)0) | E 2 { Ue’r“g) (o1 E) gz;g
O
10.50. DEFINITION. For T7,T, sets of timed event traces let
TCTh+= NVore€Ti: Aoy €Ty : 05 [[o1] = 1)) .
O

We now have the following result concerning weak trace set inclusion:

10.51. THEOREM. Weak trace set inclusion theorem
U, <4, ¥y A (Ve S El,e’ € E, \ Ei e~y e = ﬂZ/lz(el)) = TU(\Ill) C TU(\IJQ)
PrROOF. Assume ¥; <, ¥, and let ¢ = (ey,t1)...(en,t,) with ¢ € Ty(¥;). The proof is as

follows. We first provide a recipe to generate from o a sequence ¢’ of the following form ¢’ =
o't (e1,t1) 0 (es,t3)...0™ (en,t,) and subsequently prove that o' € Ty (T,).

The algorithm to compute subsequences ¢'® is as follows:

for0<i<n
do ¢ :=¢;
no.__ 1l 2 1i—1 19,
o" =0 (e1,t1) 0”...0" " (e 1,t; 1) 0

S;:={(e,t) | e €eny([0"]) A Ux(e) A t; > time(c",e) =t}

Urgent event structures 247

while S; # &

do choose e,t) € S; such that V(e',t') € S;: t < ¢

0” (e1)

— 0" (e,1);

{(e,t) | e € eny([c"]) N U(e) N t; > time(o”,e) =1};

od
od.

Obviously, this algorithm should terminate since ¢ is finite and ¥, contains a finite set of events. We
prove that o' is a timed event trace of ¥, by checking the conditions of being a timed event trace:

1. the proof that [¢'] € T(&;) is by contradiction. Suppose [¢0'] € T'(€,). Then this could only be
because one of the following reasons:

(a) Je;,e; : e; ~5e; and j < i. Consider the following cases:

i. ej,e; € [0]. But then e; ~»; e; and [o] would not be an event trace of T(&;).
Contradiction.

ii. e;,¢; [cr] But then e; ~+, e; which is impossible by construction of ¢'.

iii. e; € [0],e; & [0]. But then Uy(e;) and e; € F; and e; ~, e;. Contradiction.

iv. e; & [o], e; € [o]. But then e; ~, e; which is impossible by construction of ¢'.
(b) X, CEy: Xy >y e; A X,NJ[o}] = @. Consider

ie & m. But then e; would not be enabled in ¢’ which is impossible by construction
of o',

ii. e; € [0]. But then e; € E; and X; > e; such that X, N E; = X;. Since o € Ty(T,)
we have that there exists e; (j < ¢) in o such that e; € X;. By construction it follows
that e; in ¢'. Contradiction.

This proves that [o'] € T'(E;).

2. since m C E, and ¥; 4, U, it follows from Lemma 10.22 that time,(o,e) = time,(o,e) for
e € F,. Since the new urgent events in ¥, are not in conflict with any event in ¥; we have
time, (o, e) = timey(d',e) for e € E;. In addition, ¥y <, ¥, = U, | E; = U;. From this it
follows that events in ¢ have associated a correct timing in ¢’. From the algorithm it is evident
that o' consists solely of urgent events, and these events occur as soon as they are enabled.
This proves that all events in ¢' have associated a correct timing.

3. since 0 € Ty (V,), o is time-consistent. In addition, from the algorithm it is evident that (a)
1%

o' is time-consistent, and (b) all events in ¢’* have a timing of at least ¢;_; and at most t;.
This proves that ¢’ is time-consistent.

4. from the algorithm it follows that for each event e; in ¢ there does not exist an urgent event
that could have occurred earlier—otherwise such urgent event is included in ¢". The same
applies to each ¢'*: suppose there is for e; in o't an urgent event that could occur earlier, then
it would precede € in o'’. This proves that for each event in ¢’ there is no urgent event that
could occur earlier.

O

248 Chapter 10: Recursion

Given this result the question arises whether we cannot strengthen Definition 10.41 such
that conflicts between urgent events in a next approximation and already existing events are
explicitly forbidden. The following examples show that this would not be a solution.

Consider the urgent event structures in the following figure. Obviously, the structures in (a)
are ordered, since |, is the least element. Since we want the choice operator to be monotonic
we then also would have (b) which equals (c).

2 3 2
Uy, ¥ ea <, Oob ¥ ea
3 b
Oy 2, ©Ob ()
(@ 2 3 2
ea <= o—e
b a
(©)

In addition, consider the urgent event structures in the following figure. Since we would expect
(a) and we want the disable operator to be monotonic we then also have (b) which equals (c).

7
7ob 4 — 7 4 — Ob
7ob < o——»e [> ob 2, o——e [>
u o C 0 c 0 2
oa oa
(@ (b)
4 4
o) 0
C Cc
—u
7Y 7 2
b a
(c)

These examples show that the aforementioned suggestion is not a solution to our problem.
So, we should allow the inclusion of new urgent events in conflict with already existing ones.

We conclude this section by characterizing the set of timed event traces of the l.u.b. ||, ¥;.
The following results are all relative to a chain ¥; <, ¥y <, It is technically convenient
to introduce the following result:

10.52. LEMMA. For o € Ty(Ll; ¥;) we have: Vk : [0] C By = o € Ty(¥y).

PROOF. Let o € TU(I_lz \Ilz) for uz \IIZ = (8,D,T,u> Let \Ilk == <8k,Dk,%,uk> such that [0'] - Ek
Since E = |J, E;, ¥ is a member of the chain. We prove that o € Ty (¥,) by systematically checking
the conditions of being a timed event trace. Let o = (e1,t1)...(en,tn).

1. the proof that e; ...e, € T(E) = e;...e, € T(&) is identical to the proof of Theorem 10.24.

2. Vi: (—IU(ez) = tz > time(oi,ei)) A (U(e,) = tz > time(oi,ei))

Urgent event structures 249

& {0, < ;Y [0] C Ey; Lemma 10.22 }

Vi:(—~U(e;)) = t; > timeg(oi,e;)) N (U(e;) = t; > timeg(oy,e;))
& { U, <L Y = U(e;) = Uk(e;) fore; € Ey, }

Vi:(—~U(e;)) = t; > timeg(oy,e;)) N (Up(e;) = t; > timeg(oy,e;))

3. by definition, ¢ is time-consistent.

4. Vije € E:ecen(fo;]) A U(e;)) = t; < time(o;,e;)
= {E,CE}
Vije€ E:ecen(lo])NE, AN Ule;)) = t; < time(oy,e;)
& {0, <L Y = U(e;) =Uk(e;) fore; € Ey, }
Vie € By :e € en(foy]) N Ex A U(e;) = t; < time(oy,e;)
& {9 < U, s [o] € Ey; Lemma 10.8; Lemma 10.22 }
Vi,e € Ey e € eng([oi]) A Up(e;) = t; < timeg(oy,e;)

0

Timed event traces that are present in each approximation from the n-th approximation on
are called n-persistent.

10.53. DEFINITION. (n-persistent trace)

A sequence o of timed events is n-persistent iff I3n: (Vj > n: o € Ty(¥;)). O

The set of timed event traces of | |; ¥; can be characterized as the union of the n-persistent
timed traces of its approximations.

10.54. THEOREM. Ty (L); ¥;) = U; Nj»i Tu(¥5).
PrROOF. ‘C’: follows directly from Lemma 10.52.

2% let o € N5, Tu(¥;), for some n. Then o is n-persistent. We prove that o € Ty (L, ¥;) b
contradiction. Assume o ¢ Ty(L]; ¥;). Since we have that ¥; <, ||, ¥; it follows from Lemma 10.46
that there exists e € E and e; in ¢ such that

U(e) N ecen([o]) A time(o;,e;) > time(o;,e).

But since E = |J; E; and U = |J, U; it follows that there exists an m with e € E,,, m C FE,, and
U, (e) and time,,(o;,e') = time(o;,€’) for all ¢’ € E,,. But this would mean that o & Ty (¥y), for all
k > m. This contradicts with the fact that o is n-persistent. O

10.4.2 A fixed point semantics

In this section we consider the denotational semantics of P := B where B € PAy. In order to
adopt the approach of Sections 10.2.2 and 10.3.2 the crucial issue is to prove that the operators
(t) ag;, +, ..., Uy() are continuous w.r.t. <J,. As for the timed case, it suffices to consider
continuity on events.

250 Chapter 10: Recursion

10.55. LEMMA. For (EBESy, <,) and F' : EBESy — EBESy we have: F' is continuous iff F
is continuous on events.

PROOF. Similar as the proof of Lemma 10.11. O

Since <, is a conservative extension of <; it suffices to only prove for all operators in PA7 that
the additional constraint on urgent events is satisfied (cf. Definition 10.41), and that the new

operator Uy () is continuous. The renaming operator ¢() is defined on urgent event structures
as follows.

10.56. DEFINITION. For ¥ = (T, U) and ¢ an occurrence identifier let ¢(¥) 2 (o(T),U")
with U'(pe) = U(e). O

10.57. THEOREM. (t) a¢;, +, ..., Uy() and ¢() are continuous on (EBESy, J,,).

PROOF. We prove that the operators are continuous on events, which—by Lemma 10.55—proves
the case. For the renaming operators ¢() these proofs are trivial and omitted. We prove the theorem
for (t) ae;, T, ||¢ and Uy(). For each of these constructs we prove continuity on events. The proofs
for the other operators are similar and are omitted here. For all cases it suffices to only consider
the additional constraints of Definition 10.41 on urgent events. In this proof let ¥; = (T';,U;) with
I, = (&,D;,T;) and &; = (E;,~;,—,1;) for i=1,2. Similarly ¥/ is defined.

1. Action-prefix. Suppose ¥; <, ¥,, let ¥] = (¢) a¢; ¥y and ¥, = (¢) a¢; ¥2. Then:
Uy 1 By =Uy T ({E3 U EL) ={(¢ false) } Ul [By = { (¢, false) } Ul =U,.

2. Choice. Suppose ¥; <, U,, let U] = ¥, +¥ and ¥}, = ¥,+¥. Then:

3. Parallel composition. Suppose ¥; <, ¥,, let U] = \Ill||—G\If and ¥, = \Ile—G\II. We then prove
U 4, ¥, as follows. According to the definition of &y |:

Us((er,e)) TEy = (Us [(Br U{x}))(er) V UT(EU{x}))(e) -
We distinguish between the following cases

(a) (e, e) is a synchronization event. Then
U I (BrU{x}))(er) vV UT(EU{x}))(e)
& {e€ESandec E*}
(U [Er)(er) V (U T E)(e)
o (U, 9V UE=U)
Ui(er) V U(e)
& { & 9& = Ej C E3; definition &y | }
Ui((e1,€))
(b) e, = * and e € Ef. Then:

(U [(BrU{x}))(er) V (U T (EU{x}))(e)

& {ec€Efande =%}

Urgent event structures 251

false V (U | E)(e)
s {UTE=U}
Us(x) vV Ule)
< { definition &y | }
nen)

(c) ey € Ef and e = . Similar to the previous case and omitted.

4. Urgency. Suppose ¥ <, U,, and let ¥} = Uy(¥,) and ¥}, = Uy (¥,). We prove that U} <, U
by checking the conditions of <.

(a) Since I'} =T'; and I'), = T'y, it follows directly from ¥; <, ¥, that I} <, I'}.
(b) For e € E; we derive
Uy(e)
< { definition &y | }
Us(e) V Ix(e) eU
s {9, 9, 9,;ecE <ecE }
Ui(e) V I(e) eTU
& {&<9& = L= E;ecE }
Ui(e) V I1(e) e T
< { definition &y | }
Ui(e)

This proves that Uy () is monotonic. Continuity on events follows from:

E (uU(l—.l \I;Z)> =FE <|_| q’z) = UE(‘I’z) = UE(UU(‘I’z)) =F (UUU(‘I’z)> :
i i i i i 0

In the following definition let H g be the urgent counterpart of Fg. Hp is a function determined
by ©op and ¢(). From the previous theorem it follows that Hp is continuous on urgent event
structures ordered under <J,,. This means that the semantics of P := B for B € PAy can now
be computed as the L.u.b. of L,, Hp(L,),Hs(Hs(Ly)),-- -

10.58. DEFINITION. For P := B a process definition let Ey[P] £ ||; Hi(Ly). O

10.59. EXAMPLE. As an example of a recursive process definition in PAy we consider
P:=U,((2) a; P|||(11) b; 0)

The first approximation is 1,. The second and third approximation Hp(L,) resp. H%(L,)
are depicted in Figure 10.5(a) and (b), respectively. Notice that (e,, 2)(ep, 11) is a timed event
trace of (a), but not of (b), since the introduced event labelled a is forced to occur at time 4,
so before e,. By repeated substitution we obtain the urgent event structure of Figure 10.5(c).

U

252 Chapter 10: Recursion

b b b b b b b
11 e 11 ® 11 ®
11 11 11 11
2
ao 2 2
a 2 g a a a 2 a
CY (b) ()

Figure 10.5: Example of semantics for a recursive process definition in PA.

10.4.3 Event-based operational semantics

In this section we consider the extension of the operational semantics of PAy with recursion,
and show its consistency with the causality-based semantics defined just before. For the
inference rules we adopt the approach of Section 10.3.3. The additional inference rules for
PAy are presented in Table 10.2. Notice the resemblance with the rules for PAr as listed in
Table 10.1.

(B,t) 2L (B ¢) P.—B (B,t) ~ (B',t) _B
(P, t) 580, (4(B), 1) (P:=B) (Py,t) ~ (¢(B), 1) ()
(B,t) &2, (B 1) (B, t) ~ (B, t)
(p(B),t) 22 (4(B), 1) (¢(B),t) ~ (p(B'),t')

Table 10.2: Additional transition rules for PA.

Recall that the passage of time for Uy (B) is restricted by the dp;, function. For P := B
let dmin(a, P) 2 dmin(a, B). In order to let this definition make sense we require P to be
guarded. This means that all process instantiations in the body B of P must be preceded by
a timed action-prefix or a sequential composition. For instance, P := (2) a; P + / >> @
is guarded, whereas P := (2) a; P|||@ is not. A recursive process definition P := B is
considered to be weakly guarded if B becomes guarded by substituting for a finite number
of times the bodies of processes for the process instantiations occurring in B. For instance,
P := (2) a; P|||@ where Q := (3) b; Q is weakly guarded, since it can be rewritten into
the guarded P := (2) a; P|||(3) b; @ by a single substitution. From now on we require for
P := B that B is weakly guarded.

In order to prove the consistency between the denotational and event-based operational se-
mantics for the urgent case the approach of Section 10.3.3 fails, since the set of timed event
traces generated operationally cannot be characterized by substituting @ for all occurrences
of P in B, and then continuing by approximation. We therefore take a different route here.

Urgent event structures 253

10.60. DEFINITION. (Substitution on terms)
For B, B' € PAy and P a process instantiation, B'[P := B], is defined as

OP:=B] 2 0
VIP:=B] £
(opB)[P:=B] 2 opBy[P:=B]for op € {a;,\,[l,Us()}
(ByopBy)[P:=B] 2 By[P:=B|opBy|P:=B]for op € {+,>>,[>,]|}
e A ¢(B) ifQ:P
QP =B = {Q ifQ;/AP(fs

O

B'[P := B] denotes behaviour B’ where all occurrences of P, in B’ are replaced with ¢(B).
As a next subsidiary notion we define the unfoldings of P.

10.61. DEFINITION. (Unfoldings of P)
For P := B the n-th unfolding of P, denoted Pm is defined as:
F P
B[P := P").

> >

Pn-i—l

O
The n-th approximation of P is defined as the n-th unfolding where each occurrence of P is
replaced by 0.

10.62. DEFINITION. (Approzimations of P)
For P := B the n-th approzimation of P, denoted P, is defined as P* £ Pn [P :=0].

The set of timed event traces of P is equal to that of its n-th unfolding.

10.63. LEMMA. Vn > 0: Ty[P] = Ty [P*].

PROOF. By induction on n. Let P := B.)
Base: for n=0 we have according to Definition 10.61 T P°] = Ty[P].
Induction step: Assume the lemma holds for n=k and consider k+1.
TU[[Pk+1]]
= { Definition 10.61 }
Ty[B[P := P*]]

= { induction hypothesis; substitution preserves trace equivalence }

Ty[B[P := P|]
= { Definition 10.60; P := B }
Ty[P] . O

Timed event traces of the n-the unfolding of P are also timed event traces of the n-th approx-
imation of P.

254 Chapter 10: Recursion

10.64. LEMMA. Vn > 0: Tg[P"] C Ty[P"].
PROOF. By induction on n.
Base: For n=0 we derive
o€ Ty[P°]
& { Definition 10.62 }
o€ Ty[P|P :=0]]
< { Definition 10.61 }
o € Ty[P[P :=0]]
< { Definition 10.60 }
o€ Ty[0]
= {Ty[0]={c};e € Ty[B] for all B }
oceTy[P°]

Induction step: Assume the lemma holds for n=k and consider k+1.

o€ Ty P*1]

< { Definition 10.62; Definition 10.61 }
o € Ty B[P := P*][P :=0]]

< { substitution property }
o € Ty B[P := P*[P :=0]]]

< { Definition 10.62 }
o € Ty[B[P := P*|]

= { induction hypothesis }
o € Ty[B[P := P*]]

< { Definition 10.62 }
o€ Ty[P*1] . O

If B2, B and B is guarded then this transition can be derived without applying one of
the transition rules for recursive process behaviours (cf. Table 10.2) due to the guardedness
of B. But then, the process instantiations occurring in B may be replaced by some arbitrary
expression X without prohibiting this transition.

10.65. LEMMA. Let B € PAy such that B is guarded. Then for arbitrary X € PAy and
process identifier P we have:

B, B’ = B[P :=X| %), B[P .= X]

PROOF. Straightforward by induction on B. O

The following lemma is based on the intuition that traces of length at most n can involve at
most n unfoldings of process instantiations. More precisely, it states that if ¢ is a timed trace
of B’ where all occurrences of P are replaced by its n-th unfolding P and | o | < n, then P
may be replaced in the resulting term by an arbitrary term X while preserving that o is a
timed trace.

Urgent event structures

255

10.66. LEMMA. Let B’ € PAy possibly containing unguarded occurrences of P, for P := B

and B guarded. Then for arbitrary term X € PAy:

Yn>0:0€Ty[B'[P:=P"] A |o|<n = ocTy[B[P:=P"[P:=X]]

PROOF. By induction on n.
Base: for n=0 the lemma trivially holds since ¢ is a trace of each behaviour.
Induction step: Assume the lemma holds for n=Fk; consider k+1. First we derive

B'[P := P*1]

= { Definition 10.61 }
B'[P := B[P := P*]|

= { substitution property }
B'[P := B][P := P*|

In a similar way we can derive that
B'[P := P**'[P := X]| = B'[P := B][P := P*[P := X]]

Now assume o € Ty[B'[P := B][P := 15’“]]] with o = (e,a,t) 0’ and | ¢' | = k. Then:
o € Ty[B'[P := P*'[P := X]]]
& {(101)}
o € Ty[B'[P := B][P := P*[P := X]|]
& {o=(ea,t)o’; Bis guarded }
B'[P := B||P := P*[P := X]| =22, B"[P := P¥[P := X]]
A o' € Ty[B"[P := P*[P := X]]]
< { B'[P := B is guarded (since B is); Lemma 10.65 }
B'[P := B||P := p¥| {22, B"[pP:.= P¥ A ¢ € Ty[B"[P := P[P := X]]]
< { induction hypothesis }
B'[P := B||P := P¥]| {221, B"[P:= P¥] A ¢ € Ty[B"[P := P*|]
& {o=(ea,t)o"}
o € Ty[B'[P := B[P := P*]]
< { assumption }

true

(10.1)

O

The set of timed event traces of of P is equal to the union of the sets of i-persistent timed

event traces for all 7.

10.67. THEOREM. For P := B we have Ty[P] = U; N> Tu[P7].
PROOF. ‘C:

o €Ty[P] AN |o|<n
< { Definition 10.60 }

256 Chapter 10: Recursion

o €Ty[PIP:=P]] AN |o|<n
< { Lemma 10.63 }

o€ Ty[P[P:=P"|]] A |o|<n
= { Lemma 10.66 }

o € Ty[P[P := P"[P := 0]]]
& { Definition 10.62 }

o € Ty[P[P := P"|]
< { Definition 10.60 }

o€ Ty[P"]

Since this holds for all n it immediately follows that o € Ty[P] = o € U; N;5; Tu[P’].
o,
o el nj>iTU[[Pj]]
< { calculus }
Vizi:oeTy[P]
= { Lemma 10.64 }
Viz>i:oeTy[P']
< { Lemma 10.63 }
ceTy[P] . O

Then we have the following consistency result between the denotational semantics in terms of
urgent event structures and the event-based operational semantics.

10.68. THEOREM. For P := B we have Ty (Ey[P]) = Tu[P]-

PROOF.

Ty(Ev[P])
= { Definition 10.58 }
= { Theorem 10.54 }
Ui ﬂm TU(H{B(J—u))
= {}
Ui njgi TU(Pj)
= { Theorem 6.34 }
Ui ﬂj;i TU[[Pj]]
= { Theorem 10.67 }
T,[P] . -

Real-time event structures 257

10.5 Real-time event structures

In this section we extend the results of Section 10.3 for real-time event structures. The
definitions in this section are all relative to real-time event structure A; = (&;, D;, T;, U;) for
1=1,2.

10.69. DEFINITION. (Partial order on real-time event structures)
A <, Ay iff

1. & 46
2. Dl :D2 rE]_
3.Vee B : (X NEye) = T((X,e)

4. Z/{1 :Z/lg rEl
0

This ordering is identical to the ordering of urgent event structures (except for the fact that D
and 7 are dealing with sets of time instants rather than time instants). It follows in the same
way as in Section 10.4 that (EBESg, <,) is a pointed complete c.p.o.. Also characterizations
of L.u.b., timed event traces of | |; A;, and so on, are identical to the urgent case. It remains to
check continuity on events of > and ».

10.70. THEOREM. (T) a¢;, +, D_g, »,...and #() are continuous on (EBESg, <,).

PROOF. For all operators, except for the new operators » and >, the proof is identical to that of

continuity in the urgent case. We prove the theorem for ». For > the theorem follows immediately
t

since By >; B, is modelled as B; + ([t,t]) 7¢; By where 7 is urgent, the fact that <, equals <,,, and

that (¢) a¢;,+, and Uy () are continuous on (EBESy, <,,).

In this proof let A; = (&, D;, T;,U;) with & = (E;, ~»;,—,1;) for i=1,2. Similarly A! is defined.

Suppose A; <, A, and let A} = A ; Ay and AL, =A ; A,. We prove that A} <, A} by systematically

checking the constraints of <,.

1. & d &, follows directly from the fact that the ‘plain’ event structure of A}, for i=1,2, is

identical to that of A [> A;, and the fact that [> is continuous.

2. D, ! E;
= { definition Eg[] }
D; I (E U Ey)
= { definition Eg[] }
{(e,D(e)N[0,t]) |e € E} U ({(e,t+Ds(e)) |e € Ex } | Ey)
= {A <A = E,CE, NDyy |E; =D, }
{(e,D(e)N[0,t]) |e € E} U {(e,t+D;(e)) |e€ E, }
= { definition Eg[] }
2

258 Chapter 10: Recursion

3. T,((X},e)) = (T UT)((X3,e)) = (T UT)((X;NEy,e)) = T/((X; N Ey,e)).
4 UTE =UUU) [(EUE)=UU U [E)=UUU =U..

t
This proves that » is monotonic in the right argument. The proof for monotonicity in the left
argument is obtained in a similar way. In addition we have

E <(|_| A,»):A> =F <(|_| Ai)[_>A> =FE <|_|(Ai[_>A)> =FE <|_|(A;A)>

i i

This proves that » is continuous on events. O

The event-based operational semantics of PAz can be extended in the same way as for PAr,
that is, by incorporating the inference rules:

B (§7a’t) B’ B (§’a7t)” B/
P.—B
PRCTIRTTI) aB) e o)

The function ut is extended for process instantiation P such that ut(P) £ ut(B) for P := B.

In order to let ut be well-defined we require P := B to be weakly guarded, i.e., B should become
guarded by substituting for a finite number of times the bodies for the process instantiations
occurring in B.

10.6 Stochastic event structures

The definitions in this section are all relative to stochastic event structures X; = (&;, F;, G;)
with & = (E;, ~,—,1;) for i=1,2. For this case we only provide definitions of the partial
order (J;) and the lL.u.b.. From these definitions it will be clear that the results from the
deterministic timed case can be carried over to the stochastic setting in an easy way.

10.71. DEFINITION. (Partial order on stochastic event structures)
Let X; C FE; for t=1,2. Then ¥; <, 3, iff

1. 81 < 82
2. .7:2 r El — .7:1
3. Vee E1 Zg2((X2,6)) :gl((szEl,e)).
O
10.72. LEMMA. (EBESg, <) is a pointed c.p.o..
PROOF. Routine and omitted O

It is easy to verify that L, = (L, &, o), the empty stochastic event structure, is the least
element under <.

Probabilistic event structures 259

10.73. DEFINITION. (Least upper bound (under <))
Let ¥; < ¥y < ... be a chain, then | |;%; 2 (|; &, U; i, G) with

G={((UXn,e),F)|3j:(Vk>j:XxDre A Xen N Ex = Xp) }.
k

10.74. LEMMA. |];%; is the least upper bound of chain ¥; <, ¥y <,

PROOF. Similar as the proof of Lemma 10.21. O

Given the definitions of <, and |; ¥; it is now straightforward to define a continuous function
Fg in a similar way as for the deterministic timed case. The semantics Es[P] is then defined
as the L.u.b. of the sequence 1, Fg(Ly),.... We will not bother the reader with the details
here.

10.7 Probabilistic event structures

In this section we will consider recursion in the probabilistic setting (as introduced in Chapter
9). Section 10.7.1 defines a c.p.o. <, on probabilistic event structures and characterizes a L.u.b.
of chains under this ordering. <, is shown to satisfy the nice properties, such as preservation
of trace sets. Section 10.7.2 proves all operators, including +,, to be continuous on <, and
provides a denotational semantics of P := B for weakly guarded B. Section 10.7.3 presents
an event-based operational semantics for P := B.

10.7.1 A pointed complete partial order

The definitions and results in this section are all relative to probabilistic event structures
Hz’ = (Si,m) with 51 = (Ez, My lz) for 221, 2.

10.75. DEFINITION. (Partial order on probabilistic event structures)
Let H1 Slp Hg lﬁglﬁgg and Ty = Mo rEl]

IT; is ‘smaller than’ IT, iff their event structures are smaller (i.e., & < &;) and events in II; are
only assigned a probability in I, if this was done in II; and this probability does not change.
10.76. LeMMmA. (EBESp, J,) is a pointed c.p.o..

PROOF. Routine and omitted. O

It is easy to show that L, = (L,d), the empty probabilistic event structure, is the least
element of (EBESp, <,).

10.77. ExaMPLE. Consider the probabilistic event structures of Figure 10.6, referred to as
(a) Iy, (b) II,, and (c) II3, and assume equally labelled events in different structures to be

260 Chapter 10: Recursion

a
T a
p pPqg
b b
(1-1)(1-0) e (N ;
o (1-p)q D).
T b r(1-q) -9
(@) (b) (1-s)(1-p) (1-s)p
(c)

Figure 10.6: Probabilistic event structures with (a) €, (b) and (b) <, (c).

the same. We have & A &, since m; # my [F;. The reader should be able to verify that
II, 9, II3 without great difficulty. O

For chain II; <, II, 4, ... let ||; II; be defined as follows. The probability function 7 is the
union of the probability functions of the elements in the chain.

10.78. DEFINITION. (Least upper bound (under <,))
Let II; <, II, 9, ... be a chain, then ||; II; 2 (U; &, U; mi). O

10.79. LEMMA. [];II; is the least upper bound of chain II; <, I, <, ...
PROOF. Routine and omitted. O

The following theorem lists some properties of <,,.

10.80. THEOREM. We have:

1. II; Slp I, = Tp(Hl) C Tp(Hg)

2. (Hl S]p I, N By = Eg) = II; = II,.

4. II; Slp I, = Cl(Hl) C Cl(Hg)
PROOF. 1. and 3. follow directly from Theorem 10.6 and the fact that T(II;) = T'(&;), for i=1, 2.
4. follows directly from the definition of <,. For 2. suppose II; <, II, and F; = E,. Then & < &,,

and by Theorem 10.6, 81 == 82. Since H]_ ﬂp H2 we have T = T rEl = Ty rEZ = . SO,]._.[1 == H2.
U

10.7.2 A fixed point semantics

In this section we consider the semantics of P := B where B € PAp. Again, we first have to
prove that the operators @¢;, +, +,,... are continuous w.r.t. <,. This is similar to the timed
and urgent case discussed before, due to:

Probabilistic event structures 261

10.81. LEMMmA. For (EBESp, <,) and F : EBESp — EBESp we have: F is continuous iff F
is continuous on events.

PROOF. Similar to the proof of Lemma 10.11. O

The renaming operator on event structures is extended to probabilistic ones as follows.

10.82. DEFINITION. For IT = (£,7) and ¢ an occurrence identifier let ¢(IT) 2 (p(€), ")
with 7'(¢e) = m(e) for ¢e € ¢p(dom(r)). O

10.83. THEOREM. G¢;,+, +p,... and ¢() are continuous on (EBESp, <,).

PROOF. We prove that the operators are continuous on events, which—by Lemma 10.81—proves
the case. For the renaming operators ¢() these proofs are trivial and omitted. We prove the theorem
for @g;,+, +, and ||—G The proofs for the other cases are similar and omitted here. For the
treated constructs it suffices to only consider the constraints from Definition 10.75 concerning the
probabilistic parts. Apart from +, it suffices to only prove monotonicity since £p[| is a conservative
extension of £] |. In this proof let II; = (&;, w;) with & = (E;, ~;,—,1;) for i=1,2. Similarly IT} is
defined.

1. Action-prefix. Suppose II; <, II,, let II; = @;;II; and II;, = @¢;II,. We infer: «), [By = 7, |
E, = m; = 7. This proves that @ ; is monotonic.

2. Choice. Suppose IT; <, II,, let II} = II; +1II and II}, = II,+II. We infer:
2 [B
= { definition £p[| }
(e Um) I (BLUE)
= { calculus }
» [(EyUE)Un | (E1UE)
= {ENE;, =09 fori=1,2}
» B UT
= {IhL 1L}
mUm
= { definition £p[| }

!
™

3. Probabilistic choice. Suppose II; <, II,, let II} = II; +,1II and II;, = II, +,II. Since the
causality-based semantics of +, is equal to that of + (cf. Chapter 9), except for the treatment
of 7, we only have to consider the probabilistic part. So we check:

Ve € dom(n)) : mh(e) = my(e)

< { definition Ep[] }
Ve € dom(m) U init(Il;) U dom(w) U init(II) : my(e) = i (e)

& { Ve e dom(n) U init(IT) : my(e) = mj(e) (cf. definition Ep[]) }
Ve € dom(m) U init(ILy) : my(e) = «}(e)

262 Chapter 10: Recursion

& {AUB=A\BUB\AU(ANB)}
Ve € dom(m) \ init(Il;) U init(II;) \ dom(m;) U (dom(my) N init(I1;)) : wh(e) = 7 (e)
< { definition of £p[| }
(Ve € dom(my) \ init(Il,) : my(e) = mi(e))
A (Ve € init(II;) \ dom(m,) :
A (Ve € dom(m;) N init(I1,) : wé(e) =p-m(e))
< { Lemma 10.7; dom(m;) N E; = dom(m); definition of £p[| }
(Ve € dom(my) \ init(Il;) : m2(e) =m(e))
A (Ve € init(Il;) \ dom(my) : p = p)
A (Ve € dom(m;) N init(Il;) : p- ma(e) = p - mi(e))
< {AUuB=A\BUB\AU(ANB)}
Ve € dom(m,) : my(e) = my(e)
< {II, <, 10, }

true

The proof of monotonicity in the second argument (that is, IT; <, I, = I+, 1; <, IT+,11,)
is obtained by reversing the arguments in the above proof. In addition we have

B(mF,m) = B(1) = B(mFm) = B+, m).

This proves that +, is continuous on events.
4. Parallel composition. Suppose II; <, II,, let IT} = H1||—GH and IT, = HZH—GH. The proof that
IT; 9, II,, is as follows:
Ve € dom(n) : wh(e) = my(e)
< { definition of £p[| }
Ve € (dom(m) x {#}) U ({*} x dom(r)) : mi(e) = m}(e)
< {1}
(Ve € dom(my) : 7
A (Ve € dom(r) : wh(
& { definition of £p[
(Ve € dom(my) : ma(e
& {1, }

true

mi(e)) A (Ve € dom(r) : w(e) = w(e))

This proves that ||—G is monotonic in the first argument; like for 4, the proof for monotonicity
in the second argument can be obtained by reversing the arguments in the above proof.

[l
Recall that the syntax of PAp is defined using the predicated pc, ppc, and ppa. For P := B
we extend the definitions of these predicates as follows: pc(P) £ pc(B), ppc(P) = ppc(B)
and ppa(P) £ ppa(B). In order to have these predicates well-defined we require P := B to
be weakly guarded, that is, B should become guarded by substituting for a finite number of

Conclusions 263

times the bodies of processes for the process instantiations occurring in B. The event structure
semantics of P := B is now defined as the l.u.b. of the sequence L,, Pg(L,), Ps(Ps(Lp)),. ..
where Pp is the probabilistic variant of Fp.

10.84. DEFINITION. For P := B a process definition let Ep[P] £ |; Ph(L,). O

10.85. THEOREM. VP € PAp : L(Ep[P]) = L(E[®p(P)])-

PROOF. Straightforward and omitted. O

10.7.3 Event-based operational semantics

This section extends the event-based operational semantics of PAp of Chapter 9 with recursion.
We take the same approach as in Section 10.3.3. So, each process instantiation of P is uniquely
identified, as well as all occurrences of action-prefix and /. The additional inference rules are
presented in Table 10.3.

B &), pr B o), pr
($€.0) (P:=B) ($€.0)
Py =525 ¢(B') ¢(B) === ¢(B')
P¢ (¢€,T,p) ¢(B,) ¢(B) (¢€,T,p) ¢(B,)

Table 10.3: Additional transition rules for PAp.

In the same way as in Section 10.3.3 it can be proven that for P := B the set of event
traces generated by the operational semantics coincides with the set of event traces from the
denotational semantics. We will not further elaborate on this here.

10.8 Conclusions

In this chapter we have proposed a denotational semantics for recursively defined processes.
This was done by applying standard fixed point theory. For each type of event structure
defined in Chapters 4 through 9 of this thesis a pointed c.p.o. (or: domain) was defined and
a characterization of the least upper bound of a chain under this order was provided. Except
for the urgent and real-time event structures the ordering was shown to correspond to an
intuitive semantical notion, viz. trace set inclusion. Besides, for each case it was shown that
continuity w.r.t. the ordering boils down to continuity on events; a notion which is—as shown
by Winskel [155]—technically more convenient to handle.

264 Chapter 10: Recursion

All operators in the process algebras PA, ..., PAp were shown to be continuous w.r.t. the
appropriate ordering. This enabled us to define the denotational semantics of P := B as the
least fixed point of a function on event structures. For all cases (except the urgent and real-
time case) it was shown that this semantics is a conservative extension of the denotational
semantics of recursive process definitions in PA—when eliminating the time, stochastic, or
probabilistic information from the lposets of the event structure at hand we obtain the lposets
of the event structure that are obtained by eliminating the quantitative information from the
event structure at hand.

For the extended process algebras PAr, PAg, PAy and PAp we provided an event-based oper-
ational semantics for the derivation of timed (or probabilistic) event transitions of recursively
defined processes. For all these cases we have shown that this operational semantics is consis-
tent with the denotational fixed point semantics in the sense that identical sets of timed event
traces are generated.

We defined the meaning of a recursive process definition by defining a pointed c.p.o. and by
taking the limits of the meaning of its approximants. For event structure models this approach
is quite common, see Winskel [155|, Langerak [89] and Degano et al. [42]. An alternative
approach is taken by, for instance, Loogen & Goltz [95] and Baier & Majster-Cederbaum [10]
by defining a complete metric space on event structures. The relationship between the use
of pointed c.p.o.’s and complete metric spaces in the context of event structures has been
addressed by Baier & Majster-Cederbaum [11]. For all cases we used the structure of the
event structure as a means to define a pointed c.p.o.; for the interval event structures of
Murphy [108], a timed variant of event structures, the structure of time is used instead to
define a pointed c.p.o..

11 Conclusion

This chapter contains a retrospective view on the work presented in this dis-
sertation, summarizes the main technical results and provides some overall
conclusions. In addition, some thoughts on future work are presented.

11.1 Introduction

This dissertation concerns extensions of (a variant of) event structures, a partial-order model
for concurrent systems. The original incentives of our work were to study the expressiveness of
event structures to effectively support the specification of distributed systems and to facilitate
the formal representation of performance and reliability aspects in these models. A secondary
aim was to (formally) relate the quantitative extensions of event structures to interleaving
models for concurrency such that partial-order and interleaving models can be used coherently
in the system design process and can be compared in a perspicuous way.

To achieve this we have widened in several ways the notion of extended bundle event structures,
a model developed by Langerak [89] for providing a noninterleaving semantics to the stan-
dardized process algebra LOTOS. Basically these event structures consist of labelled events
modelling occurrences of actions, a bundle relation indicating the causal dependencies among
events, and an (asymmetric) conflict relation modelling the branching structure of events. The
bundle relation relates a set of events, the bundle set, to an event. Bundles have to satisfy the
stability constraint that requires events in a bundle set to be mutually in conflict such that
only one event in a bundle set can happen.

11.2 Originality

This dissertation introduced dual event structures, a model obtained from extended bundle
event structures by dropping the stability constraint, and several quantitative extensions of
extended bundle event structures that treat real-time (both of a deterministic and stochastic
nature), urgency, and probability.

Dual event structures support the specification of disjunctive causality, a type of causality that
has received only scant attention in the literature. Rensink’s [126, 127] families of labelled
partial orders (Iposets) were used as an underlying semantical model for dual event structures.
Other models that support disjunctive causality among events are the event automata of Pinna
& Poigné [118], {AND,OR} automata of Gunawardena [60], and local event structures of
Hoogers et al. [75, 76]. These models are all based on a kind of event automaton, where states

265

266 Chapter 11: Conclusion

keep information about the events that have happened so far, and transitions correspond to
occurrences of events. Neither of these models, however, keeps track of the causal dependencies
between events. Recently, Pinna & Poigné equipped their event automata with a means to
mimic causal dependencies [117], but they do not address the problem of how to deduce causal
dependencies in case of disjunctive causality as we did in this dissertation.

Although quantitative extensions of interleaving models have been (and still are) in vogue,
noninterleaving models have been scarcely enriched with notions like time and probability.
This dissertation addressed a series of such extensions of extended bundle event structures.
A few partial-order models are known to us that are equipped with real-time; extensions
with urgent and non-urgent events, probabilities, or time constraints defined by distribution
functions, as treated in this dissertation, are unknown to us. Our real-time model, referred to
as real-time event structures, associates a set of time instants to events, modelling absolute time
constraints, and to bundles, modelling relative time constraints between causally dependent
events. This model resembles the real-time extension of causal trees by Fidge [47], although
he only associates time to events, does not incorporate a timeout and watchdog operator, and
bases his approach on a linear-time model. Other work in this direction has been reported by
Casley et al. [32], Maggiolo-Schettini & Winkowski [99], Murphy [106, 108], Gunawardena [61,
62], and Janssen et al. [78]. A more detailed description of these approaches and their relation
with real-time event structures is given in Chapter 7.

11.3 Main technical achievements

This dissertation proposed a series of novel types of event structures: dual, timed, real-time,
urgent, stochastic, and probabilistic event structures. Except for dual event structures that are
more expressive than currently available process algebras, we considered the appropriateness
of all these models to provide a noninterleaving semantics for quantitative extensions of a
process algebra PA akin to LOTOS. For each variant of PA we could obtain a denotational
semantics using the appropriate type of event structures, while retaining the noninterleaving
semantics of PA to a maximal extent. A corresponding event-based operational semantics for
most process algebras was given. This operational semantics keeps track of the occurrence of
actions, rather than the actions themselves (as usual).

Below we list for each type of event structure (and related process algebra) the main technical
achievements.

Dual event structures

e Characterization of lposets both in an intensional way, i.e., using the structure of the
dual event structure at hand, and in an operational way, i.e., starting from event traces
(but without equipping them with causality information). As an interesting result these
characterizations do not coincide like for extended bundle event structures.

e Event traces are not sufficiently expressive as an underlying semantical model for dual
event structures.

Main technical achievements 267

e Dual event structures are (on the level of Iposets) strictly more expressive than Winskel’s
stable event structures [153, 154], and as a result, do not respect a fixed cause-and-effect
relation between events.

Urgent event structures

e Due to the global impact of urgency (roughly speaking, timeouts), event traces are
required to be time-consistent.

e The denotational semantics of PA, the urgent timed variant of PA, is not a conservative
extension of the semantics of PA, since urgent events may prevent (conflicting) events
to occur.

e The corresponding event-based operational semantics of PAy, based on a separation
between action- and time-transitions, closely resembles a proposal of Bolognesi et al. [19].

Real-time event structures

e Appropriate to provide a novel noninterleaving semantics to a real-time process algebra
that includes timeout and watchdog operators.

e Absence of any mechanism to explicitly force the passage of time; time is included as a
parameter in extended bundle event structures.

e Restrict the global impact of urgency such that event traces of a real-time event structure
do respect causality, but not necessarily time. For each ll-timed trace, however, there is
a corresponding time-consistent trace with the same timed events.

e The event-based operational semantics of PAg, PA with time, timeout and watchdog
operator, is a minimal and (in our opinion) elegant extension of the standard (inter-
leaving) operational semantics of PA, and is strong bisimulation equivalent with the
(noninterleaving) denotational semantics of PAg.

Stochastic event structures

e When time constraints are determined by exponential distributions it suffices to associate
rates—a rate uniquely defines an exponential distribution—only to events; the resulting
model is well-suited to provide a noninterleaving semantics to a stochastic process alge-
bra. The corresponding operational semantics coincides with several proposals from the
literature, if rates are combined in the appropriate way at synchronization.

e Non-memoryless distributions can be supported if the class of distribution functions at
hand is closed under product and has a unit element for this operation. Phase-type
distributions fit well these requirements and are useful from a practical perspective.

268 Chapter 11: Conclusion

Probabilistic event structures

e Probabilistic behaviour can be represented by decorating events with probabilities.

e The denotational semantics of PAp, PA + an internal probabilistic choice operator, is a
conservative extension of the denotational semantics of PA.

e The event-based operational semantics of PAp is testing-equivalent with the denotational
semantics using probabilistic event structures.

11.4 Epilogue and further work

We conclude this section by comparing the achievements of this dissertation with quantitative
extensions of labelled transition systems, one of the most prominent interleaving models, in
the literature. We believe that this dissertation has proven that most quantitative extensions
of event structures are intuitively appealing and conceptually simpler than their interleaved
counterparts. In the real-time model we benefit from the absence of actions that explicitly force
time to pass; in the probabilistic model we do not have to distinguish between probabilistic
and nonprobabilistic transitions (or the like) and simply attach probabilities to events; and,
in the stochastic model we can exploit the notion of causal independence such that non-
memoryless distribution functions can be incorporated, a problem that has not (yet) been
solved satisfactory in labelled transition systems. We admit, however, that in the urgent
model the advantages of event structures diminish due to the global impact of urgent events.
The fact that we are ‘forced’ in this framework to work in a time-consistent manner, in
particular that all urgent events (including causally independent ones) must be executed in
that way, thwarts one of the main benefits of event structures, i.e., the locality aspect (or, the
absence of a global state).

Another interesting result of this dissertation is that most of the event-based operational
semantics for the various quantitative extensions of PA are relatively simple (and conservative)
extensions of the standard interleaving semantics of PA. The inference rules for the real-time
extension are significantly less complex than most existing interleaving proposals, while in the
probabilistic case the rules simplify those of Hansson & Jonsson [65]. For the urgent case we
do not ‘gain’ something compared to the interleaving case; the rules for this case are almost
identical to those of Bolognesi et al. [19].

To our opinion these results justify a further exploration of the models introduced in this
dissertation in order to make them suitable to effectively support the design and performance
analysis of concurrent systems. Some topics that need to be addressed to reach these goals are
the notions of equivalences (congruences) and preorders (precongruences) on event structures
that reflect natural notions of transformation and implementation, the incorporation of data
(like value passing), and the development of tool support (for instance, based on earlier work
of Botma & Langerak [22]). In addition, the mapping of event structures to performance
models in a systematic way needs to be addressed. There it would be interesting to consider
performance models that are not based on global states (like Markov chains), but that are
more ‘truly concurrent’.

Appendix A Stochastic processes

In this appendix we briefly recall some results and definitions from basic probability theory as
far as they are needed to understand the stochastic material in this thesis (mainly Chapters 8
and 9). For a more through treatment we refer to Kobayashi [87] and Kant [80]. We assume
the reader to be familiar with the notion of stochastic variables.

A.1 Basic notions

A.1. DEFINITION. A stochastic variable U is characterised by a distribution function Fy such
that Fy(z) = Pr{U <z} O

A stochastic variable is continuous if its distribution function is everywhere continuous. In
this appendix we mainly deal with continuous distribution functions. Distribution functions
satisfy the following properties:

L z<y = Fy(r) < Fy(y)
2. lim, , o Fy(z) =0 and lim, .o Fy(z)=1

3. Fy(z) > 0for —oco <z < 0

The first and last property are self-explanatory. The first part of the second property states
that the event U < z for x — —oo converges towards the impossible event and that the
probability of this event is 0. The second part of this property states that for x — oo the
event U < z converges towards the certain event which occurs with probability 1. As Fy(z)
corresponds to a probability we have that 0 < Fy(z) < 1 for all z.

A.2. DEFINITION. Whenever it exists, the derivative of distribution function Fy is called the
probability density function of U, and is denoted Fj;. Therefore

Fole) 2 [Ry .
U

A.3. DEFINITION. The i-th moment (i=1,2,...), denoted u;, of stochastic variable U is de-
fined as the expectation of U’. That is,

pi = EUY = [m y'F(y)dy .

269

270 Appendix A: Stochastic processes

The expectation of U equals the first moment u; and the variance of U equals py — p?.
O

In order to be able to consider combinations of stochastic variables the joint distribution is
used.

A.4. DEFINITION. Let Uy,...,U, (n > 1) be stochastic variables where U; has distribution
Fy,, and U = (Uy,...,U,). Fg is called a joint distribution function and is defined for
T = (1,...,%,) a8

(1>

1 Tn
F(T) /_oo.../_mF'ﬁ(yl,...,yn)dyn...dyl.

Ui,..., U, are called statistically independent iff

1 In

Fr () dys - ... - / FY, (Yn) dyn-

— 00

Fote) = [T Fuw) = |

—0o0

Note that F5(Z) = Pr{U; < z1,...,U, < z, }.

Stochastic variables can be defined as functions from other stochastic variables. For instance,
if U and V are stochastic variables, then U+-c, where c is some constant, U+V and max (U, V)
are stochastic variables.

A.5. LEMMA. For stochastic variables U,V with U = V + ¢ for some constant ¢ we have
Fy(z) = Fy(z—c) and F{,(z) = F{,(z—c).
PROOF. Fy(z) =Pr{U<z}=Pr{V+c<z}=Pr{V <z—c}=Fy(z—c). O

Basically, a stochastic process is a collection of stochastic variables { U(t) | ¢ € Time } where
usually U(t) denotes the value, or state, of U at time ¢t. (We assume the state space to be
discrete.) If Time is a denumerable set then the stochastic process is called discrete-time, if it
is continuous the stochastic process is called continuous-time. If the next state of a stochastic
process only depends on the current state, and not on earlier states, it is called a Markov
process.

A.6. DEFINITION. (Markov process)

A stochastic process {U(t) | t € Time} is a Markov process iff for any ¢ (i > 0) the
distribution of U(¢;41) only depends on U(t;). That is,

Pr{U(ti1) <z |U(t1) =x1,...,U(tn) = } = Pr{U(tiy1) <z |U(tn) =z, }.
U

A similar definition can be given for the discrete-time case. In Chapter 8 we consider Markov
processes that are invariant under time shifts.

Discrete-time Markov chains 271

A.7. DEFINITION. Markov process {U(t) |t € Time} is called time-homogeneous iff for any
t,t' such that ' <t and z, 2’ we have

PriUt)<z|U{t)=2"}=Pr{U(t—-A) <z |U{t —A)=12"}.
U

For Markov processes the next state only depends on the current state, and not the amount
of time already spent in that state. This means that the distribution function that determines
the residence time in a state should satisfy the memoryless property (see also Chapter 8).
As a result, state residence times are exponentially distributed in the continuous-time case,
and geometrically distributed in the discrete-time case. An extension of Markov processes,
referred to as semi-Markov processes, allows arbitrary state residence times. These processes
will be further dealt with in Chapter 9.

In this thesis we only consider Markov processes with a discrete state space. Such processes are
called Markov chains. In the sequel we consider how continuous-time and discrete-time Markov
chains (CTMCs and DTMCs) are described and confine ourselves to time-homogeneous chains.
We first consider the discrete case.

A.2 Discrete-time Markov chains

We start by a classification of DTMCs which is of importance when calculating performance
results. The terminology used here is adopted from Kemeny & Snell [85]. An ergodic chain
(or irreducible chain) is a chain in which it is possible to go from every state to every other
statel.

A DTMC is often represented by a transition probability matrix P, where P(i,j) can be
interpreted as the probability of going from state ¢ to j in a single transition. In general, for
n > 0, P™(7,j) denotes the probability of going from state i to j in n transitions.

A.8. DEFINITION. (Transition probability matriz)
P is a transition probability matriz (or stochastic matrix) iff for all 4, 33, P(4,5) = 1
(that is, each row sums up to 1) and 0 < P(¢,5) < 1, for all ¢, 5. O

An important notion is periodicity.

A.9. DEFINITION. The period d(i) of state i is: d(i) = ged{n |n >0 A P"(i,i) > 0},
where ged(@) 2 0. If d(i) > 1, i is called periodic, if d(i) = 1, i is called aperiodic. [

ged denotes the greatest common divisor of a set of positive naturals. When state 7 in an
ergodic chain is periodic with period d(z), then all states in this chain are periodic with period
d(i), so we can simply speak about the period d of an ergodic chain.

1We restrict ourselves to finite Markov chains. By definition, finite ergodic chains are so-called positive
recurrent [80]. Positive recurrence means that the expected number of transitions to return to a state is
smaller than oo, and is a necessary precondition for a general Markov chain—possibly infinite—to be ergodic.
Since we only consider finite chains, the notion of positive recurrence does not have to be dealt with.

272 Appendix A: Stochastic processes

A.10. DEFINITION. A periodic chain is an ergodic chain with a periodic state. A reqular
chain is an ergodic chain without a periodic state. O

(It should be noticed that sometimes regular chains are called ergodic, while ergodic chains
are called irreducible.)

An important part of the analysis of Markov chains is the calculation of stationary distributions
and so-called steady state (or limiting) distributions. Intuitively, once a system starts in a
stationary distribution it remains there forever. The limiting distribution is the distribution
the system will have when time ¢ — 00, given some initial distribution.

Let 7(n) be the distribution of a chain at the n-th step (n>0). The elements of m(n) define
the probability, 7;(n), of being in state j at the n-th step. A chain is completely characterized
by its transition probability matrix P and its initial distribution 7(0).

A.11. DEFINITION. (Stationary distribution)

7 is a stationary distribution of a chain iff: 7(0) =7 = (Vn:7(n) =m). O

For stationary distribution 7 it holds that if the system is started with 7 as the initial distri-
bution, it will retain this distribution forever. Thus the system does not move and is called
stationary.

A.12. DEFINITION. (Limiting distribution)

7 is the limiting distribution of a chain if, for all initial distributions m(0), we have
7 = lim, . m(n), provided this limit exists. O

It is a well-known fact that for regular chains a limiting and stationary distribution always
exist and that these distributions are identical.

m(n) can be calculated from 7(n—1) as follows:
n(n) = n(n—1)-P,for n > 1.
This recursive equation can be rewritten into
m(n) = x(0) - P"™. (A.1)

Thus, the limiting distribution of a chain is equal to lim, . 7(0) - P", provided this limit
exists. This limit exists for regular chains, but not for periodic ones. So, a regular chain has a
unique limiting distribution, but a periodic one does not. Intuitively this is clear as, although
a periodic chain ‘on the long run’ reaches some ‘stationary behaviour’, it remains cycling in
a fixed way. The limiting distribution of a DTMC can—if it exists—be computed by solving
the following system of linear equations

m-P=m, ijzl
J

Continuous-time Markov chains 273

p 1
01 0
P=Ip01-p
01 0
1 1-p

Figure A.1l: Periodic discrete-time Markov chain.

A.13. EXAMPLE. Consider the periodic chain (d=2) of Figure A.1, and assume the chain
is initially in state 1, that is, 7(0) = [1,0,0]. Using equation (A.1) we get:

{ 0,1,0] if n is odd

m(n) =
(n) [p,0,1—p] if n is even.

Therefore, lim,, o, 7(n) does not exist for 7(0) and—by definition—the chain has no limiting
distribution. However, for 7'(0) = [1p, 3,3 (1-p)] we get m(n) = 7'(0), for all n. This
is a stationary distribution of the chain. So, although the periodic chain has a stationary
distribution, it has no limiting distribution. O

A.3 Continuous-time Markov chains

A CTMC is determined by its (infinitesimal) generator matrix (or rate matrix) and its initial
distribution.

A.14. DEFINITION. (Generator matriz)

Q is a generator matriz iff, for all i, Q(i,5) > 0 (¢ # j), X; Q(4,4) = 0 (that is, each
row sums up to 0), and Q(4,4) = — 3, Q(4, 7). O

For obtaining the limiting distribution 7 of a CTMC (which, in the continuous case, always
exists) the following system of linear equations has to be solved

Q=0 Y m=1
J

274 Appendix A: Stochastic processes

Appendix B Domain theory

In this appendix we briefly recall some results and definitions from basic domain theory as
far as they are needed to understand Chapter 10. For a more thorough treatment we refer to
Schmidt [132] and Gunther & Scott [63]. A more informal treatment is given in Tennent [139]
and Manna et al. [100].

B.1. DEFINITION. (Partial order)
A binary relation < on set D is a partial order iff, for all d,d’,d" € D:

1. d 9 d (reflexivity)
2. (d<d A d <dd) = d=d (anti-symmetry)
3. (d<gd N d 2d") = d<Jd" (transitivity).

O

The pair (D, <) is a partially ordered set, or shortly, poset. If d € d’ and d' 4 d then d and
d' are incomparable.

B.2. DEFINITION. Let (D, <) a poset and D' C D.

1. d € D is an upper bound of D' if Vd' € D' : d' < d.

2. d € D is a least upper bound (l.u.b.) of D', denoted || D', if d is an upper bound
of D" and (Vd" € D : d" is an upper bound of D' = d <d").
[

B.3. LEMMA. Let (D, <) a poset and D' C D. If D' has a L.u.b., this Lu.b. is unique.

PROOF. Routine and omitted. O

B.4. DEFINITION. Let (D, <) a poset and D' C D. D' is a chain if D' # @ and (Vd,d €
D':d<dd v d <d). (D is totally ordered.) O

The Lu.b. of chain d; < dy < ... is denoted | |; D where D = {d;,ds, ...}, or simply by |I; d;.

B.5. DEFINITION. Let (D, <) a poset.

1. (D, <) is complete (c.p.o.) if each chain in D has a lL.u.b..

275

276 Appendix B: Domain theory

2. (D, <) is pointed complete if it is complete and there exists a least element in D,
denoted L, such that Vd € D: 1L <d.

O

(Note: different terminology in the literature exists. Sometimes a pointed c.p.o. is called a
Scott domain, or simply domain, and sometimes the existence of a least element is incorporated
in the definition of c.p.o.. Here, we follow Schmidt [132].)

B.6. DEFINITION. Let (D, <) and (D', <') posets and F': D — D'.

1. F is monotonic iff Vdy,dy € D : dy < dy = F(dy) < F(dy).
2. If D and D' are complete, then F' is continuous iff for each chain E in D we have

O
That is, F' is continuous if and only if it preserves l.u.b.’s.
B.7. COROLLARY. Let (D, <) and (D', <') be c.p.o.’s and F' : D — D'. Then:

F' is continuous = F' is monotonic .

PROOF. Consider w.l.o.g. D = {d,d }. Then we derive:
d<d
= { Definition B.2 }

Up{d,d' } =d
= { Leibniz’s rule }

F(Up{d,d'}) = F(d)

= { F is continuous }

Up { F(d), F(d')} = F(d)
= { Definition B.2 }
F(d) < F(d) . O

For function F', let F° be the identity function, and F**! = Fo F™, for n > 0, where o denotes
usual function composition.

B.8. THEOREM. Kleene’s first recursion theorem
Let (D, <) a pointed c.p.o. and F : D — D continuous. Then:

1. {d€ D | F(d) = d} has a least element, denoted fix F'.
2. fix F is unique and fix F = | |; F*(_L), for i > 0.

Appendix B: Domain theory 277

PROOF. See, for instance, [132, Theorem 6.11]. O
fix F' is called the least fixed point of F.

B.9. THEOREM. Let (D, <), (D', <') and (D",<") c.p.o.’s, F: D — D' and G : D' — D"
be continuous functions. Then G o F' is continuous.

PROOF. Routine and omitted. O

B.10. DEFINITION. Let (Dy,<;),...,(D,,<,) pointed c.p.o.’s. Then define (D, <) with
D=D; x...x D, and (dl,---,dn) < (ll,,d;l) iff d; <; d;, for all 0 < 7 < n. 0

B.11. LEMMA. (D, <), the product of pointed c.p.o.’s (Dy,<y),...,{(Dyn,<,), is a pointed
c.p.o..

PROOF. See, for instance, [132, Proposition 6.17]. O

B.12. LEMMA. A function F': D; x ... x D, — FE is continuous iff it is continuous on every
D;, for 0 <7 < n.

PROOF. See, for instance, [132, Proposition 6.18]. O

278 Appendix B: Domain theory

Bibliography

1]

2]

[10]

[11]

[12]

L. AcETo AND D. MURPHY. On the ill-timed but well-caused. In Best [15], pages
97-111.

L. AceTo AND D. MurPHY. Timing and causality in process algebra. Acta Informatica,
1996. (to appear).

M. AIJMONE MARSAN AND A. BiaANcO AND L. CIMINIERA AND R. SI1STO AND A.
VALENZANO. A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, 2(2):151-164, 1994.

M. AIMONE MARSAN AND G. CONTE AND G. BALBO. A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Programming Languages and Systems, 2(2):93-122, 1984.

R. ALUR AND D.L. DiLL. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

J.C.M. BAETEN. The total order assumption. In S. Purushothaman and A. Zwarico,
editors, Proceedings First North American Process Algebra Workshop, Workshops in
Computing, pages 231-240. Springer-Verlag, 1993. (also in Proceedings of the Workshop
"What good are partial orders?”, E. Best (editor), Hildesheimer Informatik-Berichte
13/92, pages 1-11, 1992).

J.C.M. BAETEN AND J.A. BERGSTRA. Real time process algebra. Formal Aspects of
Computing, 3(2):142-188, 1991.

J.C.M. BAETEN AND J.A. BERGSTRA AND S.A. SMOLKA. Axiomatizing probabilistic
processes: ACP with generative probabilities. Information and Computation, 121:234—
255, 1995. (preliminary version appeared in W.R. Cleaveland, editor, Concur ’92, LNCS
630, pages 472-485. Springer-Verlag, 1992).

J.C.M. BAETEN AND J.W. KrLoOP, EDITORS. Concur ’90: Theories of Concurrency —

Unification and Extension, volume 458 of Lecture Notes in Computer Science. Springer-
Verlag, 1990.

C. BAIER AND M.E. MAJSTER-CEDERBAUM. The connection between an event struc-

ture semantics and an operational semantics for TCSP. Acta Informatica, 31:81-104,
1994.

C. BAIER AND M.E. MAJSTER-CEDERBAUM. Denotational semantics in the cpo and
metric approach. Theoretical Computer Science, 135:171-220, 1994.

Y. BEN-ASHER AND E. FARCHI. Using true concurrency to model execution of parallel
programs. International Journal of Parallel Programming, 22(4):375-407, 1994.

279

280

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J.A. BERGSTRA AND J.W. KrLoP. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77-121, 1985.

M. BERNARDO AND L. DONATIELLO AND R. GORRIERI. Modeling and analyzing
concurrent systems with MPA. In Herzog and Rettelbach [69], pages 175-189.

E. BEsT, EDITOR. Concur ’93: Concurrency Theory, volume 715 of Lecture Notes in
Computer Science. Springer-Verlag, 1993.

T. BoLoGNESI AND E. BRINKSMA. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987.

T. BOLOGNESI AND G. C1Acclio. Cumulating constraints on the ‘when’ and the ‘what’.
In Tenney et al. [140], pages 433—-448.

T. BoLoGNESI AND F. Lucipi. Timed process algebras with urgent interactions and
a unique powerful binary operator. In de Bakker et al. [40], pages 124-148.

T. BOLOGNESI AND F. Lucipi AND S. TRIGILA. Converging towards a timed LOTOS
standard. Computer Standards & Interfaces, 16:87-118, 1994.

T. BOLOGNESI AND S. SCHNEIDER. Unpublished manuscript, 1994.

T. BOLOGNESI, J. VAN DE LAGEMAAT, AND C.A. VISSERS, EDITORS. LOTOSphere:
Software Development with LOTOS. Kluwer Academic Publishers, 1995.

B. BorMA AND R. LANGERAK. Simulator for LOTOS to study the independence and
causality of events. In D. Hogrefe and S. Leue, editors, Formal Description Techniques
VII, Participants proceedings, pages 201-203, 1994.

G. BoupoL AND I. CASTELLANI. A non-interleaving semantics for CCS based on
proved transitions. Fundamenta Informaticae, 11(4):433-452, 1988.

G. BoupoL AND I. CASTELLANI. Permutations of transitions: An event structure
semantics for CCS and SCCS. In de Bakker et al. [39], pages 411-427.

G. BoupoL AND I. CASTELLANI. Flow models of distributed computations: Event
structures and nets. Rapports de Recherche 1482, INRIA, 1991.

G. BoubpoL AND I. CASTELLANI. Flow models of distributed computations: three
equivalent semantics for CCS. Information and Computation, 114:247-314, 1994. (pre-
liminary version appeared in I. Guessarian, editor, Semantics of Systems of Concurrent
Processes, LNCS 469, pages 96-141. Springer-Verlag, 1990).

E. BRINKSMA. Performance and formal design—a process algebraic perspective. (oral
presentation at 6th Int. Workshop on Petri Nets and Performance Models), 1995.

E BrRINKSMA AND J.-P. KATOEN AND R. LANGERAK AND D. LATELLA. Performance
analysis and true concurrency semantics. In T. Rus and C. Rattray, editors, Theories
and Ezperiences for Real-Time System Development, volume 2 of AMAST Series in
Computing, chapter 12, pages 309-337. World Scientific, 1994.

Bibliography 281

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. BRINKSMA AND J.-P. KATOEN AND R. LANGERAK AND D. LATELLA. A stochastic
causality-based process algebra. The Computer Journal, 38(7):552-565, 1995.

P. BucHHOLZ. Markovian process algebra: Composition and equivalence. In Herzog
and Rettelbach [69], pages 11-30.

R.T. CASLEY. On the Specification of Concurrent Systems. PhD thesis, Stanford
University, 1991.

R.T. CaAasLEy AND R.F. CREwW AND J. MESEGUER AND V.R. PRATT. Temporal
structures. Mathematical Structures in Computer Science, 1(2):179-213, 1991.

C.-T. CHOU. Mechanical verification of distributed algorithms in higher-order logic.
The Computer Journal, 38(2):152-162, 1995.

I. CHRISTOFF. Testing equivalences and fully abstract models for probabilistic processes.
In Baeten and Klop [9], pages 126-140.

L. CHRISTOFF. Specification and Verification Models for Probabilistic Processes. PhD
thesis, Uppsala University, 1993. (also available as Technical Report 93/37).

P. DARONDEAU AND P. DEGANO. Causal trees. In G. Ausiello, M. Dezani-Ciancaglini,
and S. Ronchi Della Rocca, editors, Automata, Languages and Programming, volume 372
of Lecture Notes in Computer Science, pages 234—-248. Springer-Verlag, 1989.

P. DARONDEAU AND P. DEGANO. Event structures, causal trees, and refinement. In
B. Rovan, editor, Mathematical Foundations of Computer Science 1990, volume 452 of
Lecture Notes in Computer Science, pages 239-245. Springer-Verlag, 1990.

M. Davio. Kronecker products and shuffle algebra. IEEE Transactions on Computers,
C-30(2):116-125, 1981.

J.W. DE BAKKER, W.-P. DE ROEVER, AND G. ROZENBERG, EDITORS. Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, volume 354
of Lecture Notes in Computer Science. Springer-Verlag, 1989.

J.W. DE BAKKER, C. Huizing, W.-P. DE ROEVER, AND G. ROZENBERG, EDI-
TORS. Real-time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

M.K. DE WEGER AND H. FRANKEN AND C.A. VISSERS. A development model for

distributed information systems. In Proceedings of the 1st Int. Distributed Conference
on High Performance Networking for Teleteaching (IDC’95), 1995.

P. DEGANO AND R. DE NicorLA AND U. MONTANARI. On the consistency of ‘truly
concurrent’ operational and denotational semantics (extended abstract). In Third An-
nual Symposium on Logic in Computer Science, pages 133-141. IEEE Computer Society
Press, 1988.

282

Bibliography

[43]

[54]

P. DEGANO AND R. GORRIERI AND S. VIGNA. On relating some models for concur-
rency. In M.-C. Gaudel and J.-P. Jouannaud, editors, Theory and Practice of Software
Technology, volume 668 of Lecture Notes in Computer Science, pages 15-30. Springer-
Verlag, 1993. (revised version as Technical Report UBLCS-93-35, University of Bologna).

M. Diaz AND R. GROZ, EDITORS. Formal Description Techniques V, volume C-10 of
IFIP Transactions. North-Holland, 1993.

M. FANG AND C.J. HO-STUART AND H.S.M. ZEDAN. Specification of real-time
probabilistic behaviour. In A. Danthine, G. Leduc, and P. Wolper, editors, Protocol
Specification, Testing, and Verification, XIII, volume C-16 of IFIP Transactions, pages
143-157. North-Holland, 1993.

L. FERREIRA PIRES. Architectural Notes: A Framework for Distributed Systems De-
velopment. PhD thesis, University of Twente, 1994.

C. FIDGE. A constraint-oriented real-time process calculus. In Diaz and Groz [44],
pages 363-378.

A. GiacAaLoNE AND C.-C. Jou AND S.A. SMOLKA. Algebraic reasoning for prob-
abilistic concurrent systems. In M. Broy and C.B. Jones, editors, Proceedings of the
Working Conference on Programming Concepts and Methods, pages 443-458. North-
Holland, 1990.

R.J. VAN GLABBEEK. The linear time — branching time spectrum. In Baeten and Klop
9], pages 278-297.

R.J. VAN GLABBEEK. The linear time — branching time spectrum II. In Best [15], pages
66 — 81.

R.J. vAN GLABBEEK. What is branching time semantics and why to use it? Bull. Eur.
Ass. Theoret. Comput. Sci., 53:190-198, 1994.

R.J. VAN GLABBEEK AND G.D. PLOTKIN. Configuration structures (extended ab-
stract). In D. Kozen, editor, Proceedings 10th Annual Symposium on Logic in Computer
Science. IEEE Computer Society Press, 1995.

R.J. VAN GLABBEEK AND S.A. SMOLKA AND B. STEFFEN. Reactive, generative,
and stratified models of probabilistic processes. Information and Computation, 121:59—
80, 1995. (earlier version, together with C. Tofts, in Proceedings 5th Annual IEEE
Symposium on Logic in Computer Science, pages 130-141, IEEE Computer Society
Press, 1990).

R.J. vAN GLABBEEK AND F.W. VAANDRAGER. Petri Net models for algebraic the-
ories of concurrency. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors,
PARLE — Parallel Architectures and Languages Furope, volume 259 of Lecture Notes
in Computer Science, pages 224—242. Springer-Verlag, 1987.

Bibliography 283

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[66]

[67]

P. GODEFROID. Partial-Order Models for the Verification of Concurrent Systems—An
Approach to the State-Ezplosion Problem. PhD thesis, Université de Liege, 1994. (a
revised version appeared as volume 1032 of Lecture Notes in Computer Science, 1996).

R. GORRIERI AND M. ROCCETTI AND E. STANCAMPIANO. A theory of processes with
durational actions. Theoretical Computer Science, 140:73-94, 1995.

N. GOTz. Stochastische Prozessalgebren—Integration von Funktionalem Entwurf und
Leistungsbewertung Verteilter Systeme. PhD thesis, Universitat Erlangen-Niirnberg,
1994. (in German).

N. Gorz AND U. HERZOG AND M. RETTELBACH. Multiprocessor and distributed
system design: The integration of functional specification and performance analysis
using stochastic process algebras. In L. Donatiello and R. Nelson, editors, Performance
Evaluation of Computer and Communication Systems, volume 729 of Lecture Notes in
Computer Science, pages 121-146. Springer-Verlag, 1993.

N. GOTz AND U. HERZOG AND M. RETTELBACH. TIPP — introduction and application
to protocol performance analysis. In H. Konig, editor, Formale Beschreibungstechniken
fiir verteilte Systeme, FOKUS series. Saur Verlag, 1993.

J. GUNAWARDENA. Causal automata. Theoretical Computer Science, 101:265-288,
1992.

J. GUNAWARDENA. Periodic behaviour in timed systems with {AND, OR} causality —
part I: Systems of dimensions 1 and 2. Technical Report STAN-CS-93-1462, Stanford
University, 1993.

J. GUNAWARDENA. A dynamic approach to timed behaviour. In B. Jonsson and J. Par-
row, editors, Concur’ 94: Concurrency Theory, volume 836 of Lecture Notes in Computer
Science, pages 178-193. Springer-Verlag, 1994.

C.A. GUNTHER AND D.A. ScoTT. Semantic domains. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B: Formal Models), chapter 12, pages
633—674. Elsevier Science Publishers B.V., 1990.

H. HAaNssON. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Uppsala University, 1991. (revised version appeared in the series Real-Time
Safety Critical Systems, vol. 1, Elsevier, 1994).

H. HANssON AND B. JONSSON. A calculus for communicating systems with time

and probabilities. In Proceedings of 11th IEEE Real-Time Systems Symposium, pages
278-287. IEEE Computer Society Press, 1990.

C. HARVEY. Performance engineering as an integral part of system design. British
Telecom Technology Journal, 4:142—-147, 1986.

M. HENNESSY AND T. REGAN. A temporal process algebra. Information and Compu-
tation, 117:221-239, 1995.

284

Bibliography

[68]

[69]

[70]

[71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

H. HERRMANNS AND M. RETTELBACH. Syntax, semantics, equivalences, and axioms
for MTIPP. In Herzog and Rettelbach [69], pages 71-87.

U. HERzOG AND M. RETTELBACH, EDITORS. Proceedings of the 2nd Workshop on
Process Algebras and Performance Modelling, Erlangen, 1994. Universitit Erlangen-
Niirnberg.

D.P. HEYMAN AND M.J. SOBEL. Stochastic Models in Operations Research, volume 1
- Stochastic Processes and Operating Characteristics. McGraw-Hill, New York, 1982.

J. HiLLsTON. PEPA: Performance Enhanced Process Algebra. Technical Report CSR-
24-93, University of Edinburgh, 1993.

J. HiLLsSTON. A Compositional Approach to Performance Modelling. PhD thesis, Uni-
versity of Edinburgh, 1994. (also available as Technical Report CST-107-94).

J. HiLLsTON. The nature of synchronisation. In Herzog and Rettelbach [69], pages
51-70.

C.A.R. HOARE. Communicating Sequential Processes. Prentice-Hall, 1985.

P.W. HOOGERS. Behavioural Aspects of Petri Nets. PhD thesis, Leiden University,
1994.

P.W. HooGERs AND H.C.M. KLEIIN AND P.S. THIAGARAJAN. An event structure
semantics for general Petri nets. Theoretical Computer Science, 153(1/2):129-170, 1996.
(preliminary version appeared in E. Best, editor, Concur ’93, LNCS 715, pages 462—476.
Springer-Verlag, 1993).

W. JANSSEN. Layered Design of Parallel Systems. PhD thesis, University of Twente,
1994.

W. JANSSEN AND M. POEL AND Q. WU AND J. ZWIERS. Layering of real-time
distributed processes. In Langmaack et al. [92], pages 393-417.

A.S.A. JEFFREY AND S. SCHNEIDER AND F.W. VAANDRAGER. A comparison of
additivity axioms in timed transition systems. Technical Report CS-R9366, Centre for
Mathematics and Computer Science, 1993.

K. KANT. Introduction to Computer System Performance Evaluation. Computer Science
Series. McGraw-Hill, Inc., 1992.

J.-P. KATOEN. Causal behaviours and nets. In G. de Michelis and M. Diaz, editors,
Application and Theory of Petri Nets 1995, volume 935 of Lecture Notes in Computer
Science, pages 2568-277. Springer-Verlag, 1995.

J.-P. KATOEN AND R. LANGERAK AND D. LATELLA. Modelling systems by prob-
abilistic process algebra: An event structures approach. In Tenney et al. [140], pages
253-268.

Bibliography 285

[83]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

J.-P. KATOEN AND D. LATELLA AND R. LANGERAK AND E. BRINKSMA AND T.
BOLOGNESI. A consistent causality-based view on a timed process algebra. In A. Cor-
nell and D. Ionescu, editors, Proceedings 3rd Amast Workshop on Real-Time System
Development, 1996.

R.M. KELLER. Formal verification of parallel programs. Communications of the ACM,
19(7):371-384, 1976.

J.G. KEMENY AND J.L. SNELL. Finite Markov Chains. Van Nostrand, 1960.

A.S. KLUSENER. Models and azxioms for a fragment of real time process algebra. PhD
thesis, Eindhoven University of Technology, 1993.

H. KoBAYASHI. Modeling and Analysis: An Introduction to System Performance Eval-
uation Methodology. Addison-Wesley, 1978.

L. LaAMPORT. On interprocess communication, part I: Basic formalism. Distributed
Computing, 1:77-85, 1986.

R. LANGERAK. Transformations and Semantics for LOTOS. PhD thesis, University of
Twente, 1992.

R. LANGERAK. Bundle event structures: a non-interleaving semantics for LOTOS. In
Diaz and Groz [44], pages 331-346.

R. LANGERAK AND D. LATELLA. A language of finite probabilistic processes and its
interleaving semantics. Memoranda Informatica 93-24, University of Twente, 1993.

H. LANGMAACK, W.-P. DE ROEVER, AND J. VYTOPIL, EDITORS. Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

D. LATELLA. Recursive bundle event structures. Memoranda Informatica 93-27, Uni-
versity of Twente, 1993.

L. LoGriPPO AND M. FAct AND M. HAJ-HUSSEIN. An introduction to LOTOS:
learning by examples. Computer Networks and ISDN Systems, 23:325—-342, 1992.

R. LOooGEN AND U. GoLTZ. Modelling nondeterministic concurrent processes with
event structures. Fundamenta Informaticae, 14:39-74, 1991.

G. LowE. Representing nondeterminism and probabilistic behaviour in reactive pro-
cesses. Technical Report PRG-TR-12-93, Oxford University Computing Laboratory,
1993.

G. LoOwE. Probabilistic and prioritized models of timed CSP. Theoretical Computer
Science, 138:315-352, 1995.

286

Bibliography

(98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109)]

[110]

[111]

[112]

[113]

N.A. LyNcH AND F.W. VAANDRAGER. Action transducers and timed automata. For-

mal Aspects of Computing, 1996. (preliminary version appeared in W.R. Cleaveland,
editor, Concur’92, LNCS 630, pages 436-455. Springer-Verlag, 1992).

A. MAGGIOLO-SCHETTINI AND J. WINKOWSKI. Towards an algebra for timed be-
haviours. Theoretical Computer Science, 103:335-363, 1992.

Z. MANNA AND S. NESs AND J. VUILLEMIN. Inductive methods for proving properties
of programs. Communications of the ACM, 16(8):491-502, 1973.

A. MAZURKIEWICZ. Basic notions of trace theory. In de Bakker et al. [39], pages
285—-363.

C. MIGUEL AND A. FERNANDEZ AND L. VIDALLER. LOTOS extended with proba-
bilistic behaviours. Formal Aspects of Computing, 5:253-281, 1993.

R. MILNER. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

R. MILNER. Communication and Concurrency. Prentice-Hall, 1989.

F. MoLLER AND C. TOFTS. A temporal calculus of communicating systems. In Baeten
and Klop [9].

D.V.J. MurpHY. Time, Causality, and Concurrency. PhD thesis, University of Surrey,
1990. (also available as Technical Report CSC 90/R32, University of Glasgow).

D.V.J. MurpHY. Timed process algebra, Petri nets, and event refinement. In J.M.
Morris and R.C. Shaw, editors, 4th Refinement Workshop, Workshops in Computing,
pages 456-478. Springer-Verlag, 1991.

D.V.J. MurpPHY. Time and duration in noninterleaving concurrency. Fundamenta
Informaticae, 19:403-416, 1993.

M.F. NEUTS. Matriz-geometric Solutions in Stochastic Models—An Algorithmic Ap-
proach. The Johns Hopkins University Press, 1981.

M.F. NEUTS. Structured Stochastic Matrices of M/G/1 Type and Their Applications.
Marcel Dekker, Inc., 1989.

R. DE NicorLA AND M. HENNESSY. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

X. NICcOLLIN AND J. SIFAKIS. An overview and synthesis on timed process algebras.
In de Bakker et al. [40], pages 526-548.

X. NICOLLIN AND J. SIFAKIS AND S. YOVINE. From ATP to timed graphs and hybrid
systems. In de Bakker et al. [40], pages 549-572.

Bibliography 287

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

M. NIELSEN AND G.D. PLOTKIN AND G. WINSKEL. Petri nets, event structures and
domains, part 1. Theoretical Computer Science, 13(1):85-108, 1981.

M. NUNEz AND D. DE FRUTOS. Testing semantics for probabilistic LOTOS. In G. von
Bochmann, R. Dssouli, and O. Rafiq, editors, Formal Description Techniques VIII, pages
365-380, 1995.

D. PArk. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Proceedings 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages
167-183. Springer-Verlag, 1981.

G.M. PINNA AND A. PoIGNE. The mathematics of event automata. In Proceedings
Int. Conf. on Category Theory and Computer Science, 1993.

G.M. PINNA AND A. PoIGNE. On the nature of events: another perspective in con-
currency. Theoretical Computer Science, 138(2):425-454, 1995. (preliminary version
appeared in I.H. Havel and V. Koubek, editors, Mathematical Foundations of Computer
Science’ 92, LNCS 629, pages 430-441. Springer-Verlag, 1992).

B. PLATEAU AND J.-M. FOURNEAU. A methodology for solving Markov models of
parallel systems. Journal of Parallel and Distributed Computing, 12:370-387, 1991.

G.D. PLOTKIN. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

V.R. PRATT. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33-71, 1986.

S. PURUSHOTHAMAN AND P.A. SUBRAHMANYAM. Reasoning about probabilistic
behaviour in concurrent systems. IEEE Transactions on Software Engineering, SE-

13(6):740-745, 1987.

J. QUEMADA AND D. DE FRUTOS AND A. AZCORRA. TIC: A TImed Calculus. Formal
Aspects of Computing, 5:224-252, 1993.

G.M. REED AND A.W. ROSCOE. A timed model for Communicating Sequential Pro-
cesses. Theoretical Computer Science, 58:249-261, 1988. (preliminary version appeared
in L. Kott, editor, Proceedings 13th Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP), LNCS 226, pages 314-323. Springer-Verlag, 1986).

W. REISIG. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

A. RENSINK. Posets for configurations! In W.R. Cleaveland, editor, Concur 92, volume
630 of Lecture Notes in Computer Science, pages 269-285. Springer-Verlag, 1992.

A. RENSINK. Models and Methods for Action Refinement. PhD thesis, University of
Twente, 1993.

288

Bibliography

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

[143]

M. RETTELBACH. Stochastische Prozessalgebren mit zeitlosen Aktivitdten und prob-
abilistischen Verzweigungen. PhD thesis, Universitdt Erlangen-Niirnberg, 1996. (in
German).

N. Rico AND G. VON BOCHMANN. Performance description and analysis for distributed
systems using a variant of LOTOS. In B. Jonsson et. al., editor, Protocol Specification,
Testing, and Verification IX, pages 199-213. North-Holland, 1991.

S.M. Ross. Stochastic Processes. John Wiley & Sons, New York, 1983.

R.A. SAHNER AND K.S. TRIVEDI. Performance and reliability analysis using directed
acyclic graphs. IEEE Transactions on Software Engineering, SE-13(10):1105-1114,
1987.

D.A. ScHMIDT. Denotational Semantics: a methodology for language development.
Allyn and Bacon, 1986.

S. SCHNEIDER. An operational semantics for timed CSP. Information and Computation,
116:193-213, 1995.

R. ScHWARZ AND F. MATTERN. Detecting causal relationships in distributed compu-
tations: in search of the holy grail. Distributed Computing, 7:149-174, 1994.

K. SEIDEL. Probabilistic communicating processes. Theoretical Computer Science,
152:219-249, 1995.

R. SHARP. Principles of Protocol Design. Prentice-Hall, 1994.
M.W. SHIELDS. Concurrent machines. The Computer Journal, 28(5):449-465, 1985.

R. S1sTO AND L. CIMINIERA AND A. VALENZANO. Probabilistic characterization of al-
gebraic protocol specifications. In Proceedings 12th Int. Conf. on Distributed Computing
Systems, pages 260-268. IEEE Computer Society Press, 1992.

R.D. TENNENT. The denotational semantics of programming languages. Communica-
tions of the ACM, 19:437-453, 1976.

R.L. TENNEY, P.D. AMER, AND M.U. UYAR, EDITORS. Formal Description Tech-
niques VI, volume C—-22 of IFIP Transactions. North-Holland, 1994.

C.M.N. ToFTS. A synchronous calculus of relative frequency. In Baeten and Klop [9],
pages 467-480.

J. TRETMANS. A Formal Approach to Conformance Testing. PhD thesis, University of
Twente, 1992.

K.S. TRIVEDI AND A. BOBBIO AND G. CIARDO AND R. GERMAN AND A. PULIAFITO
AND M. TELEK. Non-Markovian Petri nets. Performance Evaluation Review, 23:263—
264, 1995.

Bibliography 289

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

F.W. VAANDRAGER. A simple definition for parallel composition of prime event struc-
tures. Report CS-R8903, Centre for Mathematics and Computer Science, 1989.

M. VAN SINDEREN AND L. FERREIRA PIRES AND C.A. VISSERS AND J.-P. KATOEN.

A design model for open distributed processing systems. Computer Networks and ISDN
Systems, 27:1263-1285, 1995.

T. VERHOEFF. A Theory of Delay-Insensitive Circuits. PhD thesis, Eindhoven Univer-
sity of Technology, 1994.

C.A. Vissers. FDTs for open distributed systems, a retrospective and a prospective
view. In L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Specification, Testing
and Verification X, pages 341-362. North-Holland, 1990.

C.A. VISSERS AND G. SCcoOLLO AND M. VAN SINDEREN AND E. BRINKSMA. On the

use of specification styles in the design of distributed systems. Theoretical Computer
Science, 89(1):179-206, 1991.

Y. WANG. Real-time behaviour of asynchronous agents. In Baeten and Klop [9], pages
502-520.

Y. WANG. Algebraic reasoning for real-time probabilistic processes with uncertain
information. In Langmaack et al. [92], pages 680—693.

H. WEHRHEIM. Parametric action refinement. In E.-R. Olderog, editor, Programming
Concepts, Methods, and Calculi, volume A-56 of IFIP Transactions, pages 247—-266.
North-Holland, 1994.

G. WINSKEL. Events in Computation. PhD thesis, University of Edinburgh, 1980. (also
available as Technical Report CST-10-80).

G. WINSKEL. Event structure semantics for CCS and related languages. In M. Nielsen
and E.M. Schmidt, editors, Automata, Languages and Programming, volume 140 of
Lecture Notes in Computer Science, pages 561-576. Springer-Verlag, 1982.

G. WINSKEL. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Petri Nets: Applications and Relationships to Other Models of Concurrency, volume 255
of Lecture Notes in Computer Science, pages 325—392. Springer-Verlag, 1987.

G. WINSKEL. An introduction to event structures. In de Bakker et al. [39], pages
364-397.

G. WINSKEL AND M. NIELSEN. Models for concurrency. In S. Abramsky, D.M. Gab-
bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4:
Semantic Modelling, pages 2-148. Oxford University Press, 1995.

A. YAKOVLEV AND M. KiSHINEVSKY AND A. KONDRATYEV AND L. LAvAGNO. On
the models for asynchronous circuit behaviour with OR causality. Technical Report
463, University of Newcastle upon Tyne, 1993. (extended abstract in R. Valette, editor,

290

Bibliography

158

[159)]

Application and Theory of Petri Nets 1994, LNCS 851, pages 568-587. Springer-Verlag,
1994).

J.J. Z1c. Time-constrained buffer specifications in CSP+T and timed CSP. ACM
Transactions on Programming Languages and Systems, 16(6):1661-1674, 1994.

J. ZwiERS AND W. JANSSEN. Partial order based design of concurrent systems. In
W.-P. de Roever J.W. de Bakker and G. Rozenberg, editors, A decade of concurrency—
reflections and perspectives, volume 803 of Lecture Notes in Computer Science, pages
622-684. Springer-Verlag, 1994.

Glossary of notation

General notations

%] empty set, empty function, empty relation
X —Y total function from X to Y

X —,Y partial function from X to Y

dom(f) domain of function f

Se SU{a}

Sab SU{a,b}

=iso isomorphism between labelled transition systems
Rite testing equivalence

~ weak bisimulation equivalence

~ configuration equivalence, strong bisimulation equivalence
€ empty trace, empty lposet

= is defined by

[z]» equivalence class of z under relation R

i projection

o function composition

P(S) powerset of set S

R* reflexive and transitive closure of relation R
S* set, of finite sequences of elements in set .S
[semantic mapping

S1 Xg Sy set of synchronized (on G) timed events in S; and S,
Classes

Act universe of observable actions

A universe of actions

DF class of distribution functions

EBES class of extended bundle event structures
BES class of bundle event structures

DES class of dual event structures

EDES class of extended dual event structures
EBESt class of timed event structures

EBESR class of real-time event structures

EBESg class of stochastic event structures

EBESy class of urgent event structures

EBESp class of probabilistic event structures

291

292 Glossary of notation

Ey universe of events

LTS class of labelled transition systems
R set of real numbers

Time time domain

Behaviour expressions

0 inaction

Vv successful termination

a; B action-prefix

(T) a; B timed action-prefix

(F)a; B stochastic action-prefix

B+ B choice

B +, B probabilistic choice

B>>B enabling

B[> B disrupt

Blle¢ B parallel composition

B|| B full synchronization

B||| B no synchronization

B\ G hiding

B[H] relabelling

B> B timeout

B» B watchdog

Uy (B) urgency operator

‘I B] time-shift of behaviour B with ¢ time units
B} behaviour B that can only perform events later than ¢
T silent action

] successful termination action

Act(B) set of observable actions in behaviour B
H relabelling function from Act™ — Act™
G set of observable actions, G C Act

init(£) initial events of event structure &£
exit(£) termination events of event structure £
E(€) set of events of event structure £

T(€) set of event traces of event structure £
C(€) set of configurations of event structure £
L(E) set of lposets of event structure £

pos(T) set of events with a nonzero delay in T’

Glossary of notation

293

<
op

Event traces

symmetric conflict relation

asymmetric conflict relation, time passing transition relation
bundle relation

flow relation

enabling relation

interleaving relation

precedence relation on configuration C

timed bundle relation

event labelling function

event delay function

bundle delay function

urgency predicate

probability function, limiting distribution of DTMC and CTMC
event structure £ after event trace o

set of synchronizing events

set of non-synchronizing events

intensional characterization of lposets

operational characterization of lposets

partial order on event structures

operator op on behaviours interpreted on event structures

set, of elements in o

prefix of ¢ upto the i-th element

timed configuration equivalence
precedence relation on trace o

the number of elements in o

set of events in sequence o of timed events
faster than relation on timed traces

o with actions in G hidden

o relabelled by H

sequence o of timed events shifted by ¢ time units
maximal timing of event in o

Time and stochastic related notions

Bl
=,

—~
8

8
SRS
~——

set of time instants " C Time™
interval {t |z <t<y}
interval {t |z <t <y}
interval {t |z <t <y}

294 Glossary of notation

[z,y) interval {t |z <t<y}

rOy max(z—y,0)

Pr{A} probability of event A

Fy distribution function of stochastic variable U
E[U] expectation of stochastic variable U

rate composition operator

identity of product on distribution functions
transition probability matrix

generator matrix

representation of phase-type distribution
tensor sum

tensor product

limiting distribution of DTSMC

average residence time in state 7

TeRORTOTVE @
E

Miscellaneous
— event transition relation
== observable action transition relation,
probabilistic transition relation
—» timed event transition relation
—u combined time passing and event transition relation
Ll; d; least fixed point of chain d; < d, < ...

L least element of partial order

Index

A cyclic bundle, 32, 57
ACP, 5, 113, 123, 141, 142, 218, 221

action persistency, 111, 129, 169 D
action-prefix (;), 7 6,6
actions, 11 delay function, 78, 152
aperiodic, 216, 271 discrete-time, 270
apparent rate, 181 discrete-time Markov chain, 213, 271
asymmetric conflict (~), 12, 27, 44, 87 discrete-time semi-Markov chain, 213
disjunctive causality, 41, 43, 87
B disrupt ([>), 7, 27
backwards compatibility, 6, 83, 204, 243 distribution function, 269
branching-time, 15 domain, 276
bundle, 25 domain theory, 225, 275
bundle delay function, 67, 145 DTMC, 213, 271
bundle event structure, 25 DTSMC, 213
bundle redundancy, 32, 57 dual event structure, 44
bundle relation (—), 25, 27, 44 event trace, 44
bundle set, 25 family of lposets, 45
remainder, 52
C transformation rules, 54
c.p.o., 275
causal ambiguity, 23 E
causal flow relation, 60 embedded Markov chain, 213
causal trees, 170 enabling (>>), 7
causality relation, 12, 20 enabling relation (), 22
CCS, 5, 90, 112, 170, 218, 219 ergodic Markov chain, 271
chain, 226, 275 Erlang distribution, 187, 191
choice (+), 7, 201, 219 event delay function, 67, 145
cluster, 195, 205 event structures, 11
combined time and action-transitions, 90 event trace, 23, 24, 26, 28, 44
complete metric space, 264 event-based operational semantics, 38, 91, 103,
complete partial order, 275 125, 167, 179, 208, 241, 252, 263
compositionality, 6 events, 12
configuration, 13, 21, 23, 24, 26, 28, 44 expectation, 187, 270
configuration equivalence, 29 exponential distribution, 175, 187
conflict backpropagation, 118 expressivity of event structures, 26, 30, 57
conflict relation (#), 12, 20, 22, 24, 25 extended bundle event structure, 12, 27, 227
conjunctive causality, 41 configuration, 28
conservative extension, 6, 86, 97 event trace, 28
continuous function, 226, 276 family of lposets, 28
continuous on events, 226, 231 partial order, 227
continuous-time, 270 remainder, 30
continuous-time Markov chain, 186, 271 transformation rules, 31
Coxian distribution, 187 extended dual event structure, 62
CSP, 5, 19, 112, 218, 219 remainder, 63
CTMC, 271

295

296

Index

F

family of lposets, 14, 28, 45, 73, 118, 147
prefix, 52

finite representation, 215

finite variability, 240

fixed point, 226

flow event structure, 24, 90

flow relation (<), 24

G

generative probabilistic model, 220
generator matrix, 186, 273
guarded process definition, 252

H

hiding (\), 7, 142
hyper-exponential distribution, 187
hypo-exponential distribution, 187

I

ill-timed traces, 69, 113, 147
immediate action, 179
impossible event, 25, 32, 55
inaction (0), 7

independence relation, 12
infinite traces, 242

initial events, 32

intensional characterization of lposets, 29, 46
interleaving, 2

interleaving relation (=), 62, 87
interval event structure, 170, 264
isomorphism (=i4,), 10

J

joint distribution function, 183, 270
L

L.u.b., 226, 275

labelled transition system, 8, 96, 174, 194
least fixed point, 226, 277
least upper bound, 226, 229, 234, 244, 259, 260,
275
limiting distribution, 213, 272, 273
linear-time, 15
LOTOS, 6, 19, 89, 112, 123, 141, 142, 218, 220,
221
Iposet, 13
family of, see family of lposets
prefix, 14

Iposet equivalence, 30

M

Markov chain, 271

Markov process, 270

maximal progress, 66, 142, 216
maximum of stochastic variables, 177
memoryless property, 174, 175, 213, 271
minimal enablings, 49

monotonic function, 226, 276

MTIPP, 181, 190

N

non-synchronizing events, 36
nondeterminism, 202
noninterleaving, 2

noninterleaving semantics, 32, 79, 124, 153,
178, 184, 203

(0]
occurrence identifiers, 39
operational characterization of Iposets, 29

P

PAgs, 184
noninterleaving semantics of, 184
syntax, 184

PA, 5
event-based operational semantics, 38
fixed point semantics, 231
interleaving semantics, 7
noninterleaving semantics, 32
syntax, 6

PAp, 200
event-based operational semantics, 208, 263
fixed point semantics, 263
noninterleaving semantics, 203
syntax, 202

PAs, 177
event-based operational semantics, 179
noninterleaving semantics, 178
syntax, 177

PAz, 78
event-based operational semantics, 91, 103,

241

fixed point semantics, 239
noninterleaving semantics, 79
syntax, 78

PAg, 151

Index

297

event-based operational semantics, 167
noninterleaving semantics, 153
syntax, 152
PAy, 123
event-based operational semantics, 125, 252
fixed point semantics, 251
noninterleaving semantics, 124
syntax, 123
parallel composition (||), 7, 219
partial order, 275
passage of time, 86, 90, 103, 113
passive action, 179
PEPA, 181, 190
performance analysis, 3, 212
periodic, 271
periodic Markov chain, 272
persistent trace, 249
PH-distribution, 186, 187
phase-type distribution, 186, 187
pointed c.p.o., 226, 276
pointed complete partial order, 276
pomsets, 2, 14, 170
poset, 275
positive recurrence, 271
prime algebraic coherent partial order, 21
prime event structure, 20, 39, 90, 112
probabilistic choice (+,), 194, 201, 219
probabilistic event, 193
probabilistic event structure, 196, 259
event trace, 197
partial order, 259
remainder, 197
probabilistic event transition system, 208
probabilistic process algebra, 200
probabilistic remainder, 197
probabilistic transition system, 211
probability density function, 177, 187, 269
probability function, 196
process algebra, 5
process instantiation, 7, 225, 230

R

random event trace, 183

rate, 175

rate function, 176

reactive probabilistic model, 220
reactive systems, 1

real-time ACP, 113, 123, 141

real-time event structure, 145, 257
family of lposets, 147
partial order, 257
remainder, 148
timed event trace, 146
transformation rules, 150
real-time process algebra, 151
real-time remainder, 148
regular Markov chain, 213, 216, 272
relabelling ([]), 7
remainder, 30, 52, 63
residence time, 213, 271

S
Scott domain, 276
self-conflicting event, 24, 25, 55
separate time and action-transitions, 90, 103,
126
silent action (7), 6
simple stochastic event structure, 176
event trace, 176
smoothening, 51
stability constraint, 23, 25, 27, 42
stable event structure, 22
start event, 67
stationary distribution, 272
statistical independence, 174, 178, 188, 195,
270
stochastic choice, 199
stochastic event structure, 182, 258
event trace, 183
partial order, 258
stochastic event trace, 176
stochastic event transition system, 180
stochastic Petri nets, 191
stochastic process algebra, 177, 184
stochastic variable, 173, 269
stratified probabilistic model, 220
strong bisimulation equivalence (~), 10, 39,
103, 141, 243
strong timeout, 116
structured operational semantics, 7, 38, 91, 103,
125, 167, 179, 208, 241, 252, 263
successful termination (1/), 7
successful termination events, 34
synchronization events, 36
synchronous CCS, 218

298

Index

T
tensor product (®), 188
tensor sum (&), 188
testing equivalence (=), 11, 202, 211
theoretical CSP, 39, 90, 112
TIC, 113
time additivity, 111, 129, 169
time and probability, 211
time determinism, 110, 129, 169
time trajectory condition, 111
time-homogeneous, 187, 271
time-shift (*[]), 93
timed action-prefix, 78, 152
timed configuration, 117
timed configuration equivalence, 69
timed CSP, 112, 142
timed event structure, 67, 212, 232
family of lposets, 73
partial order, 233
remainder, 74
timed event trace, 69
transformation rules, 77
timed event trace, 69, 117, 146

timed event trace semantics, 99, 107, 137
timed event transition system, 90, 95, 102, 141

timed process algebra, 78

timed remainder, 74

timelock, 141, 171

timeout, 116

timeout operator (>>), 152, 257

trace equivalence, 11

transformation rules, 31, 54, 77, 150
transition probability matrix, 213, 271

U

urgency, 117, 123, 124

urgency in process algebras, 141

urgency operator (Uy()), 123

urgent actions, 124

urgent event, 115

urgent event structure, 116, 212, 243
family of lposets, 118
partial order, 244
remainder, 120
timed event trace, 117

urgent remainder, 120

A%
variance, 187, 270

w

watchdog operator (»), 152, 257

weak bisimulation equivalence (=), 10, 39, 112
weak timeout, 116

weakly guarded, 263

weakly guarded process definition, 252
Winskel’s switch, 45, 59

Z
Zeno behaviours, 240

Samenvatting

Het specificeren, ontwerpen, en analyseren van functionele aspekten van (gedistribueerde)
systemen is een belangrijke toepassing van formele methoden. Recentelijk is er meer be-
langstelling ontstaan voor het bestuderen van kwantitatieve aspekten van dergelijke systemen
gebaseerd op formele methoden. Diverse uitbreidingen van formele methoden zijn bekend uit
de literatuur waarbij het optreden van een aktie een bepaalde kans kan worden toegekend
en/of waarbij het tijdstip van optreden van een aktie kan worden aangegeven.

Een belangrijke reden voor het verrijken van formele methoden met kwantitatieve informatie
is het mogelijk maken van de analyse van prestatieckenmerken van een systeemontwerp. Hier-
door kan de efficiéntie van verschillende ontwerpalternatieven worden bepaald zodat al in een
vroeg stadium van het ontwerpproces kan worden afgezien van een bepaald ontwerp, omdat
deze in onvoldoende mate aan de gewenste prestatiekenmerken voldoet. Dit voorkomt kost-
baar herontwerp in latere ontwerpfasen. Een formele specificatie die kwantitatieve informatie
bevat is ook bruikbaar voor het ontwikkelen van prestatiemodellen, zoals Markov ketens en
wachtrijsystemen, op een begrijpbare en effectieve wijze vanuit systeemspecificaties.

De formele methoden waarvan kwantitatieve uitbreidingen bekend zijn, zijn veelal gebaseerd
op de interleaving (of: verweving) van causaal onafhankelijke akties. Interleaving modellen
abstraheren van het feit dat systemen feitelijk bestaan uit een aantal (deels) onafhankelijke
deelsystemen. De globale toestand van het systeem wordt als uitgangspunt genomen, zonder
daarbij het distributie-aspekt te vertegenwoordigen. Het systeemgedrag wordt gemodelleerd
door het beschouwen van totaal geordende sequenties van akties waarin akties van het ene
onafhankelijke deelsysteem worden verweven met akties van andere deelsystemen.

Dit proefschrift behandelt kwantitatieve en kwalitatieve uitbreidingen van eventstrukturen,
een belangrijke representant van partiéle order, of zogenaamde noninterleaving modellen voor
concurrente systemen. Uitbreidingen die aan de orde komen zijn bijvoorbeeld de behandel-
ing van tijdsaspekten, zowel in de normale als stochastische zin, urgentie van optreden, en
probabiliteitsaspekten. Tot op heden heeft de behandeling van deze noties in de kontekst van
noninterleaving modellen nauwelijks de aandacht gekregen.

Noninterleaving modellen abstraheren niet van het feit dat systemen bestaan uit een aantal
(deels) onafhankelijke deelsystemen en het begrip ‘globale toestand’ speelt geen voorname rol
in deze modellen. Het systeemgedrag wordt gemodelleerd door het beschouwen van geordende
sequenties van akties die niet totaal geordend behoeven te zijn, maar partieel geordend. De
causale afhankelijkheden worden weergegeven door deze partiéle ordening.

Interleaving en noninterleaving modellen zijn complementair ten op zichte van elkaar in het
systeemontwerpproces. Hoewel we in dit proefschrift voor het merendeel noninterleaving
modellen beschouwen, zullen we ook de ingrediénten presenteren voor het verkrijgen van
overeenkomende interleaving modellen. Hierdoor kunnen beide type modellen op een co-
herente wijze worden toegepast en is een vergelijking mogelijk tussen onze modellen en die uit
de literatuur.

299

300 Samenvatting

Uitgangspunten voor dit proefschrift zijn

e cxtended bundle event structures, een aangepaste versie van de traditionele eventstruk-
turen van Winskel die tegemoet komt aan de specifieke eisen van synchronisatie met
meerdere partijen en disruptie, en

e procesalgebra’s, abstracte beschrijvingsformalismen voor gedistribueerde systemen die
bestaan uit een aantal krachtige operatoren om systeemspecificaties samen te stellen.

Extended bundle event structures bestaan uit gelabelde events die gebeurtenissen van ak-
ties (aangegeven door het label) modelleren, een bundle relatie die causale afhankelijkheden
tussen events aangeeft, en een (asymmetrische) conflict relatie die uitsluitingen tussen events
aangeeft. Eventstrukturen, in het bijzonder extended bundle event structures, worden behan-
deld in Hoofdstuk 2.

De bundle relatie brengt een verzameling events, de bundle verzameling, in verband met een
event. De interpretatie is dat één event in de bundle verzameling moet zijn opgetreden om het
optreden van het event waarmee het in relatie staat te doen optreden (dat is, te veroorzaken).
Alle events in een bundle verzameling staan onderling met elkaar in conflict zodat slechts één
event in zo'n verzameling kan optreden. Wanneer deze eis wordt losgelaten kunnen meerdere
events in een bundleverzameling optreden en wordt de uitdrukkingskracht vergroot, dat wil
zeggen, zogenaamde disjunktieve causaliteit wordt ondersteund. In Hoofdstuk 3 wordt onder-
zocht hoe gelabelde partiéle ordeningen (lposets), die in dit proefschrift worden gebruikt als
onderliggend semantisch model van eventstrukturen, kunnen worden gegenereerd als deze eis
vervalt. In dit hoofdstuk worden ook een aantal bruikbare transformatieregels bepaald voor
het resulterende model die gelijkheid in termen van Iposets bewaren, en beschouwd verder nog
een symmetrische irreflexieve interleaving relatie tussen events.

Eventstrukturen beschrijven systeemgedrag met behulp van causale ordeningen (bundles)
tussen events en hun onderlinge uitsluitingen (conflicten). Om het beschrijven van tijdsaf-
hankelijke systemen, zoals communicatieprotocollen, mogelijk te maken beschouwen we het
concept tijd. Hoofdstukken 4, 6 en 7 behandelen uitvoerig de toevoeging van tijd aan extended
bundle event structures. Real-time event structures kennen een verzameling tijdstippen toe
aan bundles, die de relatieve tijdseisen tussen causaal afhankelijke events weergeven, en aan
events, om absolute tijdseisen weer te kunnen geven (Hoofdstukken 4 en 7). Urgente event
structures staan alleen de specificatie van minimale tijdseisen toe, maar bevatten urgente
events, events die moeten optreden zodra ze mogelijk zijn (Hoofdstuk 6). Timeouts zijn een
typisch fenomeen die door urgent events kunnen worden gemodelleerd. De veralgemenisering
richting de notie van tijd van een meer stochastische aard wordt behandeld in Hoofdstuk 8.
Stochastische event structures kennen wverdelingsfunkties toe aan events en bundles, in plaats
van verzamelingen tijdstippen. Uiteindelijk behandelen we in Hoofdstuk 9 de toevoeging van
probabiliteit aan extended bundle event structures. Een probabiliteit kan worden toegekend
aan een event die aangeeft wat de kans is dat dat event daadwerkelijk optreedt gegeven dat
het kan optreden.

Eventstrukturen zijn zeer geschikt voor het geven van een noninterleaving semantiek van
procesalgebra’s op een compositionele wijze. Dit houdt in dat de interpretatie van een samen-
gestelde procesalgebraische expressie gedefinieerd wordt als een funktie van de interpretaties

Samenvatting 301

van haar componenten. In dit proefschrift onderzoeken we of de kwantitatieve uitbreidingen
van eventstrukturen kunnen worden gebruikt om een noninterleaving semantiek te geven van
procesalgebra’s met kwantitatieve informatie. Hiertoe gebruiken we de procesalgebra PA als
basis, in feite de internationaal gestandaardiseerde procesalgebra LOTOS met een wat be-
knoptere syntax. De gehanteerde principes zijn echter ook bruikbaar voor gerelateerde proce-
salgebra’s zoals CCS van Milner en CSP van Hoare. Voor iedere kwantitatieve variant van
PA hebben we geprobeerd de noninterleaving semantiek van PA zoveel mogelijk te behouden,
zodat mazimale compatibiliteit wordt gegarandeerd.

De kwantitatieve uitbreidingen van procesalgebra’s die we beschouwen zijn real-time varianten
die timeout, watchdog en urgency operatoren bevatten, stochastische varianten waarin het tijd-
stip van voorkomen van akties wordt bepaald door exponentiéle, of de algemenere en praktisch
meer bruikbare, fase type verdelingsfunkties, en een probabilistische variant die een (interne)
probabilistische keuze operator bevat. Voor iedere variant wordt een denotationele semantiek
gegeven in termen van de overeenkomende kwantitatieve uitbreiding van eventstrukturen. Dit
wordt gedaan op een modulaire wijze zodat combinaties (zoals tijd en probabiliteit) op een
eenvoudige wijze kunnen worden verkregen.

Bovendien wordt voor de meeste genoemde procesalgebra’s een operationele semantiek gepre-
senteerd die gebaseerd is op events, dus voorkomens van akties, in plaats van de akties zelf
(zoals te doen gebruikelijk in operationele semantiek). Zo’n operationele semantiek schept
een basis voor de vergelijking van ons werk met bestaande kwantitatieve uitbreidingen van
interleaving modellen. De operationele regels voor het real-time geval zijn een nieuwe (en
minimale) uitbreiding van het ongetimede geval; voor het urgente geval verkrijgen we regels die
sterk overeenkomen met een voorstel van Bolognesi, Lucidi en Trigila; voor het stochastische
geval met exponenti€éle verdelingen vormen de verkregen regels een basis voor verschillende
bestaande stochastische procesalgebra’s en voor het probabilistische geval verkrijgen we regels
die gerelateerd (doch iets eenvoudiger) zijn aan het werk van Hansson en Jonsson. De relatie
tussen de verschillende operationele semantieken en denotationele semantiek wordt uitgebreid
onderzocht.

Hoofdstuk 10 behandelt recursie in alle varianten van procesalgebra’s uit dit proefschrift.
Gebruik makende van standaard domeintheorie wordt de denotationele semantiek van recursief
gedefinieerde processen voor de kwantitatieve uitbreidingen van PA bepaald. Ook wordt de
operationele semantiek gebaseerd op events uitgebreid met recursie. Aangetoond wordt dat
de relatie tussen denotationele en operationele semantiek ook geldt voor het recursieve geval.

Hoofdstuk 11 bevat een terugkijkende blik op het werk van dit proefschrift, vat de belangrijkste
technische resultaten samen, en presenteert een aantal algemene conclusies.

302 Samenvatting

Curriculum Vitae

6 october 1964
1977 — 1983

september 1983 — december 1987

februari 1988 — februari 1990

februari 1990 — april 1992

april 1992 — april 1996

geboren te Krimpen aan den IJssel

Athenaeum B
Carolus Clusius College
Zwolle

studie Informatica

Universiteit Twente

met lof afgestudeerd bij de

vakgroep Systeem Programmatuur en Apparatuur

tweede-fase opleiding

Informatie- en Communicatietechniek
Technische Universiteit Eindhoven
afdeling Wiskunde & Informatica
vakgroep Parallellisme en Architectuur

wetenschappelijk medewerker
Philips Natuurkundig Laboratorium
afdeling Information and Software Technology

medewerker onderzoek

Universiteit Twente

faculteit Informatica

vakgroep Tele-Informatica en Open Systemen

303

