
Quantitative and QualitativeExtensions ofEvent Structures
Joost-Pieter Katoen

CTIT Ph. D-thesis ser ies No. 96-09

P.O. Box 217 - 7500 AE Enschede - The Nether lands

telephone +31-53-4893779 / fax +31-53-4893247

Centre for

Telemat ics and

Informat ion

Technology

Promotiecommissie:prof. dr. W.E. van der Linden (voorzitter)prof. dr. ir. C.A. Vissers (promotor)prof. dr. H. Brinksma (promotor)dr. ir. A. Rensink (referent, Universit�at Hildesheim)prof. dr. U. Herzog (Universit�at Erlangen-N�urnberg)prof. dr. M. Rem (Technische Universiteit Eindhoven)prof. dr. F.W. Vaandrager (Katholieke Universiteit Nijmegen)prof. dr. ir. Th. Kroldr. L. Ferreira Pires, M.Sc.

Druk: Ponsen & Looijen, WageningenCopyright c 1996 by J.-P. Katoen, Hengelo, The NetherlandsCIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAGKatoen, Joost-PieterQuantitative and qualitative extensions of eventstructures / Joost-Pieter Katoen. - Enschede : Centre forTelematics and Information Tenchnology. { Ill. { (CTITPh. D-thesis series, ISSN 1381-3617 ; 96-09)Proefschrift Universiteit Twente, Enschede. - Met index,lit. opg.ISBN 90-365-0799-5Trefw.: procesalgebra / systeemontwerp.

QUANTITATIVE AND QUALITATIVEEXTENSIONS OFEVENT STRUCTURES
PROEFSCHRIFT
ter verkrijging vande graad van doctor aan de Universiteit Twente,op gezag van de rector magni�cus,prof.dr. Th.J.A. Popma,volgens besluit van het College voor Promotiesin het openbaar te verdedigen opdonderdag 18 april 1996 te 15.00 uur.

doorJoost-Pieter Katoengeboren op 6 oktober 1964te Krimpen aan den IJssel

Dit proefschrift is goedgekeurd door de promotores:prof. dr. ir. C.A. Vissersprof. dr. H. Brinksma

AcknowledgementsIn 1987 I had the privilege to work for about 7 months at Philips Research Laboratories. Underthe supervision of Pierre Jansen and Lex Augusteijn a simulator for a parallel computer wasbuilt. From then on I was captured by the phenomenon `concurrency'.To enlarge my practical background with some theoretical insights I spent two years as a `twaio'at Eindhoven University of Technology. Martin Rem, together with Rob Hoogerwoord, learnedme to appreciate a formal attitude to the design of programs, including concurrent ones. Thespontaneously introduced HG 7.37 sessions with my roommates Berry Schoenmakers, PieterStruik and Wim Kloosterhuis made it all work: besides the consumption of `Bossche bollen'my interest for theory and its application(s) increased.Back at Philips Research, I worked on the engineering and performance analysis of communi-cation protocols, an exciting application �eld in which concurrency (again) plays a prominentrôle. Together with Marnix Vlot I worked on the de�nition of a (standard) communicationsystem for various types of equipment in domestic environments, while having a great time insharing a room with another `sport-en-in-het-bijzonder-Tour-gek', Frans Sijstermans.In the spring of 1992 I started to work under the supervision of Chris Vissers at the Universityof Twente. Due to the freedom he created to perform research in a pleasant and stimulatingenvironment I was able to work on several fascinating subjects during the last four years.His comments on earlier versions of this dissertation, his view on conceptual issues, and ourdiscussions about the relationship between formal methods and (basic) architectural conceptshave been a continuous inspiration and have taught me very much. I also like to thank myother promotor, Ed Brinksma, for sharing his creativity, enthusiasm, and knowledge aboutconcurrency and formal methods. With a small amount of information he was able to give methe right hints at the right moment to overcome technical problems. His active contributionsto several parts of this dissertation are greatfully acknowledged.This dissertation would not have its current state without the cooperation with Rom Langerakand Diego Latella. The many sessions we had together were the basis for most of the materialconducted in this dissertation. Their enthusiasm, detailed comments on draft chapters, andconstructive attitude were invaluable; this includes the many nice Italian dinners and lunches(even those in Castelleto) and trips to various exotic places like Barga, San Miniato, Lucca andButi. I hope we will continue our friendship and our professional cooperation. In this respect Ialso like to thank Mieke Massink, Tommaso Bolognesi, Stefania Ciompi, and Maurizio Canevefor their hospitality and friendship.Then I would like to thank my referent, Arend Rensink. His comments and recommendationshave strongly improved this dissertation. Our 3-day session in Hildesheim was, despite catch-ing a cold, very fruitful and constructive. Various colleagues have read parts of my dissertation;Pedro d'Argenio, Lex Heerink, Jan Tretmans and Lu��s Ferreira Pires are kindly acknowledgedfor their e�ort and comments. Boudewijn Haverkort and Victor Nicola are thanked for discus-sions and suggestions concerning Chapter 8. Furthermore, I like to thank some of the manyi

ii Acknowledgementspeople with which I had the pleasure to cooperate during the last years: Jakob Brunekreef,Wouter van den Broek, Robert Huis in 't Veld, Ron Koymans, Harro Kremer, Sjouke Mauwand (last but not least) Albert Nymeyer.To conclude I would like to thank my family, other friends, and relatives. In particular I liketo thank my parents Joost and Korrie Katoen for supporting me during my study and work,and for their love and understanding. Unfortunately, they are not privileged to be a witnessof this milestone. Finally my grateful thanks go to my wife Erna for her never-ceasing supportand understanding, and for reminding me together with our son Joost, that life encompassesmuch more than writing a dissertation.

SummaryAn important application of formal methods is the speci�cation, design, and analysis of func-tional aspects of (distributed) systems. Recently the study of quantitative aspects of suchsystems based on formal methods has come into focus. Several extensions of formal meth-ods where the occurrence of actions can be assigned a (�xed) probability and/or the time ofoccurrence of actions can be constrained are known from the literature.An important reason for enhancing formal methods with quantitative notions is to facilitatethe analysis of performance characteristics of system designs. In this way the e�ciency ofdesign alternatives can be assessed such that in early design stages designs can be rejectedbecause of unsatisfactory performance characteristics, thus avoiding costly redesign at laterstages. A formal speci�cation incorporating quantitative aspects can also be very useful forestablishing a well-understood and e�ective way of developing performance models, such asMarkov chains and queuing networks, from system speci�cations.Quantitative extensions of formal methods that are based on interleaving of causally indepen-dent actions have been amply investigated. Interleaving models abstract from the fact that asystem is actually composed of a set of (partly) independent subsystems. The global systemstate is considered without due regard of its distributed nature. The system's behaviour ismodelled in terms of sequences of actions that are totally ordered by precedence and in whichactions of one independent subsystem are merged with actions of others.This dissertation deals with quantitative and qualitative extensions of event structures, aprominent branch of partial-order, or noninterleaving, models for concurrency. Example ex-tensions are the incorporation of issues like time, both real-time and stochastic of nature,urgency (timeouts), and probability. Nowadays the treatment of these concepts in noninter-leaving models has only been scarcely addressed.Noninterleaving models do not abstract from the fact that a system consists of a set of (partly)independent subsystems. The notion of global state does not play a central rôle in thesemodels. The systems' behaviour is modelled in terms of sequences of actions that are notrequired to be totally ordered, but that are partially ordered. The causal dependencies betweenactions are reected in this partial order.Interleaving and noninterleaving models are complementary in the system's design process. Inthis dissertation we basically deal with noninterleaving models, but also provide the ingredientsto obtain corresponding interleaving models. This facilitates the use of both types of modelsin a coherent way and enables a comparison with existing approaches.Starting points for this dissertation are� extended bundle event structures, an adaptation of the traditional event structures ofWinskel to �t the speci�c requirements of multi-party synchronization and disruption,and iii

iv Summary� process algebras, abstract description formalisms for distributed systems that consist ofpowerful composition operators.Extended bundle event structures consist of labelled events modelling occurrences of actions(indicated by the labels), a bundle relation indicating the causal dependencies between events,and an (asymmetric) conict relation modelling exclusions between events. Event structures,in particular extended bundle event structures, are treated in Chapter 2.The bundle relation relates a set of events, the bundle set, to an event. The interpretation isthat one event in the bundle set must have happened in order to enable (or cause) the eventto which it is related. All events in a bundle set are required to be mutually in conict suchthat only one event in a bundle set can happen. By dropping this constraint more events in abundle set can happen and the expressivity is increased, i.e., so-called disjunctive causality issupported. In Chapter 3 it is investigated how labelled partial orders (lposets), which are usedin this dissertation as underlying semantical models for event structures, can be generatedwhen this constraint is dropped. This chapter also investigates useful transformations for theresulting model that preserve equivalence in terms of lposets and considers the incorporationof a symmetric irreexive interleaving relation between events.Event structures describe system behaviours by causal orderings (bundles) among events andtheir branching structure (conicts). To facilitate the speci�cation of timing-based systems,such as communication protocols, the concept of time is considered. Chapters 4, 6, and 7treat the incorporation of time in extended bundle event structures. Real-time event struc-tures associate a set of time instants to bundles, indicating relative time constraints betweencausally dependent events, and to events, modelling absolute time constraints (Chapter 4 and7). Urgent event structures allow for the speci�cation of minimal time constraints only, butincorporate urgent events, events that are forced to happen once they are enabled (Chapter6). Urgent events are typically used to model timeouts. The generalization of deterministictime towards time of a more dynamic stochastic nature is treated in Chapter 8. Stochas-tic event structures attach distribution functions to bundles and events, rather than sets oftime instants. Finally, in Chapter 9 we consider the incorporation of probabilities in extendedbundle event structures. Probabilities are attached to events and quantify the likelihood ofappearance of events once they are enabled.Event structures are well-suited to provide a noninterleaving semantics for process algebrasin a compositional way. That is, the interpretation of any composite behaviour expressionin the process algebra is de�ned as a function of the interpretation of its constituents. Inthis dissertation we investigate whether the quantitative extensions of event structures canbe used to de�ne a noninterleaving semantics to quantitative extensions of process algebras.To that purpose we take the process algebra PA as a basis, which is in fact the internationalstandardized process algebra LOTOS with a somewhat more concise syntax. The principlesdo, however, also apply to related process algebras like Milner's CCS and Hoare's CSP. Foreach quantitative variant of PA the noninterleaving semantics of the plain process algebra PAis tried to retain as much as possible, aiming at maximal backwards compatibility.The quantitative extensions of process algebras that we consider are real-time variants thatincorporate timeout, watchdog and urgency operators, stochastic variants in which the oc-

Summary vcurrence times of actions is constrained by exponential, or the more general and practical,phase-type distributions, and a probabilistic variant that contains an (internal) probabilisticchoice operator. For each variant a denotational semantics in terms of the correspondingquantitative extension of extended bundle event structures is provided. This is performed ina modular way such that combinations (like time and probability) can be made in a ratherstraightforward way.In addition, for most aforementioned process algebras an event-based operational semantics ispresented. This operational semantics keeps track of the occurrence of actions, rather thanthe actions themselves (as usual in structured operational semantics), and provides a basisfor comparison with existing quantitative extensions of interleaving models. The operationalrules obtained for the real-time case are a novel (and minimal) extension to the untimed case;for the urgent case the rules strongly resemble a proposal of Bolognesi, Lucidi and Trigila; forthe stochastic exponential case the rules resemble that of several existing stochastic processalgebras, and for the probabilistic case we obtain rules that are related (but simpler) towork of Hansson and Jonsson. The relationship between these operational semantics and thedenotational semantics is thoroughly investigated.The incorporation of recursion in all extensions of process algebras in this dissertation is treatedin Chapter 10. Using standard domain theory the denotational semantics of the quantitativeextensions of PA is extended in order to cover recursively de�ned processes. The same is donefor the event-based operational semantics. It is shown that the consistency results for the�nite case carry over to the recursive case.Chapter 11 contains a retrospective view on the work presented in this dissertation, summa-rizes the main technical results and provides some overall conclusions.

vi Summary

ContentsAcknowledgements iSummary iiiContents vi1 Introduction 11.1 Introduction : 11.2 Interleaving versus noninterleaving models : 21.3 Integration of formal and quantitative methods : : : : : : : : : : : : : : : : : 31.4 Process algebra : 51.5 Standard semantics and behavioural equivalences : : : : : : : : : : : : : : : : 71.6 The principles of event structures : 111.7 Families of lposets : 131.8 Synopsis : 152 Extended bundle event structures 192.1 Introduction : 192.2 The realm of event structures : 202.2.1 Prime event structures : 202.2.2 Stable event structures : 222.2.3 Flow event structures : 232.2.4 Bundle event structures : 242.3 Extended bundle event structures : 272.3.1 What are extended bundle event structures? : : : : : : : : : : : : : : : 272.3.2 Families of lposets : 282.3.3 Remainder : 302.3.4 Transformation rules : 312.4 Causality-based semantics of PA : 322.5 Event-based operational semantics for PA : 38vii

viii Contents3 Disjunctive causality and interleaving 413.1 Introduction : 413.2 Disjunctive causality : 433.2.1 What are dual event structures? : 443.2.2 Families of lposets : 453.2.3 Remainder : 523.2.4 Transformation rules : 543.2.5 Expressiveness of dual event structures : : : : : : : : : : : : : : : : : : 573.3 Interleaving : 613.4 Conclusions : 644 A simple timing module 654.1 Introduction : 654.2 Timed event structures : 664.2.1 What are timed event structures? : 664.2.2 Timed event traces : 684.2.3 A lattice of timed traces : 704.2.4 Families of lposets : 734.2.5 Timed remainder : 744.2.6 Some transformation rules : 774.3 A timed process algebra : 784.3.1 Syntax : 784.3.2 Causality-based semantics : 794.3.3 Syntactic conditions for simpli�cation : : : : : : : : : : : : : : : : : : : 844.4 Conclusions : 865 Timed operational semantics 895.1 Introduction : 895.2 Event-based operational semantics for PAT : 915.3 Correspondence with causality-based semantics : : : : : : : : : : : : : : : : : 975.4 An alternative approach for PAT : 1035.5 Alternative timed event transition semantics : : : : : : : : : : : : : : : : : : : 1075.6 Model properties : 1105.7 Related work : 112

Contents ix5.8 Conclusions : 1126 The urgency module 1156.1 Introduction : 1156.2 Urgent event structures : 1166.2.1 Timed event traces : 1166.2.2 Families of lposets : 1186.2.3 Urgent remainder : 1206.3 A timed process algebra including urgency : 1236.3.1 Syntax : 1236.3.2 Causality-based semantics : 1246.3.3 Event-based operational semantics for PAU : : : : : : : : : : : : : : : : 1256.4 Is urgency captured faithfully? : 1296.5 Correspondence with causality-based semantics : : : : : : : : : : : : : : : : : 1346.5.1 Operational characterization of timed event traces : : : : : : : : : : : : 1346.5.2 Denotational characterization of timed event traces : : : : : : : : : : : 1376.5.3 Consistency between causality-based and operationalsemantics : 1386.6 Related work : 1416.7 Conclusion : 1427 The real-time module 1437.1 Introduction : 1437.2 Real-time event structures : 1447.2.1 Timed event traces : 1457.2.2 Families of lposets : 1477.2.3 Real-time remainder : 1487.2.4 Transformation rules : 1507.3 A real-time process algebra : 1517.3.1 Syntax : 1527.3.2 Causality-based semantics : 1537.3.3 Properties : 1567.3.4 Event-based operational semantics for PAR : : : : : : : : : : : : : : : : 159

x Contents7.3.5 Consistency between causality-based and operationalsemantics : 1647.3.6 An alternative approach for PAR : 1677.4 Time in causality-based models : 1697.5 Conclusions : 1718 The stochastic timing module 1738.1 Introduction : 1738.2 Simple stochastic event structures : 1758.2.1 The model : 1758.2.2 A simple stochastic process algebra : 1778.2.3 Event-based operational semantics for PAS : : : : : : : : : : : : : : : : 1798.2.4 Related approaches : 1818.3 Generalized stochastic event structures : 1818.3.1 The model : 1828.3.2 A generalized stochastic process algebra : : : : : : : : : : : : : : : : : 1848.3.3 PH-distributions : 1868.4 Concluding remarks : 1909 The probability module 1939.1 Introduction : 1939.2 Probabilistic event structures : 1959.2.1 What are probabilistic event structures? : : : : : : : : : : : : : : : : : 1959.2.2 Probabilistic remainder : 1979.2.3 Probability measure on con�gurations : : : : : : : : : : : : : : : : : : : 1999.3 A probabilistic process algebra : 2009.3.1 Syntax : 2009.3.2 Causality-based semantics : 2039.3.3 Properties : 2049.3.4 Event-based operational semantics for PAP : : : : : : : : : : : : : : : : 2089.4 Time and probability : 2119.5 Performance analysis|two examples : 2129.5.1 Discrete-time semi-Markov chains : 2139.5.2 An unreliable co�ee machine : 214

Contents xi9.5.3 Illustrating locality : 2179.6 Related and further work : 2189.6.1 Nondeterminism, probabilistic choice and parallelcomposition : 2199.6.2 Related approaches : 2199.6.3 Reactive, generative, and strati�ed models : : : : : : : : : : : : : : : : 2209.6.4 Compatibility with nonprobabilistic semantics : : : : : : : : : : : : : : 2219.6.5 Further work : 2219.7 Conclusions : 22210 Recursion 22510.1 Introduction : 22510.2 Extended bundle event structures : 22710.2.1 A pointed complete partial order : 22710.2.2 A �xed point semantics : 23010.3 Timed event structures : 23210.3.1 A pointed complete partial order : 23210.3.2 A �xed point semantics : 23610.3.3 Event-based operational semantics : 24110.4 Urgent event structures : 24310.4.1 A pointed complete partial order : 24410.4.2 A �xed point semantics : 24910.4.3 Event-based operational semantics : 25210.5 Real-time event structures : 25710.6 Stochastic event structures : 25810.7 Probabilistic event structures : 25910.7.1 A pointed complete partial order : 25910.7.2 A �xed point semantics : 26010.7.3 Event-based operational semantics : 26310.8 Conclusions : 26311 Conclusion 26511.1 Introduction : 26511.2 Originality : 265

xii Contents11.3 Main technical achievements : 26611.4 Epilogue and further work : 268A Stochastic processes 269A.1 Basic notions : 269A.2 Discrete-time Markov chains : 271A.3 Continuous-time Markov chains : 273B Domain theory 275Bibliography 278Glossary of notation 291Index 295Samenvatting 299Curriculum Vitae 303

1 Introduction
\Abandonment of causality as a matter of principleshould be permitted only in the most extreme emergency"Albert Einstein, 19241This chapter highlights the main topics of this dissertation and sketches itscontext. The chapter briey introduces the aspects of using formal modelsfor concurrency in the design of distributed systems, and motivates the needfor integrated formal and quantitative methods to e�ectively support thisdesign process. The importance of the notion of causality for distributedsystems' design is described. A synopsis is given of the contents of thisdissertation.1.1 IntroductionConcurrency is a phenomenon that plays a prominent rôle in systems of di�erent nature. Infact, only a minority of the systems in real-life is purely sequential. The functionality incommunication systems such as the mobile telecommunication system GSM (Global Systemfor Mobile telecommunication) is distributed over several geographically separated subsystems,each having its own functionality, and a VLSI chip comprises several components connectedvia a network of on-chip wires.Sequential computer systems have been extensively studied and a number of well-establish-ed mathematical models that describe the behaviour of such systems have been developed.These models usually describe a relation between input and output values and character-ize behaviours as computations that evolve from an initial to a �nal state. For systemswhose functionality is distributed over subsystems interactions do not conform to this sim-ple scheme|usually inputs to the system depend on previous system outputs|and typicallysuch systems are required not to terminate. Systems whose behaviour is characterized by theirinteraction with the environment are often referred to as reactive systems.During the last decade several models for concurrent systems have been (and still are being)investigated. We con�ne ourselves to formal models for concurrency. Formal models forconcurrency have a mathematically sound basis which is used to specify and reason aboutconcurrent systems. Their main aim should be to e�ectively support the system design process,where the design process consists of a sequence of speci�cation and transformation phases.For an overview of formal models for concurrency we refer to Winskel & Nielsen [156].1A. Pais - `Subtle is the Lord....' { The science and the life of Albert Einstein. Oxford University Press,1983. 1

2 Chapter 1: IntroductionThe correct design of concurrent systems is known to be a complex task and is usually carriedout in a step-wise fashion, starting from a set of user requirements evolving towards a concreteinstance of the system via a sequence of design steps. Formal models can support this designprocess in several ways. For instance, they allow to provide unambiguous speci�cations ofdesigns (within the constraints of the model at hand) and due to their mathematical basisthey enable to verify properties like absence of deadlocks and livelocks. In addition, basedon a formal notion of whether a design conforms to its speci�cation the formal speci�cationcan be used as a blueprint to generate correct tests for assessing this conformance relation.Finally, we mention that formal models provide a basis for design transformations that givena speci�cation S generate a speci�cation S 0 by incorporating some design decisions, whileguaranteeing the correctness of this process (in terms of some formally de�ned relation).Altogether this renders important bene�ts for reaching correctness during the design process.1.2 Interleaving versus noninterleaving modelsA main distinction between formal models for concurrency is that of interleaving versus nonin-terleaving models. In interleaving models one abstracts from the fact that a system is actuallycomposed of a set of (partly) independent subsystems. They consider the global system statewithout regarding its distributed nature. The system's behaviour is modelled in terms ofsequences of actions that are totally ordered by precedence. Actions of one independent sub-system are merged, or interleaved, with actions of others. Interleaving models allow for thetransformation of the parallel composition of �nite subsystems into an equivalent speci�cationin which parallel composition (denoted jjj) is replaced by alternative composition (denoted+) and sequencing (denoted ;), e.g.,a jjj b = a ; b + b ; aThis transformation|in its complete form known as the expansion theorem|eases the veri�-cation process. A main shortcoming of interleaving models is that they do abstract from thedistribution and independence of subsystems and their actions. Well-known examples of inter-leaving models for concurrency are (labelled) transition systems of Keller [84], synchronizationtrees of Milner [103] and traces of Hoare [74].Noninterleaving models do not abstract from the fact that a system consists of a set of (partly)independent subsystems. The notion of global state does not play a central rôle in thesemodels. The systems' behaviour is modelled in terms of sequences of actions that are notrequired to be totally ordered, but that are only partially ordered. This partial order reectsthe causal dependencies between actions. Noninterleaving models are therefore also referred toas partial-order or causality-based models.2 Prominent examples of noninterleaving models forconcurrency are Petri nets, Reisig [125], event structures, Nielsen et al. [114], Mazurkiewicztraces [101], asynchronous transition systems, Shields [137] and pomsets (partially orderedmultisets), Pratt [121].2Terminology in the literature is not always clear; e.g., there are models for concurrency that are neitherinterleaving nor causality based, such as ST-bisimulation of Van Glabbeek and Vaandrager [54].

Integration of formal and quantitative methods 3There is sometimes a strong debate between advocates of interleaving and noninterleavingmodels about the question `which model is better?'. It is doubtful whether this is the rightquestion to be answered. There are a lot of cases in which interleaving models impose the rightamount of abstraction, and the same applies to noninterleaving ones. When we want to reasonabout, for instance, the observational behaviour of a system it is usually not so relevant totake into account the fact that a system is composed of subsystems, but it su�ces to considera system as a black box while ignoring this composition aspect. This applies, for instance,to the �eld of conformance testing where usually (and often deliberately) no knowledge isavailable about the internal structure of a system. Also in the realization phase of the designtrajectory when (part of) a speci�cation has to be realized on a single processor, interleavingmodels su�ce. Finally, for veri�cation purposes it has been proven by numerous case studiesthat interleaving models are appropriate to prove important and interesting properties ofdistributed systems.Interleaving models are not that appropriate for design stages in which the distribution aspectsof the system play a prominent rôle. The global state assumption of interleaving models ham-pers to faithfully model that a system consists of several co-operating subsystems at di�erentlocations, each having its own local state. In these design stages the system is considered asa white box where the internal system structure prevails. In particular, if the speci�cationserves as a prescription for the system's implementation rather than as a description of theobservational behaviour of a system, interleaving models become unattractive or even mis-leading since the independence of actions is not reected properly, see Vissers [147]. Alsofor an important design technique, known as action re�nement, where an abstract action isimplemented by a number of more concrete actions, it appears that noninterleaving modelsare more appropriate.We, therefore, believe that both models are legitimate and complementary in the design pro-cess. Going from one design stage to another may therefore imply a transition from onemodel for concurrency to another, and this might involve a change from an interleaving to acausality-based model or vice versa. Of course, such transitions should be carried out in aconsistent way: there must be a strong (and formal) correspondence between the two models.This dissertation deals with event structures, a prominent branch of noninterleaving models.Although we mainly deal with noninterleaving models, we will provide the ingredients toobtain consistent interleaving models such that both models can be used in a coherent way.1.3 Integration of formal and quantitative methodsOriginally, formal models concentrated on the speci�cation, design and analysis of functionalaspects of distributed systems. This is not at all surprising as traditionally the design processis carried out focusing entirely on the functional aspects without due regard of performance is-sues. During the design trajectory quantitative modelling is often disregarded, and only in theimplementation (or realization) phase|or even worse, after �nishing this phase|performanceaspects come into focus. As pointed out in Harvey [66] it is not unusual that a system is com-pletely designed and tested for its conformance with respect to the functional speci�cation

4 Chapter 1: Introductionbefore any attempt is made to assess its performance characteristics. In case the �nally ob-tained design has unsatisfactory e�ciency characteristics such an a posteriori performanceassessment may lead to a complete re-design or to the operation of the system with degradede�ciency. From several perspectives this is not desirable.Performance should therefore be considered as one of a number of design constraints and oneshould aim at a close integration of performance modelling in the design process. In this way,even in the early phases of the design trajectory the e�ciency of design alternatives can beassessed such that designs can be rejected because of unsatisfactory performance characteris-tics, thus avoiding costly re-design at later phases. Obviously, such design decisions are onlyof value if the performance information is adequate and reliable. Since at each phase of thedesign a system speci�cation is available it seems bene�cial to consider this speci�cation notonly as a basis for the functional design, but also as the starting-point for carrying out aperformance assessment.In order not to burden the design engineer with details of performance modelling and analysis itwould be optimal if system speci�cations can be enhanced with quantitative information in aneasy and conservative way. This embodies that the speci�cation language should have a highlevel of `ease of expressiveness', that it allows for the addition of quantitative information onlyin parts of the speci�cation where it is really necessary, and that functional speci�cations canbe annotated with quantitative information in such a way that when deleting this informationthe original functional speci�cation is obtained (while preserving its semantics).Performance models are typically developed by experienced performance engineers. Usuallyperformance models are developed while intuitively simplifying the system speci�cation thatis used for the qualitative analysis and functional design of the system. Even in cases whenthe system speci�cation is used as a basis, the process of going from this speci�cation to aperformance model is based on human ingenuity and is carried out manually. As a result thelink between the performance model and the system speci�cation that is used for the design isweak|there is no guarantee for the correspondence between the two|and the adequacy andreliability of the obtained results from the performance model may be limited. The validity ofthe performance model could be increased signi�cantly when performance models are derivedfrom (formal) system speci�cations in an algorithmic way.We believe that the integration of formal and quantitative methods is needed. Starting froma formal model facilitates tool support|which is indispensable to support the design processand performance engineering|and allows for a provably correct mapping of speci�cations ontoperformance models. The �rst step towards such an integration is the extension of formalmodels for concurrency with quantitative information such as time (both deterministic andstochastic) and probability, which is the main topic of this dissertation. Timing informationcan be used to constrain the time of occurrence of actions while probabilities can be used toquantify the likelihood of happening of actions.Quantitative extensions of interleaving models have been investigated thoroughly in the last 5{10 years. Although there does not yet seem to be a consensus on how to incorporate issues liketime and probability in labelled transition systems|the most prominent interleaving model|the di�erent ways in which this can be done seem to be quite well-understood. Various recipeson how to incorporate time in transition systems, for instance, are described by Nicollin &

Process algebra 5Sifakis [112] and Alur & Dill [5], while di�erent approaches for the incorporation of probabilitiesare described by Van Glabbeek et al. [53].The incorporation of quantitative information in noninterleaving models has received scantattention in the literature. Since these models seem to be attractive at the design stages inwhich the observational behaviour is no longer prevalent, but where the intensional systemcharacteristics dominate, one might even argue that such models in particular should dealwith issues like time and probability. In these design stages it is of utmost importance howactions are scheduled in time and with what probability certain alternative executions, whichat a more high level of abstraction could be faithfully modelled by means of nondeterminism,can appear.In addition, if one aims at the integration of formal and quantitative methods for the supportof the system design process there are several reasons why it seems to be bene�cial to startfrom a noninterleaving model. Noninterleaving models retain explicit information about theparallelism between system components. As performance models typically are based on ab-stractions of the control and/or data ow structure of the systems, the use of causality-basedmodels is thought to be a direct way of narrowing the gap with functional models. Additionaladvantages of these models are that they are less a�ected by the problem of `state explosion',since parallelism leads to a sum of the components states, rather than to their product (asin interleaving), and that they have the possibility of local analysis. This means that it isrelatively easy to study only that part of a system in which one is interested, isolating it fromthe rest.In this dissertation we investigate several quantitative extensions of event structures. Althoughit has been argued, for instance by Baeten [6], that the incorporation of features like time andprobability is \more di�cult to achieve in the full generality of partial order semantics" and \isso much more complex in partial order semantics, that the key issues and main di�culties donot stand out so easily" we believe that most of the quantitative extensions discussed in thisdissertation prove the opposite. Also the consistent interleaving models for these extensionsoften turn out to be simpler than various extensions of interleaved models that have beenproposed in the literature. One might pose that starting from a model that explicitly reectsthe causal dependencies between actions provides another, and often clarifying, insight intothe intertwining of notions like time, probability, causality and independence.1.4 Process algebraAlthough formal models for concurrency aim (amongst others) at facilitating unambiguousspeci�cations of designs, they are not attractive as such for this purpose, but they are usuallyused as semantical models for more abstract description languages. A prominent branch ofsuch description languages is formed by the family of process algebras, like ACP of Bergstra& Klop [13], CSP of Hoare [74] and Milner's CCS [104].Process algebras are characterized by a high level of abstraction and the presence of a numberof powerful composition operators that facilitate the development of well-structured speci-�cations. It has been widely recognized that due to these characteristics process algebras

6 Chapter 1: Introductionsyntactic construct syntax label set Act(B)inaction 0 ?successful termination p ?action-pre�x (a ; B), a 2 Act f a g [Act(B)(� ; B) Act(B)choice (B1 +B2) Act(B1) [Act(B2)enabling (B1 >> B2) Act(B1) [Act(B2)disrupt (B1 [> B2) Act(B1) [Act(B2)parallel composition (B1 jjGB2) Act(B1) [Act(B2)hiding (B nG) Act(B) nGrelabelling (B[H]) fH(a) j a 2 Act(B) gprocess instantiation P Act(B) for P := BTable 1.1: The syntax of process algebra PA.are appropriate for the e�ective support of the design process (see, for instance, Bolognesi etal. [21]) and the speci�cation of real-life systems such as communication protocols, see e.g.Sharp [136]. Therefore, in this dissertation we will investigate for each quantitative extensionof event structures whether such a model can be used to provide a denotational semantics toa quantitative extension of a process algebra, referred to as PA, in a compositional way.According to the compositionality principle the interpretation of each composite behaviour ex-pression in the process algebra is de�ned as a function of the interpretation of its constituents.Another important characteristic that is considered in this dissertation is called backwardscompatibility [147]. This principle embodies that the semantic function for, let say a timed be-haviour B, should not modify the semantics of the untimed behaviour B0 obtained by omittingall timing information in B, but rather should preserve the semantics of B0. Stated otherwise,the semantics of e.g. a timed behaviour should be a conservative extension of the semanticsof its corresponding untimed behaviour.In this dissertation we consider the process algebra PA which is, in fact, the process algebraLOTOS (for an introduction to LOTOS see, for instance, Bolognesi & Brinksma [16] andLogrippo et al. [94]) with a somewhat more concise syntax. The syntax of PA is listed inTable 1.1. The table assumes a given set of observable actions Act and an additional silentor internal action � ; � 62 Act. The special action �, which is not user-de�nable, indicatesthe successful termination of a behaviour; � 62 Act. Act(B) for behaviour B is the set ofobservable actions in B, i.e., Act(B) � Act. G � Act is a set of observable actions, andH : Act [f �; � g �! Act [f �; � g a relabelling function that satis�es H(�) = � , H(�) = �and for a 2 Act : H(a) 6= � and H(a) 6= �. PN is a set of process names with P 2 PN. For setof actions G � Act we often abbreviate G [f � g by G� , and similarly for �.As syntactical sugar we let jj? be denoted by jjj , and jjAct by jj . The precedences of thecomposition operators are, in decreasing binding order: ; , +, jj , [>, >>, n and []. Parenthesesare omitted if this does not introduce ambiguities.

Standard semantics and behavioural equivalences 7The simplest behaviour is the behaviour that can perform no actions at all, called inaction(or deadlock) and denoted by 0. p represents the successful termination of a behaviour andcan perform an action � after which it behaves like 0.For a an action and B a behaviour, a ; B denotes a behaviour which may engage in a afterwhich it behaves like B. This operator is called action-pre�x.B1+B2 denotes the choice between behaviours B1 and B2. It should be noted that this choiceis resolved in interaction with the environment, that is, by a behaviour that is composed inparallel with B1 +B2.B1 >> B2 denotes the sequential composition (or enabling) of behaviours B1 and B2. Initiallythis behaviour behaves like B1 but at the successful termination of B1 control is passed to thesecond behaviour B2.The intuitive interpretation of B1 [> B2 (pronounce disrupt) is that B1 at any point of its exe-cution may be disrupted by B2, where the successful termination of B1 leads to the successfultermination of the entire behaviour B1 [> B2.Parallel composition of behaviours is denoted by B1 jjGB2, where G is the set of actions whichhave to be performed by both behaviours in co-operation. B1 and B2 can perform actionsthat are not part of the (synchronization) set G independently of each other. Successfultermination actions have to be commonly executed; this means that B1 jjGB2 terminates ifand only if both components terminate.Abstraction of a set of actions G in a behaviour B is supported by the hiding operator, denotedBnG. Behaviour BnG behaves analogous to B except that actions in the set G are turned intosilent actions (denoted by �) such that those actions are no longer visible to the environmentof the behaviour.B[H] (called relabelling) denotes a behaviour which is obtained by renaming the actions in Baccording to H. Notice that silent actions � are not renamed.P denotes a process instantiation; we assume a behaviour is always considered in the contextof a set of process de�nitions of the form P := B where B is a behaviour (possibly containingoccurrences of P) .1.5 Standard semantics and behavioural equivalencesThe formal semantics of PA is given by a set of SOS (Structured Operational Semantics, Plotkin[120]) rules that de�ne transitions of the form a�! . B a�!B0 denotes that behaviour B canperform action a 2 Act�;� evolving into B0. In the SOS-style the transition relation is de�nedby means of deduction rules. For every syntactical construct in PA rules will be presentedthat de�ne the transitions that are possible for a behaviour of this form by referring to thepossible transitions of the components of this behaviour. The general format for these rulesis as follows:This general rule should be read as follows: if condition is satis�ed, the rule can be appliedand it can be derived that the conclusion holds in case all preconditions premise1 : : : premisen

8 Chapter 1: Introductionpremise1 ^ : : : ^ premisenconclusion (condition)are satis�ed.The transition relation a�! is de�ned as the smallest relation closed under all inference rulesof Table 1.2.Usually transition systems are too concrete in the sense that they distinguish behaviourswhich|from a particular perspective|are considered to represent the same thing. We recall�ve notions of equivalence from the literature that are used in this dissertation, viz. isomor-phism, strong bisimulation of Milner [103] and Park [116], weak bisimulation of Milner [104],testing equivalence by De Nicola & Hennessy [111], and trace equivalence by Hoare [74]. Foran overview and comparison of the di�erent types of equivalence relations on labelled transi-tion systems we refer to the studies of Van Glabbeek [49, 50]. The order of presentation ofequivalence relations in this section is by decreased distinguishing power.1.1. Definition. (Labelled transition system)A labelled transition system is a quadruple hS; L; T; s0i with� S, a set of states� L, a set of labels� T � S � L� S, a transition relation, and� s0 2 S, the initial state. �(s; a; s0) 2 T is usually denoted as s a�! s0. The class of labelled transition systems is denotedby LTS and is ranged over by TS. In the remainder of this section we will identify a labelledtransition system with its initial state. We recall the following (standard) notations. Letai 2 Act�;�, bi 2 Act�, � a �nite sequence of actions a1 : : : an, and �0 a �nite sequence ofobservable actions b1 : : : bn.s ��! s0 , 9 s1; : : : ; sn�1 : s a1��! s1 a2��! : : : an�1���! sn�1 an��! s0s ") s0 , 9n > 0 : s �n��! s0s b) s0 , 9 s1; s2 : s ") s1 b�! s2 ") s0s �0) s0 , 9 s1; : : : ; sn�1 : s b1) s1 b2) : : : bn�1) sn�1 bn) s0 .The) transition relation concentrates on observable actions. s ") s0 denotes that s canevolve into s0 in an unobservable way, either by executing a number of ��! steps or byperforming no step at all (n=0). s b) s0 denotes that s may evolve into s0 by performingobservable action b, possibly preceded and/or followed by any �nite number of ��! steps.��! and �0) are the generalizations for sequences of actions of a�! and b) , respectively.

Standard semantics and behavioural equivalences 9

p ��! 0 a ; B a�!BB1 a�!B01B1 +B2 a�!B01 B2 a�!B02B1 +B2 a�!B02B1 a�!B01B1 >> B2 a�!B01 >> B2 (a 6= �) B1 ��!B01B1 >> B2 ��!B2B1 a�!B01B1 [> B2 a�!B01 [> B2 (a 6= �) B1 ��!B01B1 [> B2 ��!B01B2 a�!B02B1 [> B2 a�!B02B1 a�!B01B1 jjGB2 a�!B01 jjGB2 (a 62 G�) B2 a�!B02B1 jjGB2 a�!B1 jjGB02 (a 62 G�)B1 a�!B01 ^ B2 a�!B02B1 jjGB2 a�!B01 jjGB02 (a 2 G�)B a�!B0B nG a�!B0 nG (a 62 G) B a�!B0B nG ��!B0 nG (a 2 G)B a�!B0B[H] H(a)���!B0[H] B a�!B0P a�!B0 (P := B)Table 1.2: Operational semantics of PA.

10 Chapter 1: Introduction1.2. Definition. For TS 2 LTS let der(TS) , fTS 0 j 9 � 2 (Act�)� : TS �)TS 0 g. �Two labelled transition systems are isomorphic if their reachable states can be mapped one-to-one to each other, preserving transitions and initial states.1.3. Definition. (Isomorphism)For i=1; 2 let TSi = hSi; L; Ti; s0ii. TS1 and TS2 are called isomorphic, denoted TS1 =isoTS2, i� there exists a bijection � : der(TS1) �! der(TS2) such that �(s01) = s02 ands a�! s0 i� �(s) a�!�(s0), for all s; s0 2 der(TS1) and a 2 Act�;�. �Strong bisimulation equivalence requires the existence of a relation between the reachablestates of two transition systems that can simulate each other: if one can perform actiona 2 Act�;�, the other must be able to do the same, and vice versa, and the resulting statesmust simulate each other again.1.4. Definition. (Strong bisimulation equivalence)For i=1; 2 let TSi = hSi; L; Ti; s0ii. TS1 and TS2 are called strong bisimulation equivalent, denoted TS1 � TS2, i� there exists a relation R � der(TS1) � der(TS2) such that(s01 ; s02) 2 R and if (s1; s2) 2 R then for all a 2 Act�;�� 8 s01 2 S1 : s1 a�!1 s01 implies 9 s02 2 S2 : s2 a�!2 s02 ^ (s01; s02) 2 R;� 8 s02 2 S2 : s2 a�!2 s02 implies 9 s01 2 S1 : s1 a�!1 s01 ^ (s01; s02) 2 R. �Weak bisimulation is de�ned similarly, but focuses on observable transitions.1.5. Definition. (Weak bisimulation equivalence)For i=1; 2 let TSi = hSi; L; Ti; s0ii. TS1 and TS2 are called weak bisimulation equivalent, denoted TS1 � TS2, i� there exists a relation R � der(TS1) � der(TS2) such that(s01 ; s02) 2 R and if (s1; s2) 2 R then for all � 2 (Act�)�� 8 s01 2 S1 : s1 �)1 s01 implies 9 s02 2 S2 : s2 �)2 s02 ^ (s01; s02) 2 R;� 8 s02 2 S2 : s2 �)2 s02 implies 9 s01 2 S1 : s1 �)1 s01 ^ (s01; s02) 2 R. �The notion of testing equivalence is used to determine whether an implementation (concretebehaviour) is correct with respect to a speci�cation (abstract behaviour). The following char-acterization of testing equivalence is taken from Tretmans [142].3For TS 2 LTS and trace � the predicate TS after � deadlocks is de�ned as:TS after � deadlocks , (9TS 0 : TS �)TS 0 ^ (8 a 2 Act� : TS 0 a6))) .3This characterization coincides with the de�nition of testing equivalence in De Nicola & Hennessy [111]for strongly converging labelled transition systems, that is, transition systems in which no in�nite chains ofinternal actions appear.

The principles of event structures 11That is to say, TS after � deadlocks is true i� TS can evolve observedly via � to TS 0 andTS 0 cannot perform any observable action.As a second subsidiary notion let Obs(TS1;TS2) denote the set of observable traces � suchthat TS1 jjTS2 deadlocks after performing �.Obs(TS1;TS2) , f � 2 (Act�)� j (TS1 jjTS2) after � deadlocks g:TS1 and TS2 are called testing equivalent i� there is no transition system (often called test)which can distinguish between TS1 and TS2.1.6. Definition. (Testing equivalence)TS1 and TS2 are called testing equivalent, denoted TS1 �te TS2, i�8TS 2 LTS : Obs(TS1;TS) = Obs(TS2;TS) . �Let us de�ne the set of sequences consisting of observable actions of TS. That is,Traces(TS) , f � 2 (Act�)� j 9 s 2 S : s0 �) s g .Two transition systems are called trace equivalent if they have the same set of traces.1.7. Definition. (Trace equivalence)TS1 and TS2 are called trace equivalent i� Traces(TS1) = Traces(TS2). �The equivalence relations de�ned above for labelled transition systems will be used for be-haviours in the same way.1.6 The principles of event structuresEvent structures constitute a major branch of noninterleaving models. The basic ingredientsof event structures are labelled events, and the causality, conict, and independence relationbetween events. Since the conception of event structures in Winskel's thesis [152] various typesof event structures have been developed. Many of these models are introduced in Chapter 2.This section treats the elementary concepts of event structures.The basic building blocks of behaviours are actions. An action models an activity, like con-suming a sandwich, preparing a dinner, or pressing a button on a keyboard. Actions areatomic in the sense that they are indivisible. This implies that an action either takes place, ordoes not take place at all. It cannot take place partly, given the abstraction level at hand. Ata lower abstraction level, however, an action may be re�ned into more detailed actions whichat that level of abstraction are again considered to be atomic. For instance, preparing a dinnermay be considered as a single action at some abstraction level, but at a more detailed level,

12 Chapter 1: Introductionit may consist of several (sub-)activities such as cleaning the ingredients, preparing the �rstcourse, preparing the second course, and so on. Actions are represented in event structures bylabels. We assume the existence of some universe of actions, denoted A, and indicate elementsof this universe by a; b; c; : : :.The building blocks of event structures are events. An event models the occurrence of anaction. For each occurrence of an action the time at which it occurs, the reasons for itsoccurrence, and the context in which it happens are di�erent. An event is a speci�c occurrenceof an action. For instance, preparing dinner at Christmas 1995 or on June 3th 1987 could bemodelled as two distinct events of the action preparing a dinner (at any day). The relationbetween events and actions is provided by a labelling function that associates to an event theaction whose occurrence is modelled by this event. Since di�erent events may model distinctoccurrences of the same action, and as there may exist actions to which no event corresponds,this labelling function is, in general, neither injective nor surjective.Events are denoted in pictures as black dots; near the dot the action label is given. We usuallydenote an event labelled a by ea. In case the event's label is irrelevant it is omitted and wesimply write e; e0, and so on. Event names are taken from some (arbitrary) domain such thatevents can be identi�ed uniquely. We are actually not interested in explicitly de�ning eventnames and consider event structures up to event renaming.Causality (or precedence) is a binary relation between events where the intuitive interpretationof e causes e0, denoted by a directed arrow from e to e0, is that if e and e0 both occur thene0 is caused by e. Stated otherwise, the occurrence of e is a condition for e0 to be able tooccur. It does not need to be a su�cient condition for e0 to happen, because there may beother events on which e0 causally depends, or there may be other events which may disablethe occurrence of e0 (see below). Causality is based on the intuition that there is a �xed cause-and-e�ect relation between occurrences of actions (i.e., events) in system runs. Causality isdescribed at the level of events rather than at the level of actions since in general di�erentaction occurrences have di�erent causes.Conict (or choice) is a symmetric binary relation between events, represented by a dottedline between e and e0, with the intended meaning that e and e0 will never both happen in apossible run of the system. Thus, if e (e0) happens in a system run then e0 (e) is permanentlydisabled.Independence is a symmetric binary relation between events with the intended meaning thatif e and e0 are neither causally related nor in conict, then they can happen independentlyof each other. That is, once enabled they can happen in any order or even simultaneously.The independence of two events is indicated by the absence of a causal relation and conictrelation between these events.The representation of the basic ingredients of event structures is presented in Figure 1.1.There are various types of event structures de�ned in the literature (see Chapter 2). Thespeci�c requirements of parallel composition with multi-way synchronization and the disruptoperator of our process algebra PA are appropriately addressed by Langerak's extended bundleevent structures [89, 90]. In a nutshell, this type of event structures incorporates besideslabelled events, an asymmetric conict relation, denoted , and a causality relation between

Families of lposets 13
c

b
baa

labelled events causality

ba ba

conflict independenceFigure 1.1: Basic ingredients of event structures.a set X of events, that are pairwise in mutual conict, and an event e. The intuitive meaningof e e0 is that (i) e cannot occur once e0 has occurred, and (ii) if e and e0 both occur in asingle system run then e causally precedes e0. The interpretation of X 7! e is that if e happensin a system run, exactly one event in X has happened before (and caused e). This enables usto uniquely de�ne a causal ordering between the events in a system run.In this dissertation we take extended bundle event structures as a starting-point for our in-vestigations on quantitative extensions of noninterleaving models.Besides the use of event structures as a semantical model for process algebras we like tomention the increase of interest in causality-based models in other areas like, for instance, theautomatic veri�cation of temporal logic properties (known as model checking) [55], the designand veri�cation of distributed algorithms [33, 134, 77], the modelling of advanced architecturalconcepts [46, 145], and the design and analysis of parallel computations [12].1.7 Families of lposetsThe interpretation of event structures is traditionally de�ned in terms of families of con�gura-tions as in Winskel & Nielsen [156]. A con�guration is a representation of the system state bymeans of the set of events that have occurred up to a certain point. For extended bundle eventstructures it turns out that families of con�gurations are not su�ciently expressive. That is tosay, there are extended bundle event structures that have identical families of con�gurations,but that are di�erent from a causality point of view. We therefore take a more discriminatingmodel, known as labelled partially ordered sets, or lposets, for short. Families of lposets do notonly record the set of events that have happened so far, but also the causal ordering betweenthe events. Rensink [126, 127] showed that lposets form a convenient underlying model formany formal models for concurrency. Let A denote a set of actions.1.8. Definition. (Labelled partially ordered set)A labelled partially ordered set (lposet) is a triple hE;6; li with� E, a set of events� 6� E � E, a partial order on E� l : E �! A, the action labelling function. �A relation is a partial order i� it is reexive, antisymmetric and transitive.

14 Chapter 1: IntroductionFor denoting lposets we use the following conventions. " denotes h?;?;?i, the empty lpo-set. Non-empty lposets are often graphically denoted: e.g., hf ea; eb g;6; f (ea; a); (eb; b) gi isdenoted by eaeb if ea and eb are unrelated under 6, and by ea!eb if ea 6 eb. The arrow symbol! can be read as `causes'.An important relation on lposets is the pre�x relation.1.9. Definition. (Pre�x of an lposet)hE;6; li is a pre�x of hE 0;60; l0i i� E � E 0, 6=60 \ (E 0 � E) and l = l0 � E. �The second constraint says that no event in E 0 n E may precede under 60 an event in E.Evidently, the relation `is a pre�x of' is a partial order on lposets.1.10. Definition. (Family of lposets)A family P of lposets is a non-empty set of �nite lposets such that8 p an lposet; q 2 P : p is a pre�x of q) p 2 P . �That is to say, a family of lposets is a non-empty set of (�nite) lposets that is downwardsclosed with respect to the pre�x ordering on lposets.1.11. Example. Consider the family of lposets graphically denoted as:ea!ec% &ea ea!eceb% & %" eaeb& %ebThe arrows between the di�erent lposets denote the pre�x relation, omitting the transitiveclosure for convenience. �Lposets are a very discriminating model|lposets that only di�er in their event names areconsidered to be di�erent. Less discriminating semantical models such as pomset (partiallyordered multiset), multiset, and interleaving models can be obtained from an lposet semanticsby using the appropriate abstraction mechanism. Pomsets, for example, are equivalence classesof lposets under isomorphism.1.12. Definition. hE;6; li and hE 0;60; l0i are isomorphic i� there exists a bijection � :E �! E 0 such that l(e) = l0(�(e)) and e 6 e0 i� �(e) 60 �(e0). �1.13. Definition. A pomset is an isomorphism class of lposets. �

Synopsis 15An important di�erence between pomsets and lposets is that pomsets are linear-time models,i.e., they abstract from the timing of choices, whereas lposets are branching-time models, i.e.,they keep track of the moments of choice. (For an extensive discussion about the relevance ofbranching-time models we refer to Van Glabbeek [51].) In linear-time models we havea ; (b ; 0 + c ; 0) = a ; b ; 0+ a ; c ; 0The left-hand side de�nes a choice between b and c after having performed an a, whereasthe right-hand side the choice is made before an a is performed. The corresponding eventstructures of these expressions are as follows:
a

bb

a

c

a

c

ea ea1 ea2

eb ec eb ec

a ; (b ; 0 + c ; 0) a ; b ; 0 + a ; c ; 0The (maximal) lposets of the right-hand event structure are ea1!eb and ea2!ec whereasthe (maximal) lposets of the left-hand event structure are ea!eb and ea!ec . Since ea1!eband ea!eb are isomorphic, and ea2!ec and ea!ec are isomorphic, we obtain the (maximal)pomsets a!b and a!c for both event structures. Lposets thus distinguish between thesetwo event structures while pomsets do not.1.8 SynopsisThis thesis is further organized as follows.Chapter 2: Extended bundle event structures provides a brief survey of three tradi-tional types of event structures: prime and stable event structures of Winskel, and theow event structures of Boudol & Castellani. The adaptations made in Langerak's bun-dle and extended bundle event structures are described and justi�ed. The latter modelis extensively discussed and the major results that are of importance for this thesisare summarized. It will be shown how extended bundle event structures can be usedto provide a compositional causality-based semantics to PA. In addition, a consistentevent-based operational semantics of PA is presented.Chapter 3: Disjunctive causality and interleaving presents two qualitative extensionsof extended bundle event structures. In the �rst extension the stability constraint onbundles is dropped. The resulting model, called dual event structures, incorporatesconjunctive causality|like all other event structures|and disjunctive causality|unlikemost other event structures. The second extension comprehends the incorporation ofan (irreexive and symmetric) interleaving relation between events. We investigate for

16 Chapter 1: Introductionboth models how lposets can be deduced and what transformation rules are supported.The expressiveness of the two models is compared with the event structures of Chapter2.Chapter 4: A simple timing module describes a simple timed variant of extended bundleevent structures. We equip events and bundles with a time attribute. An event e withtime t denotes that e is enabled from t time units on since the system has been started,usually assumed to be time 0. t associated with bundle X 7! e denotes that the timebetween the occurrence of an event inX and the appearance of e should be at least t timeunits. The result is a causality-based model allowing the speci�cation of minimal timeconstraints. The timing extension is a conservative extension of the untimed causality-based model, is suitable for discrete and continuous time, and does not include notionsto explicitly force the passage of time. A temporal process algebra PAT is de�ned thatincludes a delay function which constrains the occurrence time of actions. The suitabilityof timed event structures for providing a compositional causality-based semantics to thisalgebra is studied.A preliminary version of part of this chapter has been published as [28].Chapter 6: Timed operational semantics presents two timed event transition systemsfor the timed process algebra PAT . Opposed to the standard case transitions are equippedwith event and action (and time) labels. The timed event transition systems are de�nedby structured operational semantics. One transition model is based on timed-actiontransitions and the other is based on the separation between time- and (untimed) action-transitions. The compatibility of these timed transition models with the causality-basedsemantics of PAT as provided in Chapter 4 is investigated. The timed event traces of thetimed-action transition model and the causality-based semantical model are shown tocoincide. For the model distinguishing between time- and action-transitions this holdswhen restricting to time-consistent traces.Chapter 6: The urgency module introduces the concept of urgent events|events thatare forced to occur once they are enabled|in timed event structures. Typically an urgentevent `guards' the occurrence time of an alternative event in the sense that this otherevent is prevented from happening after a particular time instant. Timeout mechanismsare well-known urgent phenomena. It is investigated how the theory of Chapter 4 carriesover to this new model, referred to as urgent event structures. The timed process algebraPAT is extended with an urgency operator that forces (local or synchronized) actions tohappen in an urgent fashion. Urgent event structures are used as a vehicle to providea denotational causality-based semantics for this formalism. In the spirit of Chapter 5a consistent event-based operational semantics based on a separation of the passage oftime and the occurrence of actions is presented.An extended abstract of this chapter has been published as [83].Chapter 7: The real-time module generalizes timed event structures by equipping eventsand bundles with sets of time instants and use urgent events for the sole purpose ofmodelling timeout mechanisms (thus restricting urgent event structures). An event e

Synopsis 17with set T of time instants denotes that e can only occur at some t 2 T since the startof the system. T associated with bundle X 7! e denotes that the time between theoccurrence of an event in X and the appearance of e should equal t, for some t 2 T . Theresult is a causality-based model allowing the speci�cation of minimal, maximal and, forinstance, periodic time constraints. This chapter generalizes the theory of Chapter 4 anduses urgent events in a controlled way. It investigates how the more expressive model,baptized real-time event structures, can be used as a vehicle to provide a semantics to areal-time process algebra including timeout and watchdog operators.Chapter 8: The stochastic timing module treats stochastic variants of extended bundleevent structures. As a result causality-based models are obtained that allow the spec-i�cation of stochastic timing constraints. Events are supposed to happen after a delaythat is determined by a stochastic variable with a certain distribution function. First, asimple model is discussed restricting the distribution functions to be exponential. Thenthe generalization of deterministic times towards more general types of distributionsis investigated and a stochastic variant of event structures is proposed with (the morepractical) phase-type distributions. This class of distributions includes exponential, Er-lang, Coxian and mixtures of exponential distributions. It is shown how both stochasticmodels can be used to provide a compositional causality-based semantics to a stochasticextension of PA, and for the exponential case a corresponding event-based operationalsemantics is provided that is proven to coincide with various existing interleaving pro-posals.This chapter has been published as [29].Chapter 9: The probability module presents a probabilistic variant of extended bundleevent structures, in which internal events (i.e., events labelled �) can be assigned a(�xed) probability. In this way, a causality-based model is obtained that allows for thespeci�cation of (internal) probabilistic behaviour. For probabilistic event structures thenotion of cluster, a set of mutually conicting internal events such that the sum of theprobabilities associated to these events is 1, is de�ned. A cluster corresponds to anindependent stochastic experiment. A probabilistic process algebra PAP is introducedand assigned a causality-based semantics. The integration of the probabilistic modelwith the simple timed model (of Chapter 4) is briey discussed. By means of exampleit is shown how to obtain a performance model (i.e., a discrete-time semi-Markov chain)from a timed probabilistic event structure.A preliminary version of part of this chapter has been published as [82].Chapter 10: Recursion provides an event structure semantics for recursively de�ned pro-cesses. We consider the timed (and urgent) variant and the probabilistic variant, andshow that the stochastic case can be taken into account by a straightforward general-ization of the deterministic timed case. Recursion is dealt with using standard domaintheory. A complete partial order is de�ned on each type of event structure and alloperators on these structures (which correspond to operators in the related process al-gebra) are shown to be continuous with respect to this partial order. The semanticsof P := B is then de�ned as the limit of a series of better and better approximations.

18 Chapter 1: IntroductionFinally, for PAT , PAR, PAU and PAP we give an operational semantics for recursivelyde�ned processes and prove the consistency between this operational semantics and thedenotational causality-based semantics.Chapter 11: Conclusion contains a retrospective view on the work presented in this dis-sertation, summarizes the main technical results and provides some overall conclusions.In addition, some thoughts on future work are presented.Appendix A: Stochastic processes provides an introduction to some basic notions of sto-chastic processes. Notions like distribution functions, memoryless distributions, discreteand continuous-time Markov chains are introduced and some basic results are summa-rized. The material of this appendix is used in Chapters 8 and 9.Appendix B: Domain theory gives a brief introduction to standard domain theory and�xes some terminology. The material of this appendix is used in Chapter 10.This dissertation presents 8 extensions of extended bundle event structures. These extensionsand their dependencies are depicted in Figure 1.2. The numbers in brackets indicate thechapter numbers in which the corresponding model is treated. This �gure thus provides alsoa reading guidance. For example, readers that are only interested in the stochastic extensionshould read Chapters 2, 4 and 8, whereas those that are interested only in the probabilisticaspects should consult Chapters 2 and 9. Chapter 10 considers recursion for all treated models.

simple stochastic
event

structures (8)

dual event
structures (3)

timedevent
structures (4)

extended bundle
event structures (2)

probabilistic
event

structures (9)

real-time
event

structures (7)
urgent event
structures (5)

extended dual
structures (3)event

stochastic
event

structures (8)Figure 1.2: Overview of extensions of event structures.

2 Extended bundle event structures
This chapter provides a brief survey of three traditional types of event struc-tures: prime and stable event structures of Winskel, and the ow eventstructures of Boudol & Castellani. The adaptations made in Langerak'sbundle and extended bundle event structures are described and justi�ed.The latter model is extensively discussed and the major results that are ofimportance for this thesis are summarized. It will be shown how extendedbundle event structures can be used to provide a compositional causality-based semantics to PA. In addition, a consistent event-based operationalsemantics of PA is presented.2.1 IntroductionFor investigating qualitative and quantitative extensions of partial-order models we takeLangerak's extended bundle event structures as a starting-point. This chapter is mainly de-voted to this type of event structures. We start by briey describing three traditional modelsof event structures: prime, stable and ow event structures. The descriptions of these modelsare not intended to give all details and internals of a certain model, but are meant to showthe development and di�erences between the kinds of event structures.The main di�erence of (extended) bundle event structures and prime and ow event structuresis that the causality relation, denoted by 7!, is not a binary relation between events, but arelation between a set X of events and an event e. X 7! e means that e is enabled if preciselyone event in X has happened. As argued in [89] this relation is convenient for modellingmulti-party synchronization, as present in process algebras like LOTOS and CSP, without theneed for copying events.Prime, ow, stable, and bundle event structures incorporate a symmetric conict relation,denoted by #. To model the disrupt operator [> appropriately this relation is replaced byan asymmetric conict relation (denoted by) in extended bundle event structures. Theintuitive meaning of e e0 is that (i) e cannot occur once e0 has occurred, and (ii) if e ande0 both occur in a single system run then e causally precedes e0. Similar constructs have beenconsidered in the study of architectural issues of distributed systems by Ferreira Pires et al.[46, 145], in the notions of event automata by Pinna & Poign�e [118], and in the geometricautomata of Gunawardena [60].In the main part of this chapter we consider extended bundle event structures. We justify theuse of families of lposets as an underlying semantical model and de�ne how lposets can be19

20 Chapter 2: Extended bundle event structuresgenerated. A pleasant property of extended bundle event structures is that `local' transforma-tion rules, i.e., transformation rules involving part of an event structure, can be de�ned. Wesummarize some basic transformation rules that preserve the semantics in terms of lposets.A denotational semantics of PA in terms of extended bundle event structures is de�ned. Thissemantics provides the basis for extensions of PA that are treated later on in this thesis. Inaddition, an operational semantics for PA is presented and shown to be consistent with thedenotational semantics.2.2 The realm of event structuresThis section presents an overview of a prominent subset of event structure models as describedin the literature. The presentation of these models is in chronological order of their conception,ranging from the well-known prime event structures to bundle event structures. The treatmentof other types of event structures (or alikes) such as the free event structures of Darondeau& Degano [37], prioritized event structures of Degano et al. [43], event automata of Pinna &Poign�e [118] and local event structures of Hoogers et al. [75, 76] is outside the scope of thischapter.2.1. Notation. For X a set of events, predicate CF(X) is true i� X is conict-free, thatis, CF(X) , (8 e; e0 2 X : : (e# e0)).For �nite sequences � = x1 : : : xn, let � denote the set of elements in �, that is, � ,f x1; : : : ; xn g, and let �i denote the pre�x of � up to the (i�1)-th element, that is, �i ,x1 : : : xi�1, for 0 < i 6 n+1. �2.2.1 Prime event structuresOriginally, event structures were introduced as a vehicle to relate subclasses of Petri nets,such as occurrence nets and causal nets, and Scott's domain theory [114]. Event structureswere introduced as `net-alikes with the places removed'. To relate occurrence nets to domainsthe notion of prime event structures was introduced. Their labelled variants, associating witheach event an action from a set A of actions, are de�ned as follows.2.2. Definition. (Prime event structure)A (labelled) prime event structure E is a quadruple (E;#;6; l) with� E, a set of events� # � E � E, the (irreexive and symmetric) conict relation� 6� E � E, a partial order, the causality relation� l : E �! A, the action-labelling functionsuch that for all e 2 E1. f e0 2 E j e0 6 e g is �nite

The realm of event structures 212. 8 e0; e00 2 E : (e# e0 ^ e0 6 e00)) e# e00. �The �rst condition states that the number of causes of any event should be �nite. The secondcondition, known as the conict inheritance property, states that if an event e is in conictwith some event e0, then it is in conict with all causal successors of e0.A con�guration is a set of events that have happened during a speci�c run of the eventstructure. Conceptually a con�guration C can also be viewed as a global state, namely thestate of a system where all events in C have occurred.2.3. Definition. (Con�guration of a prime event structure)For prime event structure E = (E;#;6; l), set C � E is a con�guration of E i� CF(C)holds and 8 e 2 C; e0 2 E : e0 6 e) e0 2 C. �A con�guration should be conict-free since conicting events can never happen in a systemrun. In addition, all causal predecessors of e in C must be contained in C, i.e., C is downwardsclosed (w.r.t. 6), as otherwise e could not have happened at all. The semantics of a primeevent structure is de�ned as the family of its con�gurations, ordered by set inclusion. Theresulting domain is a so-called prime algebraic coherent partial order [114]; this explains thename prime event structures.2.4. Example. An example of a prime event structure and its semantics in terms offamilies of con�gurations is given in Figure 2.1(a) and (b), respectively. In this structure wehave ea# eb, eb 6 ed, ec 6 ed, and ea# ed (due to conict inheritance). �
ba c

d

(a) (b)

{ea} {eb}

{ec}

{ea, ec} {eb, ec}

{eb, ec, ed}

∅Figure 2.1: A prime event structure (a) and its family of con�gurations (b).Prime event structures are simple mathematical structures: labelled partial orders extendedwith a conict relation. The main limitation of prime event structures is the conict inher-itance property. Due to this property all causal successors of two conicting events are inmutual conict. This implies that each event can be enabled only in one way, thus disallowingan event to have alternative enablings. For describing a single system run|the original goal ofoccurrence nets, and thus of prime event structures|this does not bother, but for specifyingbehaviours this is undesirable. The fact that an event can have alternative causes can only

22 Chapter 2: Extended bundle event structuresbe modelled by introducing one event for each possible enabling. This is unattractive|eventsusually have di�erent alternative enablings by nature; modelling each alternative enabling ofan event by a separate event would lead to an explosion of the number of events.For similar reasons, prime event structures are unattractive as a semantical model for pro-cess algebras. Especially the semantics of the parallel composition operator is considerablycomplex, despite attempts to simplify it by Loogen & Goltz [95] and Vaandrager [144].2.2.2 Stable event structuresStable event structures were introduced by Winskel to overcome the unique enabling problemof prime event structures [153, 154]. In contrast with the binary causality relation 6, stableevent structures have an enabling relation, denoted `, relating a (usually �nite) set of eventsto a single event1. The interpretation of X ` e for a set X of events and an event e is that eis enabled if all events in X have occurred.2.5. Definition. (Stable event structure)A (labelled) stable event structure E is a quadruple (E;#;`; l) with� E, a set of events� # � E � E, the (irreexive and symmetric) conict relation� `� P(E)� E, the enabling relation� l : E �! A, the action-labelling functionsuch that1. 8X � E; e 2 E : X ` e) CF(X [f e g)2. 8X; Y � E; e 2 E : (X ` e ^ Y ` e)) (:CF(X [Y) _ X = Y). �Enabling X ` e is represented by drawing an arrow from each event in X to e and connectingall arrows by a small line. For instance, X ` ec with X = f ea; eb g is depicted as
a

c

bThe �rst constraint of De�nition 2.5, referred to as the consistency constraint, states that1For technical convenience we consider a minimal enabling relation. For X a set of events and event e, theminimal enabling relation `min is de�ned as:X `min e , X ` e ^ (8Y � X : Y ` e) X = Y) .Since we only consider minimal enablings of stable event structures we write simply ` rather than `min.

The realm of event structures 23for enabling X ` e, all events in X [f e g should be conict-free. The second constraint,called the stability constraint, ensures that an event in a system run is always enabled in aunique way. So, if there are two enablings X ` e and Y ` e then either they are equal(X = Y) or there exists a conict between X and Y such that they cannot both cause e. Asa result, when event e occurs in a system run the events that have caused its occurrence canbe unambiguously determined. This property is referred to as absence of causal ambiguity.In contrast with prime event structures, events in stable event structures can have di�erentenablings. For instance, in
a

c

bevent ec can either be enabled by ea or by eb. This possibility leads to a more involvedde�nition of a con�guration. For that purpose the intermediate concept of event trace (alsocalled proving sequence) is used. For technical convenience we de�ne the set of events thatare in conict with some event in �.2.6. Definition. For � a sequence of events let c(�) , f e 2 E j 9 ei 2 � : ei# e g: �2.7. Definition. (Con�guration of a stable event structure)An event trace � of stable event structure E = (E;#;`; l) is a sequence of events e1 : : : enwith ei 2 E such that for all i, 0 < i 6 n(ei 62 c(�i) [�i) ^ (9X � �i : X ` ei) .A set C � E is a con�guration i� there is an event trace � such that C = �. �An event trace is conict-free since all events in an event trace should be able to happen in asystem run. In addition, for each event ei in �, at least one of the enablings X of ei must besatis�ed.2.2.3 Flow event structuresAn alternative model to overcome the unique enabling problem of prime event structures,called ow event structures, was developed by Boudol and Castellani [24, 26]. In ow eventstructures the causality relation 6 of prime event structures is replaced by an (irreexive) owrelation, similar to the ow relation in Petri nets which is de�ned by the existence of a placebetween two transitions. In addition, there is no requirement on the relationship between owrelations and conicts, like the stability and consistency constraint in stable event structures,and the conict relation is not required to be irreexive. Whereas prime event structurescorrespond to occurrence nets, ow event structures correspond to a richer subclass of safePetri nets, called ow nets [26].

24 Chapter 2: Extended bundle event structures2.8. Definition. (Flow event structure)A (labelled) ow event structure E is a quadruple (E;#;�; l) with� E, a set of events� # � E � E, the (symmetric) conict relation� � � E � E, the (irreexive) ow relation� l : E �! A, the action-labelling function. �Since # is not required to be irreexive, self-conicting events, that is, e such that e# e, areallowed. Such events seem not very useful from a speci�er's point of view as they will neveroccur, but turn out to be essential for de�ning operations (like parallel composition) on owevent structures. It should also be noted that the conict and ow relations are not requiredto be disjoint as opposed to stable event structures. Thus, a structure with two events e ande0 with e � e0 and e# e0 is a legitimate ow event structure.Like for prime and stable event structures, the semantics of a ow event structure is determinedby its family of con�gurations, ordered by set inclusion.2.9. Definition. (Con�guration of a ow event structure)An event trace � of ow event structure E = (E;#;�; l) is a sequence of events e1 : : : enwith ei 2 E such that for all i, 0 < i 6 n(ei 62 c(�i ei) [�i) ^ (8 e : e � ei) (9 e0 2 �i : e0 � ei ^ (e0 = e _ e0# e))):A set C � E is a con�guration i� there is an event trace � such that C = �. �The constraint ei 62 c(�i ei) guarantees that self-conicting events can never occur. As pointedout in [26] self-conicting events cannot in general be removed from a ow event structurewithout changing its set of con�gurations. So, given a ow event structure E containingsome self-conicting events, it is impossible to construct a ow event structure without self-conicting events that has the same family of con�gurations as E . This is a rather awkwardproperty for specifying behaviours|it is rather unnatural to be forced to introduce impossibleevents in order to be able to specify some desired behaviour. Impossible events might be useful,but it should always be possible to safely remove them.2.2.4 Bundle event structuresLangerak studied the suitability of prime, ow, and stable event structures as a noninterleav-ing semantic model for the process algebra LOTOS [89, 90]. He concludes that all these eventstructures have some drawbacks, making them unattractive for this purpose. As an alternativehe proposes bundle event structures. Bundle event structures share some advantages of the

The realm of event structures 25aforementioned models while avoiding some of their drawbacks. For example, in bundle eventstructures events can have di�erent enablings, and self-conicting events are not allowed.Causality is represented by a relation 7! between a set X of events, which are pairwise inconict, and an event e. The interpretation is that if e happens in a system run, exactly oneevent in X has happened before (and caused e). This enables us to uniquely de�ne a causalordering between the events in a system run (i.e., absence of causal ambiguity, like in stableevent structures). Pairs (X; e), such that X 7! e, are called bundles; X is also called a bundleset.2.10. Definition. (Bundle event structure)A bundle event structure E is a quadruple (E;#; 7!; l) with� E, a set of events� # � E � E, the (irreexive and symmetric) conict relation� 7!� P(E)� E, the bundle relation� l : E �! A, the action-labelling functionsuch that 8X � E; e 2 E : X 7! e) (8 e0; e00 2 X : e0 6= e00) e0# e00). �The constraint, referred to as the stability constraint, says that all events in a bundle setshould be in conict. Let BES denote the class of bundle event structures.A bundle (X; e) is indicated by drawing an arrow from each element of X to e and connect-ing all arrows by small lines, analogous to the representation of enablings in stable eventstructures2.The above de�nition allows an empty bundle, ? 7! e, to be de�ned. The interpretationof such bundle is that e can never happen; e is an impossible event. Events pointed toby empty bundles are comparable with self-conicting events in ow event structures, buthave|as opposed to self-conicting events|the pleasant property that they can always beeliminated while preserving the semantics (in terms of con�gurations). An alternative way tospecify impossible events is by f e g 7! e. Also these bundles can always be eliminated whilepreserving the semantics.2.11. Definition. For � a sequence of events letsat(�) , f e 2 E j 8X � E : X 7! e) X \ � 6= ? g: �Stated in words, sat(�) is the set of events that have a causal predecessor in � for all bundlespointing to them. That is, for events in sat(�) all bundles are `satis�ed' by �.2It should be recalled, however, that X ` e in stable event structures means that when e happens all eventsin X have happened before, whereas X 7! e, although represented in the same way as X ` e, means thatwhen e happens precisely one event in X has happened before.

26 Chapter 2: Extended bundle event structures2.12. Definition. (Event trace of a bundle event structure)An event trace � of bundle event structure E = (E;#; 7!; l) is a sequence of eventse1 : : : en with ei 2 E, satisfying for all i, 0 < i 6 nei 2 sat(�i) n (c(�i) [�i) .A set C � E is a con�guration i� there is an event trace � such that C = �. �Event traces are conict-free, as expected, and each event in the event trace is preceded inthe sequence by a causal predecessor for each bundle pointing to it. Event traces correspondto linearizations of system runs.2.13. Example. Some bundle event structures are depicted in Figure 2.2. Event structure(c) has bundles f ea; eb g 7! ec, f eb g 7! ed, and f ef g 7! ed, and a conict between ea and eb.Example event traces of this event structure are ea ef ec, eb ec, and ef eb ed ec. �
d

f

(a) (b) (c)

a b

a

c

b a

cFigure 2.2: Example bundle event structures.The semantics of bundle event structures is de�ned using labelled partially ordered sets(lposets), cf. De�nition 1.8. We will not consider how these lposets can be generated, asthis procedure is analogous to that of extended bundle event structures, see Section 2.3.2.An lposet keeps track of the causal dependencies between events. An event trace abstractsfrom these dependencies and is a linearization of an lposet, since it keeps track of the order-ing of events. A con�guration abstracts from the ordering of events, and thus it is the lessdiscriminating (and simplest) notion of these three.2.14. Notation. For an event structure E let T (E) denote the set of event traces of E ,C(E) the set of con�gurations of E , and L(E) the family of lposets of E . �For bundle event structures, having the same set of con�gurations is equivalent to having thesame set of lposets. This result indicates that it su�ces to use families of con�gurations as anunderlying semantical model for bundle event structures.2.15. Theorem. 8 E ; E 0 2 BES : C(E) = C(E 0)() L(E) = L(E 0).Proof. See [89, Theorem 5.4.2]. �Since families of con�gurations can be used as an underlying semantical model for prime, ow,stable, and bundle event structures, the expressivity of these models can be compared in termsof con�gurations. From [89] we recall that, using @ for denoting `is strictly less expressivethan', prime @ bundle @ ow @ stable.

Extended bundle event structures 272.3 Extended bundle event structuresThis section discusses extended bundle event structures. Section 2.3.1 introduces this typeof event structures. Section 2.3.2 presents two recipes to deduce lposets from such eventstructures. Section 2.3.3 de�nes the status of an extended bundle event structure after theoccurrence of a sequence of events, and Section 2.3.4 presents some simple, though usefultransformation rules.2.3.1 What are extended bundle event structures?In order to model the disrupt operator [> the symmetric conict relation in bundle eventstructures is replaced by an asymmetric conict relation, denoted by .3 The intuitive mean-ing of e e0 is that (i) if e0 occurs it disables the occurrence of e, and (ii) if e and e0 bothoccur in a single system run then e causally precedes e0.2.16. Definition. (Extended bundle event structure)An extended bundle event structure E is a quadruple (E; ; 7!; l) with� E, a set of events� � E � E, the (irreexive) asymmetric conict relation� 7!� P(E)� E, the bundle relation� l : E �! A, the action-labelling functionsuch that 8X � E; e 2 E : X 7! e) (8 e0; e00 2 X : e0 6= e00) e0 e00). �In the rest of this dissertation we assume extended bundle event structures to have a �nite setof events, unless stated otherwise.The constraint above is a straightforward generalization of the stability constraint in De�ni-tion 2.10. e e0 is represented as a dotted arrow pointing from e to e0, thus reecting that incase both e and e0 happen in a single system run, there is a causal relation between the two(as if it were the case that f e g 7! e0). If e e0 and e0 e this is indicated using the samerepresentation for e# e0 in (bundle) event structures, i.e., a dotted line.In the rest of this thesis EBES denotes the class of extended bundle event structures and weuse E , possibly subscripted and/or primed, to denote members of this class.The de�nitions of con�guration and event trace are a straightforward adaptation of the samenotions for bundle event structures (cf. De�nition 2.12). For technical convenience we intro-duce:3The term asymmetric conict does not mean that e e0) e0 6 e as it might suggest. e e0 ande0 e is allowed and is equivalent with e# e0. The terminology `asymmetric' is adopted from Langerak [89]and Pinna & Poign�e [118].

28 Chapter 2: Extended bundle event structures2.17. Definition. (Enabled events after �)The set en(�) of events that are enabled after � is de�ned asen(�) , f e j e 2 sat(�) n � ^ : (9 ei 2 � : e ei) g: �e is enabled after � if it does not occur in �, if all bundles pointing to it are satis�ed by eventsin �, and if there is no event in � that disables e.2.18. Definition. (Event trace of an extended bundle event structure)An event trace � of extended bundle event structure E = (E; ; 7!; l) is a sequence ofevents e1 : : : en with ei 2 E, satisfying ei 2 en(�i), for all i, 0 < i 6 n.A set C � E is a con�guration i� there is an event trace � such that C = �. �2.3.2 Families of lposetsThe semantics of EBES is given by sets of lposets ordered under the pre�x relation on lposets.This is convenient since all other semantics, such as pomset, multiset and interleaving seman-tics, can be de�ned on top of an lposet semantics.We present two possible ways in which lposets can be generated. The �rst recipe is anintensional one in the sense that the bundles and asymmetric conicts in E are used to deducethe causal dependencies. The second recipe is an operational (or, observational) one. Thisrecipe allows to generate lposets from the event traces of E without referring to the structureof E . Both recipes will be used in this dissertation. The lposets generated according to theintensional scheme are denoted by L�, the ones according to the operational scheme by L�.2.19. Definition. For C 2 C(E) let �C � C � C be the smallest relation satisfying, for allei; ej 2 C:1. (9X � E : ei 2 X ^ X 7! ej)) ei �C ej2. ei ej) ei �C ej . �Let ��C be the reexive and transitive closure of �C , and let <� be the precedence relation ofevents in event trace �, that is, for � = e1 : : : en we have e1 <� e2 <� : : : <� en.2.20. Lemma. 8 � 2 T (E) :��� � <��.Proof. See [89, Lemma 6.3.6]. �Given this lemma it is now easy to verify that ��C is a partial order on C.

Extended bundle event structures 292.21. Corollary. hC;��Ci is a poset.Proof. ��C is reexive and transitive by de�nition. It remains to prove antisymmetry, i.e., fore; e0 2 C : e ��C e0 ^ e0 ��C e) e = e0. Let � be an event trace such that C = �. Then, accordingto Lemma 2.20 we have e ��C e0 ^ e0 ��C e) e <�� e0 ^ e0 <�� e. Since <�� is a partial order itfollows e = e0. �The family of intensional lposets of E , denoted L�(E), is de�ned as the set of all lposetscorresponding to its con�gurations.2.22. Definition. (Intensional lposets of an extended bundle event structure)For E 2 EBES : L�(E) , f hC;��C; l � Ci j C 2 C(E) g. �As a prerequisite to de�ning how to obtain lposets from E in an operational way we de�ne2.23. Definition. �; �0 2 T (E) are con�guration equivalent, denoted � � �0, i� � = �0.4 �Lposets of E are now determined in an operational way as follows. Consider all � 2 T (E)and consider its class of con�guration-equivalent traces, [�]�. For each �0 2 [�]� we take thereexive and transitive closure of the precedence relation of events in �0, <�0 , and consider allcommon orderings for any �0 2 [�]�.2.24. Definition. (Operational lposets of an extended bundle event structure)For E 2 EBES : L�(E) , f h�;T�02[�]� <��0 ; l � �i j � 2 T (E) g. �It is easy to verify that T�02[�]� <��0 is a partial order on �. We sometimes let L(�) denoteh�;T�02[�]� <��0 ; l � �i.It turns out that the operational and intensional characterizations of lposets coincide. Thismeans that all causal dependencies between events can be deduced from the sequential obser-vations.2.25. Theorem. 8 E 2 EBES : L�(E) = L�(E).Proof. This follows from T�02[�]� <��0=��� for � 2 T (E); see [89, Chapter 7]. �2.26. Example. Consider
(a) (b)

a b baThe lposets (ordered under pre�x) of these extended bundle event structures are4Con�guration equivalence is similar to the equivalence relation on sequential observations as de�ned byMazurkiewicz [101]. He de�nes a binary independence relation on actions and considers sequential observationsto be equivalent i� they contain the same actions with independent actions possibly swapped. Mazurkiewiczcalls the equivalence classes traces, rather than their elements. An important distinction is that he consid-ers actions whereas we consider events; for instance, a ; a and a jjj a cannot be distinguished by consideringMazurkiewicz' traces, but they can in our setting.

30 Chapter 2: Extended bundle event structuresea% &" eaeb& %eb "! ea ! ea!eb& eb(a) (b) �The following theorem states that E and E 0 have identical event traces i� they have identicallposets. This is a nice result since it simpli�es proof obligations|rather than proving that Eand E 0 have identical lposets (i.e., are lposet equivalent) it su�ces to prove their event traceequivalence.2.27. Theorem. 8 E ; E 0 2 EBES : L(E) = L(E 0)() T (E) = T (E 0).Proof. See [89, Theorem 6.3.12]. �For bundle event structures having the same con�gurations is equivalent to having the samelposets (see Theorem 2.15). This result does not hold for extended bundle event struc-tures. For example, both event structures in Example 2.26 have family of con�gurationf?; f ea g; f eb g; f ea; eb g g. So, families of con�gurations cannot distinguish between these|from a causality point of view|di�erent elements of EBES.5We conclude this section by addressing the expressiveness of extended bundle event structures.Even on the level of families of con�gurations extended bundle event structures are strictlymore expressive than bundle event structures, and consequently, than prime event structures.The relation with stable and ow event structures is less clear|there exist extended bundleevent structures with a set of con�gurations that cannot be induced by any ow or stableevent structure, and vice versa.2.3.3 RemainderDuring a run, or computation, of the system it is convenient to know the status or remainingbehaviour. To that purpose we de�ne the status of E after the occurrence of an event trace.2.28. Definition. (Remainder of an extended bundle event structure)E 0 = (E 0; 0; 7!0; l0) is a remainder of E after � 2 T (E), denoted E 0 = E [�], i�� E 0 = E n �� 0= \ (E 0 � E 0)� 7!0= (7! nf (X; e) j X 7! e ^ X \ � 6= ? g) [f (?; e) j 9 e0 2 �; e 2 E 0 : e e0 g� l0 = l � E 0. �5This also means that it is impossible to model asymmetric conicts without copying events in prime,stable, or ow event structures. This impossibility has been argued in [89, Chapter 6].

Extended bundle event structures 31It follows that for each bundle (X; e) 2 7!0 that X � E 0 and e 2 E 0, because if X 6� E 0 thenX \ � 6= ? so (X; e) 62 7!0, and if e 62 E 0 then e 2 �, say e = ei, but then X \ �i 6= ?,so (X; e) 62 7!0. It is not di�cult to check that the remainder is an extended bundle eventstructure.The intuitive interpretation of the above de�nition is as follows. First, all events in � areremoved from E and the conicts between the remaining events are retained. Then, each evente 2 E that is disabled by some event in � cannot happen anymore, and is made impossibleby introducing an empty bundle pointing to it. Each bundle X 7! e such that X \ � 6= ? isremoved, because the condition that this bundle poses, namely some event in X should havehappened before e can happen, has now been satis�ed.2.29. Example. The remainder of an extended bundle event structure is exempli�ed inFigure 2.3. �
a

b

c d

a

b

c d

c

b

dFigure 2.3: Example remainder of an extended bundle event structure.We have the following correctness result concerning the remainder. It says that if E can evolveinto E 0 by executing � then �0 is a trace of E 0 i� � �0 is a trace of E . This implies that E after� does not allow evolutions that are disallowed by E . In addition, it states that the lposetinduced by � �0 is an extension of the lposet induced by �.2.30. Theorem. Correctness of remainderFor � 2 T (E) and �0 a sequence of events:1. �0 2 T (E [�])() � �0 2 T (E)2. �0 2 T (E [�])) L(�) is a pre�x of L(� �0).Proof. Follows directly from [89, Theorem 6.3.9]. �2.3.4 Transformation rulesThis section presents some transformation rules for extended bundle event structures that canbe used to transform E into E 0 such that L(E) equals L(E 0). The rules involve only part ofthe event structure at hand. Each rule is de�ned in a pictorial form; the formalization andcorrectness proofs of these rules is not relevant here and can be found in [89]. Each picture

32 Chapter 2: Extended bundle event structuresshows only the relevant part of an event structure, that is, the part that is not depicted doesnot a�ect the validity of the presented rule. For the representation of the transformation ruleswe use the following notation.2.31. Notation. Sets of events are represented by circles. A bundle X 7! e is representedby a directed arrow from the circle representing X to event e. In addition, for X; Y � E, andX; Y 6= ? we have:� X Y , (8 e 2 X; e0 2 Y : e e0). This is represented by a dotted arrow from X toY .� X 7! Y , (8 e 2 Y : X 7! e). This is represented by an arrow from X to Y . �The transformation rules are depicted in Figure 2.4. The sub-bundle removal rule is notan elementary rule, but can be derived from the symmetric conict inheritance and bundleredundancy I rules. The rules facilitate the separation of all impossible events in an extendedbundle event structure. The following theorem shows that all the isolated impossible eventscan be safely eliminated.2.32. Theorem. Removal of impossible eventsLet E = (E; ; 7!; l) with e 62 E, and let a 2 A. Then E is lposet equivalent with(E [f e g; ; 7! [f (?; e) g; l [f (e; a) g).Proof. Straightforward and omitted. �Although the transformation rules are not complete they are useful to remove the majorundesirable aspects from event structures, such as impossible events (e with ? 7! e), andcyclic bundles (X 7! : : : 7! X). Redundancy in bundles can also always be eliminated.2.4 Causality-based semantics of PAIn this section we show how extended bundle event structures can be used to provide acausality-based semantics to PA in a compositional way. We de�ne a function, denoted E [[]],that associates to each term B 2 PA an element of EBES. This mapping is adopted from [89,Chapter 6]. The set A of action labels of events equals Act�;�.The initial events and successful termination events of an extended bundle event structure arede�ned as follows. The initial events are those events that have no bundle pointing to them.Let E = (E; ; 7!; l).2.33. Definition. (Initial events)The set of initial events of E is de�ned by init(E) , f e 2 E j : (9X � E : X 7! e) g.�

Causality-based semantics of PA 33

e e’ = X\e

e

e’ Bundle redundancy I

X e

e’

=
X e

e’

Asymmetric conflict
inheritance

X Y e
=

X Y e Bundle transitivity

X

X

e’

e = X

e’

e
Symmetric conflict

inheritance

e
X e’

Y
=

e
X e’

Y
Conflict generation

e
X

= e
X

Impossible event
generation

e
X

e’ = X\e e’

e

=X e X e Superfluous bundles

e’ e = e’ e Superfluous asymmetric

Bundle redundancy II

e’ e = e’ e

X
Y e

e

Sub-bundle removal

X\Y

Y

=

 conflicts I

Superfluous asymmetric
 conflicts II

Figure 2.4: Transformation rules for extended bundle event structures.

34 Chapter 2: Extended bundle event structuresNotice that init(E) equals the set of enabled events after the empty trace, i.e., en("). Successfultermination events are events that are labelled with �, the successful termination action.2.34. Definition. (Successful termination events)The set of successful termination events of E is de�ned by exit(E) , f e 2 E j l(e) = � g.�E [[]] is de�ned recursively according to the following de�nitions. We suppose there is an in�niteuniverse EU of events. In the rest of this section let E [[Bi]] = Ei = (Ei; i; 7!i; li), for i=1; 2with E1 \ E2 = ?. (If E1 \ E2 6= ? then a suitable event renaming can be applied extendedto , 7! and l.)2.35. Definition. (Semantics of 0, p, a ;, and +)E [[0]] , (?;?;?;?)E [[p]] , (f e� g;?;?; f (e�; �) g) for some e� 2 EUE [[a ; B1]] , (E; 1; 7!; l1 [f (ea; a) g) whereE = E1 [f ea g for some ea 2 EU n E17! = 7!1 [(f f ea g g � init(E1))E [[B1 +B2]] , (E1 [E2; ; 7!1 [7!2; l1 [l2) where = 1 [2 [(init(E1)� init(E2)) [(init(E2)� init(E1)): �The semantics of 0 andp is self-explanatory. In E [[a ; B1]] a bundle is introduced from the newevent ea (labelled a) to all initial events in E1 as ea causally precedes these events. E [[B1+B2]]is equal to E1 [E2 extended with mutual conicts between all initial events of E1 and E2 suchthat in the resulting structure only either B1 or B2 can happen.2.36. Example. Let Figure 2.5 (a) through (c) depict the event structures correspondingto B1 through B3, respectively. Then Figure 2.5 (d) and (e) depict E [[a ; B1]] and E [[B2+B3]],respectively. �2.37. Definition. (Semantics of n, [], >> and [>)E [[B1 nG]] , (E1; 1; 7!1; l) where(l1(e) 2 G) l(e) = �) ^ (l1(e) 62 G) l(e) = l1(e))E [[B1[H]]] , (E1; 1; 7!1; H � l1)E [[B1 >> B2]] , (E1 [E2; ; 7!; l) where = 1 [2 [f (e; e0) j e; e0 2 exit(E1) ^ e 6= e0 g7! = 7!1 [7!2 [(f exit(E1) g � init(E2))l = ((l1 [l2) n (exit(E1)� f � g)) [(exit(E1)� f � g)E [[B1 [> B2]] , (E1 [E2; ; 7!1 [7!2; l1 [l2) where = 1 [2 [(E1 � init(E2)) [(init(E2)� exit(E1)): �

Causality-based semantics of PA 35

a

b c

d

e

b c

d

e

(a):B1

(d): a ; B1

b

a
(b): B2 (c): B3

b
e

dc

b
e

dc

b

a

(e):B2 + B3Figure 2.5: Examples of the semantics of action-pre�x and choice.E [[B1 n G]] is identical to E1 except that events labelled with a label in G are now labelledwith � turning those events into internal ones. E [[B1[H]]] is de�ned similarly where events arerelabelled according to H (� denotes usual function composition).E [[B1 >> B2]] is equal to E1 [E2 where bundles are introduced from the successful terminationevents of E1 to the initial events of E2. (To create bundles, mutual conicts are introducedbetween the successful termination events of E1.) This corresponds with the fact that theseinitial events can only occur if B1 has successfully terminated. The successful terminationevents of E1 are relabelled into internal events.E [[B1 [> B2]] is equal to E1 [E2 extended with some additional asymmetric conicts. First,each event in E1 may be disabled by an initial event of E2. This models that B1 is disrupted oncean initial event of B2 happens. In addition, after the occurrence of a successful terminationevent in E1 no initial event of E2 can happen anymore.2.38. Example. Let Figure 2.6 (a) and (b) depict E [[B1]] and E [[B2]], respectively.E [[B1 >> B2]] and E [[B1 [> B2]] are depicted in Figure 2.6 (c) and (d), respectively. �We �nally consider parallel composition. The events of E [[B1 jjGB2]] are constructed in thefollowing way: an event e of E1 or E2 that does not need to synchronize is paired with theauxiliary symbol �, and an event which is labelled with an action in G� is paired with allevents (if any) in the other process that are equally labelled. Thus events are pairs of eventsof E1 and E2, or with one component equal to �. Two events are now put in conict if anyof their components are in conict, or if di�erent events have a common component di�erentfrom � (such events appear if two or more events in one process synchronize with the sameevent in the other process). A bundle is introduced such that if we take the projection on thei-th component (i=1; 2) of all events in the bundle we obtain a bundle in E [[Bi]].

36 Chapter 2: Extended bundle event structures
(b): B2

(c): B1 >> B2

ba(a):B1
��δ

ed

c

ba ��τ

ed

c

e

dc

(d): B1 [> B2

ba ��δ

Figure 2.6: Examples of the semantics for enable and disrupt.ForG � Act, Esi , f e 2 Ei j li(e) 2 G� g is the set of synchronization events and Efi , EinEsithe set of non-synchronizing events.2.39. Definition. (Semantics of jjG)E [[B1 jjGB2]] , (E; ; 7!; l) whereE = (Ef1 � f� g) [(f � g � Ef2) [f (e1; e2) 2 Es1 � Es2 j l1(e1) = l2(e2) g(e1; e2) (e01; e02) , (e1 1 e01) _ (e2 2 e02) _(e1 = e01 6= � ^ e2 6= e02) _ (e2 = e02 6= � ^ e1 6= e01)X 7! (e1; e2) , (9X1 � E1 : X1 7!1 e1 ^ X = f (e; e0) 2 E j e 2 X1 g)_ (9X2 � E2 : X2 7!2 e2 ^ X = f (e; e0) 2 E j e0 2 X2 g)l((e1; e2)) = if e1 = � then l2(e2) else l1(e1): �Note that X 7! (e1; e2) is indeed a bundle, because, for instance, for X = f (e; e0) j e 2 X1 g,it follows 8 (e; e0); (e; e00) 2 X : e0 6= e00) (e; e0) (e; e00). By symmetry, a similar argumentholds for bundles satisfying X = f (e; e0) j e0 2 X2 g.2.40. Example. The de�nition of E [[]] for parallel composition is exempli�ed in Figure 2.7.�The semantics of E [[P]] where P := B is treated in Chapter 10.2.41. Theorem. 8B 2 PA : E [[B]] 2 EBES.Proof. By induction on the structure of B. Routine and omitted. �It appears that events in bundle sets of E [[B]] are always equally labelled.

Causality-based semantics of PA 37
aa

b

d
a

ca cb
|| c = c

a

b

ba cb
|| b =

ba c

|| a
a

=
aa

b

c
a

|| a
ba

=

d
a

c
a

b

ba b
|| {a,b} =

bFigure 2.7: Examples of the semantics for parallel composition.2.42. Lemma. For B 2 PA let E [[B]] = (E; ; 7!; l). Then8X � E; e; e0; e00 2 E : (X 7! e ^ e0 2 X ^ e00 2 X)) l(e0) = l(e00) .Proof. Straightforward by induction on the structure of B. �In Chapters 4, 6, 7, and 8 we use a slightly di�erent version of E [[]], denoted E 0[[]]. The needfor this slight adaptation is explained in these chapters. Below we present the de�nition ofE 0[[]] and prove that any function that satis�es this de�nition is equivalent to E [[]] in the senseof having identical sets of lposets. (The di�erences with E [[]] are underlined.)2.43. Definition. (Alternative semantics)E 0[[]] is a function that satis�esE 0[[a ; B1]] , (E; 1; 7!; l1 [f (ea; a) g) whereE = E1 [f ea g for some ea 2 EU n E17! = 7!1 [(f f ea g g � E 0) where init(E1) � E 0 � E1E 0[[B1 >> B2]] , (E1 [E2; ; 7!; l) where = 1 [2 [f (e; e0) j e; e0 2 exit(E1) ^ e 6= e0 g

38 Chapter 2: Extended bundle event structures7! = 7!1 [7!2 [(f exit(E1) g � E 0) whereinit(E2) � E 0 � E2l = ((l1 [l2) n (exit(E1)� f � g)) [(exit(E1)� f � g):For all other syntactic constructs let E 0[[B]] , E [[B]]. �The only di�erence between E 0[[]] and E [[]] concerns the de�nition of the bundles for action-pre�x and sequential composition. For instance, E 0[[B1 >> B2]] introduces a new bundle fromexit(E1) to all events in a set E 0, init(E2) � E 0 � E2, whereas E [[]] introduces such bundlesonly to the initial events of E2. From the following theorem it follows that this is equivalentin terms of families of lposets.2.44. Theorem. 8B 2 PA : L(E [[B]]) = L(E 0[[B]]) for any E 0[[]] satisfying De�nition 2.43.Proof. The proof is by induction on the structure of B.Base: For 0 and p we have that E [[B]] = E 0[[B]] which proves the theorem.Induction Step: By de�nition of E 0[[]] it su�ces to only consider action-pre�x and enabling. Weonly provide the proof for action-pre�x; the proof for enabling is similar and omitted. Suppose thetheorem holds for B1. Let E = E [[a ; B1]], E1 = E [[B1]], E 0 = E 0[[a ; B1]], and E 01 = E 0[[B1]]. Forinit(E1) = E1 the theorem trivially holds since E [[]] = E 0[[]] in this case. Assume init(E1) 6= E1.Consider E , and introduce a new bundle f ea g 7! e with e a non-initial event in E1 pointed to byX where X consists of initial events only. (Since init(E1) 6= E1 it is easy to see that such eventmust exist.) According to the bundle transitivity rule (see Section 2.4) the resulting event structureis lposet equivalent to E . This procedure is repeated by each time introducing a bundle f ea g 7! ewhere e is an event in E1 n A where A is the set of events in E1 to which a bundle originating fromea already exists. Obviously, such a procedure terminates when all events in E1 have been `visited'resulting in an event structure with f ea g 7! e for all events e 2 E1. As all intermediate structuresare lposet equivalent, this shows that introducing an additional bundle from ea to each event in E0(init(E1) � E0 � E1) results in an event structure which is lposet-equivalent to E . Together with theinduction hypothesis this proves L(E 0) = L(E). �As a result of this theorem we may safely interchange the use of E [[]] and any E 0[[]] that satis�esDe�nition 2.43 whenever appropriate.2.5 Event-based operational semantics for PAIn this section we de�ne a transition system (in the sense of [120]) in which we keep trackof the occurrence of actions, that is, events, in an expression of PA. This results in an eventtransition system. In order to de�ne an event transition system we decorate each occurrenceof an action-pre�x or p with an arbitrary but unique event occurrence identi�er, denoted bya Greek letter. These occurrence identi�ers play the role of event names. For instance, anexpression like a ; b+ b becomes a� ; b + b� and expression a ; p >> b becomes a� ; p >> b�.For parallel composition new event names can be created. If e is an event name of B ande0 an event name in B0, then possible new names for events in B jjGB0 are (e; �) and (�; e0)

Event-based operational semantics for PA 39for unsynchronized events where e (e0) is independently performed by B (B0) and (e; e0) forsynchronized events. The actual event names of the newly created events are in fact irrelevant(though technically convenient); the important aspect is that they are unique.2.45. Definition. (Occurrence identi�ers)Let Occ be an in�nite set of occurrence identi�ers. The set of events Ev is now de�nedas the smallest set satisfying� Occ � Ev� 8 e 2 Ev : (e; �) 2 Ev ^ (�; e) 2 Ev� 8 e; e0 2 Ev : (e; e0) 2 Ev. �We present a set of inference rules that de�ne set of transition relations (e;a)���! � PA+ �Ev�Act�;� � PA+, where PA+ denotes PA augmented with occurrence identi�ers. B (e;a)���!B0denotes that behaviour B can perform event e 2 Ev, labelled with action a 2 Act�;�, andsubsequently evolve into B0. The transition relation (e;a)���! is de�ned as the smallest relationclosed under all inference rules de�ned in Table 2.1.Notice that by omitting the occurrence identi�ers from the expressions and the transitionlabels we obtain the standard interleaving inference rules of PA as presented in Chapter 1.The relationship between the denotational semantics of PA in terms of event structures and theevent-based operational semantics is as follows. Let TS(B) be the transition system obtainedby applying the inference rules of Table 2.1 to B. We can also construct a transition systemfor E [[B]] by having elements of EBES as states (E [[B]] being the initial state) and having atransition from E to E 0 if E 0 = E [�] with j � j = 1. The transitions are labelled with the eventin � and its action label. Let this transition system be called ETS(E [[B]]). (For brevity, we donot elaborate on the formal de�nitions of these transition systems; these de�nitions are quitestraightforward.)2.46. Theorem. 8B 2 PA : TS(B) � ETS(E [[B]]).Proof. From [89, Theorem 7.5.3] it follows that TS(B) and ETS(E [[B]]) are event trace equivalent.Since for each transition B (e;a)���!B0 there is a unique way in which this transition is derived fromthe inference rules it follows that TS(B) and ETS(E [[B]]) are strong bisimulation equivalent, see [89,Theorem 7.3.2]. �A similar result has been obtained by Baier & Majster-Cederbaum [10] in the context oftheoretical CSP (TCSP) and prime event structures. Due to the external choice operator inTCSP they obtain weak bisimulation equivalence rather than strong bisimulation equivalence.

40 Chapter 2: Extended bundle event structures

p� (�;�)���! 0 a� ; B (�;a)���!BB1 (�;a)���!B01B1 +B2 (�;a)���!B01 B2 (�;a)���!B02B1 +B2 (�;a)���!B02B1 (�;a)���!B01B1 >> B2 (�;a)���!B01 >> B2 (a 6= �) B1 (�;�)���!B01B1 >> B2 (�;�)���!B2B1 (�;a)���!B01B1 [> B2 (�;a)���!B01 [> B2 (a 6= �) B1 (�;�)���!B01B1 [> B2 (�;�)���!B01B2 (�;a)���!B02B1 [> B2 (�;a)���!B02B1 (�;a)���!B01B1 jjGB2 ((�;�);a)�����!B01 jjGB2 (a 62 G�) B2 (�;a)���!B02B1 jjGB2 ((�;�);a)�����!B1 jjGB02 (a 62 G�)B1 (�;a)���!B01 ^ B2 (;a)���!B02B1 jjGB2 ((�;);a)�����!B01 jjGB02 (a 2 G�)B (�;a)���!B0B nG (�;a)���!B0 nG (a 62 G) B (�;a)���!B0B nG (�;�)���!B0 nG (a 2 G)B (�;a)���!B0B[H] (�;H(a))�����!B0[H]Table 2.1: Event-based operational semantics for PA.

3 Disjunctive causality and interleaving
This chapter discusses two qualitative extensions of extended bundle eventstructures. In the �rst extension the stability constraint on bundles isdropped. The resulting model, called dual event structures, incorpo-rates conjunctive causality|like all other event structures|and disjunctivecausality|unlike most other event structures. The second extension com-prehends the incorporation of an (irreexive and symmetric) interleavingrelation between events. We investigate for both models how lposets canbe deduced and what transformation rules are supported. The expressive-ness of the models is compared with the event structures of Chapter 2.3.1 IntroductionCausal dependencies between events can be of di�erent nature. The most basic notion is abinary relation, < say, between events, where ea < ec means that ea enables ec (in processalgebra we would write a ; c). When, in addition, we have eb < ec event ec is enabled onceboth ea and eb have occurred (i.e., (a jjj b) >> c). This type of causality is referred to asconjunctive causality: an event is enabled once all of its causal predecessors have occurred.Conjunctive causality is (in one form or the other) present in all types of event structures ofChapter 2. The natural complementary construct, called disjunctive causality, is that ec isenabled once either ea or eb has occurred (similar to (a+ b) >> c). Using disjunctive causalityit can be expressed that an event is enabled once some event out of a number of potentialcausal predecessors has happened. A similar terminology is adopted by Gunawardena [60].He refers to conjunctive and disjunctive causality as AND and OR causality, respectively.Extended bundle event structures support the following types of causalities (see Figure 3.1):� conjunctive causality|if X 7! e and Y 7! e then (X `and' Y) 7! e;� (exclusive) disjunctive causality|if f e; e0 g 7! e00 then e00 is enabled once either e or e0has occurred with the restriction that either e or e0 can occur but not both (this is dueto the stability constraint).Since the combination of bundles pointing to the same event leads to a conjunction of enablingconstraints we might say that extended bundle event structures require the speci�cation ofcausalities in conjunctive normal form. For instance, if X = f ea; eb g and Y = f ec g we havethat X 7! e and Y 7! e is an enabling condition which denotes ((ea `or' eb) `and' ec). Anoverview of the types of causalities in event structure models is given in Table 3.1.41

42 Chapter 3: Disjunctive causality and interleaving
a ba

b c c

ba

causality conjunctive
(exclusive)
disjunctive

causality causalityFigure 3.1: Types of causalities in extended bundle event structures.types of causalityevent basic `and' `or' normalstructure formprime e 6 e0 + - Cstable X ` e + exclusive Dow e � e0 + exclusive C(extended) bundle X 7! e + exclusive Cdual X 7! e + + C(`+' is present, `-' is absent,C = conjunctive, and D = disjunctive)Table 3.1: Types of causalities in event structures.As already pointed out by Gunawardena [60] it is interesting to observe that formal modelsfor concurrency mostly focus on conjunctive causality, while disjunctive causality has receivedonly scant attention. This does, for instance, also hold for Petri nets where the incorporationof disjunctive causalities gives rise to unsafe nets (and the modelling of disablings gives riseto self-loops or inhibitor arcs), see e.g., Katoen [81]. Due to the conict inheritance propertyprime event structures do not support disjunctive causality at all; other event structure modelsdo allow alternative enablings of events, but do not support disjunctive causality in its fullavour|due to stability-like constraints alternative enablings are required to be in mutualconict, such that in a system run only one of these alternative enablings can happen. UsingGunawardena's jargon this is best described as XOR causality.Besides this observation the relevance of disjunctive causality has been argued in di�erentapplication �elds, such as the design of distributed systems [17, 46, 145], the design and analysisof speed-independent circuits [157], and the speci�cation of business processes such as workowmanagement systems [41]. In the �rst (and main) part of this chapter we therefore drop thestability constraint from extended bundle event structures such that disjunctive causality is nolonger restricted to be exclusive. Since the resulting model supports the dual conjunctive anddisjunctive causalities we baptized this model dual event structures. We investigate for thisnew type of event structures how notions like event trace, remainder and families of lposetsare de�ned and consider several transformation rules that preserve correctness in terms of

Disjunctive causality 43lposets. The expressiveness of this model is compared to the other event structure models ofChapter 2.Ferreira Pires et al. [46, 145] use a notation based on di�erent types of causality to support thedesign of distributed systems. They include a mechanism to express the interleaving of eventswhich is used to model that events can happen in any order but are not independent, i.e.,they should not occur at the same time. Such scenarios typically appear in mutual exclusionsituations. Inspired by this work we equip in the second part of this chapter dual eventstructures with a symmetric (irreexive) interleaving relation between events, denoted by
.The intuitive interpretation of e
 e0 is that e and e0 are interleaved, e being caused by e0 whene0 occurs before e, and vice versa when e occurs before e0. Using such relation interleaving ofevents can be represented in dual event structures without having the need for copying eventswhile retaining the symmetric nature of interleaving. A similar concept is presented by Zwiersand Janssen [159] and Wehrheim [151] who use a global symmetric dependency relation onactions (rather than events).3.2 Disjunctive causalityThe principle of (and need for) disjunctive causality can best be illustrated by means of asimple example. We consider a system called one-all (adopted from Verhoe� [146]), withtwo inputs ea and eb and two outputs ec and ed, see Figure 3.2(a). In this system outputec happens when one input has been received, whereas output ed occurs when all inputs arereceived. Phrased otherwise, if ed happens then both ea and eb should have occurred, whereasif ec happens either ea or eb or both have occurred. The obvious representation of the enabling
d

(a) (b)

c

b

a
a

b

c

d

Figure 3.2: A simple system requiring disjunctive causality.of ec in extended bundle event structures, f ea; eb g 7! ec, requires ea and eb to be in mutualconict, which is obviously not the case. This problem can be solved by copying event ec, onecopy for each alternative enabling, and putting these copies in mutual conict. A drawbackof this solution is that it requires copying of events and leads to an explosion of the number ofevents in general|if there are N alternative enablings of e we need N copies of e, all mutuallyin conict. At a conceptual level we also prefer the representation of ec by a single event, notdistinguishing between whether it is enabled by ea or eb.Dropping the stability constraint enables an event structure as depicted in Figure 3.2(b). Thisentails that events in a bundle set X are no longer required to be in mutual conict. Theintuitive interpretation of X 7! e now becomes: when event e happens, at least one event in

44 Chapter 3: Disjunctive causality and interleavingX has occurred. So, an event e is enabled when for each bundle X 7! e some event in X hashappened.3.2.1 What are dual event structures?In this section we formally de�ne dual event structures, the type of event structures oneobtains by dropping the stability constraint from extended bundle event structures. All otheringredients remain as they were:3.1. Definition. (Dual event structure)A dual event structure � is a quadruple (E; ; 7!; l) with� E, a set of events� � E � E, the (irreexive) asymmetric conict relation� 7!� P(E)� E, the bundle relation� l : E �! A, the action-labelling function. �Dual event structures are represented in the same way as extended bundle event structures.DES denotes the class of dual event structures and we use �, possibly subscripted and/orprimed, to denote members of this class.The notions of event trace and con�guration are de�ned in an analogous way as for extendedbundle event structures (see De�nition 2.18). For convenience we recall this de�nition. LetT (�) denote the set of event traces of �.3.2. Definition. en(�) , f e j e 2 sat(�) n � ^ : (9 ei 2 � : e ei) g. �3.3. Definition. (Event trace of a dual event structure)An event trace � of dual event structure � = (E; ; 7!; l) is a sequence of events e1 : : : enwith ei 2 E satisfying ei 2 en(�i), for all 0 < i 6 n.A set C � E is a con�guration i� there is an event trace � such that C = �. �There is an important di�erence with extended bundle event structures that we like to pointout. Due to the stability constraint for extended bundle event structures the following holdsfor each event trace � = e1 : : : en and bundle X 7! ei:X \ �i 6= ?) j X \ �i j = 1:Stated in words, if there is some event in X present in �i then there is precisely one suchevent. A technically pleasant consequence of this property is that one can uniquely determine

Disjunctive causality 45from � the direct causal predecessors of each event in �. This absence of causal ambiguityproperty is lost for dual event structures, as shown in the following example.3.4. Example. Two example dual event structures are depicted in Figure 3.3. Figure 3.3(a)has maximal con�guration f ea; eb; ec g where ec is enabled by ea or eb. Some of its event tracesare ea; ea ec; eb ec; ea eb ec; eb ea ec. Event trace � = ea eb ec contains causal ambiguity since forX = f ea; eb g, X \ ea eb = f ea; eb g. As a result one cannot uniquely determine from �whether event ec causally depends on ea or on eb. Figure 3.3(a) is known in the literature asWinskel's switch [155].In Figure 3.3(b) two bundles f ea; eb g 7! ed and f eb; ec g 7! ed determine the enablings of ed.Possible event traces of this dual event structure are: eb ed, ea ec ed, ec eb ed ea. �
(a)

c

ba

cd

ba

(b)Figure 3.3: Two example dual event structures.3.2.2 Families of lposetsThe semantics of dual event structures is de�ned using families of lposets, non-empty sets of�nite lposets ordered under the pre�x relation. Like in Chapter 2 for extended bundle eventstructures we provide two views on lposets: an intensional one, denoted L�, which is deter-mined by considering and 7!, and an operational one, denoted L�, which is derived fromsystem observations, i.e., event traces. We �rst consider L� and start with some observations.Consider Figure 3.3(a). For this dual event structure we would expect ec to be causallydependent on either ea or eb. So, we consider ea!eceb and eaeb!ec to be legitimate lposets.The reader might argue that it should also be possible for ec to be causally dependent onboth ea and eb, taking into account the lposet ea&eb!ec . We abandon this possibility becausethe occurrence of only ea or eb enables the occurrence of ec. When we would incorporate thispossibility it is not clear (to us) whether ec being dependent on either ea or eb, and ec beingdependent on both ea and eb, should be modelled by the same event, or not.The general idea for the de�nition of L� is that for each bundle pointing to some event e theremust be precisely one event which is responsible for the satisfaction of this bundle.In the rest of this section let � = (E; ; 7!; l).

46 Chapter 3: Disjunctive causality and interleaving3.5. Definition. (Intensional lposets of a dual event structure)The intensional lposets of �, denoted L�(�), is the family of lposets hC;��C; l � Ciwhere �C � C �C is an acyclic relation1 and C � E is conict-free (i.e., CF(C) holds),satisfying for all e 2 C:1. 8 e0 2 C : e0 e) e0 �C e, and2. 9Fe : fX j X 7! e g �! f e0 j e0 �C e g such that(a) f e0 j e0 �C e g � (fFe(X) j X 2 dom(Fe) g [f e0 j e0 e g), and(b) 8X 2 dom(Fe) : Fe(X) 2 X. �The �rst constraint requires that conicting events are ordered in the right way; this is identicalto the case for extended bundle event structures (cf. De�nition 2.19). Remark that, since Cis conict-free, it cannot appear that e e0 and e0 e.The second constraint ensures that for any bundle pointing to e there is precisely one eventin that bundle (set) that is responsible for the satisfaction of this bundle. It requires for eache in C the existence of a (possibly empty) function Fe, the bundle assignment function ofe, that associates with each bundle X pointing to e an event e0 in X such that e0 precedese. Constraint 2.(a) ensures a kind of minimality: event e0 can only precede e (under �C) ife0 e, or if e0 is responsible for the satisfaction of a bundle pointing to e. Constraint 2.(b) isa consistency constraint saying that only events can be responsible for the satisfaction of X ifthey are member of X.2Two remarks are in order. First, it should be observed that it is not required for Fe to beinjective, i.e., it is allowed for X 7! e and Y 7! e with X 6= Y that Fe(X) = Fe(Y) = e0.In this case e0 is an event that belongs to both X and Y , and that is responsible for thesatisfaction of both bundles. Secondly, if X 7! e and X 7! e0 it is not required that Fe(X)equals Fe0(X). This means that e and e0 may be caused by di�erent events in X.The second constraint requires the existence of a function for each e in C that satis�es someconditions. The following lemma shows that such function always exists.3.6. Lemma. For C � E with CF(C) and �C an acyclic relation satisfying constraint 1. ofDe�nition 3.5 there exists for any e 2 C a function Fe : fX j X 7! e g �! f e0 j e0 �C e gsuch that1. f e0 j e0 �C e g � (fFe(X) j X 2 dom(Fe) g [f e0 j e0 e g), and2. 8X 2 dom(Fe) : Fe(X) 2 X.Proof. The proof is by contradiction. Let C � E with CF(C) and �C an acyclic relation satisfyingconstraint 1. of De�nition 3.5. Assume that for e 2 C all functions Fe : fX j X 7! e g �! f e0 je0 �C e g do not satisfy the second constraint of De�nition 3.5. This could only be because:1A relation is acyclic if its transitive closure is irreexive.2Remark that the second constraint of De�nition 3.5 implies that X 7! e) (9 e0 2 X \ C : e0 �C e) asrequired for the lposets of extended bundle event structures; see also De�nition 2.19.

Disjunctive causality 471. f e0 j e0 �C e g 6� (fFe(X) j X 2 dom(Fe) g [f e0 j e0 e g). Then there exists an event e0,say, e0 �C e but e0 6 e and e0 62 fFe(X) j X 2 dom(Fe) g, for all functions Fe. This meansthat there exists no bundle X 7! e with e0 2 X. But then e0 �C e can only follow from e0 e,according to the �rst constraint of De�nition 3.5. Contradiction.2. 9X 2 dom(Fe) : Fe(X) 62 X, for all functions Fe. Then there is a bundle X 7! e such thatX \ f e0 j e0 �C e g = ?. This contradicts with constraint 2.(a) of De�nition 3.5. �The next lemma shows that all elements in L�(�) are lposets.3.7. Lemma. 8 p 2 L�(�) : p is an lposet.Proof. Let p = hEp;6p; lpi be an element in L�(�). It su�ces to check whether 6p is apartial order. Since 6p is the reexive and transitive closure of �p (i.e., �Ep) it remains to checkantisymmetry. Suppose e; e0 2 Ep such that e 6p e0 and e0 6p e. If e 6= e0 then we would havee �+p e0 and e0 �+p e, where �+p denotes the transitive closure of �p. But then �p would be acyclic.Contradiction, so e = e0. �3.8. Example. The maximal intensional lposets of Figure 3.4(a) are ea!eceb and eaeb!ec .
(a)

c

ba

(b)

c

b

a

d cd

ba

(c)Figure 3.4: Three dual event structures.Figure 3.4(b) has the following maximal intensional lposets:ea!ec!edeb , eaeb!ec!ed , ea!eceb!ed , and ea ec%eb!ed .Finally, Figure 3.4(c) has the following maximal intensional lposets:eaeb&ec!ed , ebea&ec!ed , ecea&eb!ed , and eaeb!edec . �It is hot hard to check that for each event trace � of � there exists a (set of) correspondinglposet(s) that orders only the (possible) causal dependencies between events in �. Moreover,each linearization of an lposet of � is an event trace of �. So,

48 Chapter 3: Disjunctive causality and interleaving3.9. Lemma. 8 � 2 E� : (9 p 2 L�(�) : Ep = � ^ 6p � <��) () � 2 T (�).Proof. `)': Let � = e1 : : : en and � = Ep such that 6p � <��. The proof is by contradiction.Suppose � 62 T (�). This could only be because one of the following reasons:1. ei ej and ej <�� ei. But ei ej implies ei �p ej , and so ei 6p ej . Since 6p �<�� we haveei <�� ej . From the antisymmetry of <�� it follows ei = ej . But is irreexive. Contradiction.2. X 7! ei and X \ �i = ?. From X 7! ei it follows that (9 e 2 X : e �p ei), and so(9 e 2 X : e 6p ei). Since 6p �<�� then e <�� ei, and so X \ �i 6= ?. Contradiction.`(': Straightforward and omitted. �We sometimes let L�(�) denote the set of lposets corresponding to �.Dual event structures that have the same sets of intensional lposets have the same set of eventtraces.3.10. Theorem. 8�;�0 2 DES : L�(�) = L�(�0)) T (�) = T (�0).Proof. Assume L�(�) = L�(�0). Let � 2 T (�). From Lemma 3.9 it follows that for all � 2 T (�)there exists an lposet h�;6; li in L�(�) with 6�<��. Since L�(�) = L�(�0) it follows that h�;6; liin L�(�0), and according to Lemma 3.9 we have � 2 T (�0). The proof for the opposite direction, i.e.,� 2 T (�0)) � 2 T (�), is obtained by reversing the arguments � and �0 in the above reasoning.�The reverse implication does not hold. A counterexample is provided by
c

b

a

d

c

b

a

dThese two dual event structures are event trace equivalent, but, for instance, ea!ed%eb!ec is amaximal intensional lposet of the right-hand dual event structure, but not of the other. Thisentails that event traces are not su�ciently expressive as an underlying semantical model fordual event structures.We now concentrate on the de�nition of L�(�), the operational characterization of the lposetsof dual event structure �. Due to the possibility of causal ambiguity it is not possible togenerate the lposets of a dual event structure according to the same operational procedure asfor extended bundle event structures. For instance, the completed event traces for Figure 3.4(a)are ea eb ec; eb ea ec; ea ec eb, and eb ec ea. When we would follow the same procedure as inDe�nition 2.24 we obtain a single lposet in which ec is completely causally independent. Thisis undesirable.Observe that the sets of events preceding ec in these event traces are f ea g, f eb g and f ea; eb g.The minimal sets under � represent the alternative enablings of ec, and are called the minimalenablings of e.

Disjunctive causality 493.11. Definition. (Minimal enablings of e in [�]�)For � 2 T (�) and e 2 E, the minimal enablings of e in [�]� are de�ned asmen([�]�; e) , f �1 j 9 �2 : �1 e �2 2 [�]� ^ : (9 �01 e �02 2 [�]� : �10 � �1) g: �The lposets of � are now constructed in the following way. For each event trace � of � weconstruct lposets of the form h�;6; l � �i, where 6 is determined as follows. For each event ein � we select a minimal enabling f e01; : : : ; e0k g from the set of minimal enablings men([�]�; e).Since all events in such minimal enabling must precede e in order to enable it, these eventsprecede e under 6: e01 6 e; : : : ; e0k 6 e. In order to ensure transitivity we require that if e ispart of a minimal enabling of e0, say, and e0 is part of a minimal enabling of e00 then e0 is alsopart of the minimal enabling of e00.For technical convenience we introduce:3.12. Definition. For < � E � E and e 2 E let #< e , f e0 2 E j e0 < e g. �3.13. Definition. (Operational lposets of a dual event structure)The operational lposets of �, denoted L�(�), is the family of lposets[�2T (�)f h�;<�; l � �i j 8 e; e0 2 � : #< e 2 men(�; e) ^ (e0 2#< e)#< e0 �#< e) g: �<� denotes the reexive closure of <.3.14. Lemma. 8 p 2 L�(�) : p is an lposet.Proof. Let p = hEp;6p; lpi an element of L�(�). We prove that 6p is a partial order. From theprevious de�nition it follows that 6p=<�, where <� is the reexive closure of <. It remains to checkantisymmetry and transitivity.1. To prove antisymmetry we derive:e <� e0 ^ e0 <� e, f De�nition 3.12 ge 2#<� e0 ^ e0 2#<� e, f <� is the reexive closure of < g(e 2#< e0 ^ e0 2#< e) _ e = e0) f De�nition 3.13 g(e 2#< e0 ^ e0 2#< e ^ #< e �#< e0 ^ #< e0 �#< e) _ e = e0, f calculus g(e 2#< e0 ^ e0 2#< e ^ #< e = #< e0) _ e = e0

50 Chapter 3: Disjunctive causality and interleaving) f calculus g(e 2#< e ^ e0 2#< e0) _ e = e0) f #< e 2 men([�]�; e)) e 62 #< e ge = e0 .2. We prove that < is transitive; this implies that <� is transitive.e < e0 ^ e0 < e00, f De�nition 3.12 ge 2#< e0 ^ e0 2#< e00) f De�nition 3.13 ge 2#< e0 ^ #< e0 �#< e00) f calculus ge 2#< e00, f De�nition 3.12 ge < e00 . �3.15. Example. Consider again the dual event structures of Figure 3.4. The maximaloperational lposets of Figure 3.4(a) are ea!eceb and eaeb!ec . Figure 3.4(b) has the followingmaximal operational lposets: ea!ec!edeb , ea!eceb!ed , and ea ec%eb!ed .Note that eaeb!ec!ed is not obtained as an operational lposet while it is an intensional lposet.Finally, Figure 3.4(c) has the following maximal operational lposets:ebea&ec!ed and eaeb!edec .Also for this dual event structure some intensional lposets are not obtained operationally. �The previous example shows that the operational and intensional characterizations of lposetsdo not have to coincide. This is not that surprising, since the operational perspective isconstructed from event traces and we know from the above that having the same set of eventtraces does not imply having the same set of intensional lposets for dual event structures. Thelposets that we do construct operationally are, however, correct lposets:3.16. Lemma. 8� 2 DES : L�(�) � L�(�).Proof. Let p = hEp;6p; lpi an lposet of L�(�). We prove that p is an element of L�(C) bycontradiction. It can only not be an lposet in L�(C) because either

Disjunctive causality 511. 9 e; e0 2 Ep : e e0 and e 66p e0. If e e0 then e should precede e0 in each event trace � with� = Ep. So, e belongs to each minimal enabling of e in [�]�. But then e 2#< e0, and so e 6p e0.Contradiction.2. There exists an event e for which one of the constraints for Fe is not ful�lled.(a) f e0 j e0 6p e g 6� (fFe(X) j X 2 dom(Fe) g [f e0 j e0 e g). Let e0 6p e, e0 6= e,and e0 6 e. The above inequality of sets for all functions Fe implies that there existsno bundle X 7! e with e0 2 X. Since e0 6p e and e 6= e0 there is a minimal enablingof e. Because there exists no bundle X 7! e with e, this can only be because e0 e.Contradiction.(b) 9X 2 dom(Fe) : Fe(X) 62 X, for all functions Fe. Then there is a bundle X 7! e suchthat X \ f e0 j e0 6p e g = ?. But if X 7! e then each minimal enabling of e shouldcontain some event in X. So, X \ f e0 j e0 6p e g 6= ?. Contradiction. �The relationship between L� and L� can be identi�ed in more detail. For deriving the oper-ational lposets we have taken the minimal enablings of an event e as a starting-point. Thisreects the idea that any event in a minimal enabling should causally precede e in order tolet e happen. This perspective prevents, however, the generation of lposets with a bit moreordering than strictly necessary. E.g., for Figure 3.4(b) the lposet eaeb!ec!ed is not obtainedsince there exists an lposet ea ec%eb!ed that is less ordered.3.17. Definition. (Smoothening)hE;6; li is smoother than hE 0;60; l0i i� E = E 0, l = l0 and 60 �6. �That is, q is smoother than p if it has the same labelled events as p, but contains more orderingamong the events; i.e., q is closer to being linear. Evidently, `smoother than' is a partial orderon lposets.The operational lposets are the intentional ones that are minimal under the `smoother than'relation.3.18. Theorem.8� 2 DES : L�(�) = f p 2 L�(�) j: (9 q 2 L�(�) : p is smoother than q)g.Proof. `�': Let p 2 L�(�). From Lemma 3.16 it follows that p 2 L�(�). The proof is bycontradiction. Let p = hEp;6p; lpi and q = hEq;6q; lqi. Assume q 2 L�(�) such that p is smootherthan q, i.e., p contains more ordering than q. Suppose e 6p e0, but e 66q e0. If e 66q e0 then we canconstruct an event trace � with � = Ep = Eq where e0 precedes e. But then e 62 men([�]�; e0) and soe 66p e0. Contradiction.`�': Let p 2 L�(�) such that p is minimal under smoothening. Let p = hEp;6p; lpi and Ep =f e1; : : : ; en g. For each ei 2 Ep we construct a sequence �i such that ei is only preceded in �i bythose events in p that precede ei under 6p. Lemma 3.9 guarantees that �i 2 T (�). Repeating thisprocess for each ei 2 Ep thus results in a set of event traces �1; : : : ; �n with �i = Ep, and thus �i � �jfor all 0 < i; j 6 n. From De�nition 3.11 and the construction of �i it follows immediately for each

52 Chapter 3: Disjunctive causality and interleavingei 2 Ep that men([�i]�; ei) consists of the set of events that precede ei under 6p. Since �i 2 T (�)this implies that p 2 L�(�). �3.19. Theorem. 8�;�0 2 DES : L�(�) = L�(�0)() T (�) = T (�0).Proof. `)': It follows from Lemma 3.9 that every linearization of an lposet of � and �0 isan event trace. In a similar way as in the proof of Theorem 3.10 it can be proven that L�(�) =L�(�0)) T (�) = T (�0).`(': If T (�) = T (�0) it means that the minimal enablings of all events are identical, and consequentlythat all operational lposets are identical. �3.2.3 RemainderThe remainder of a dual event structure after the execution of a sequence of events is de�nedanalogously as for extended bundle event structures.3.20. Definition. (Remainder of a dual event structure)�0 = (E 0; 0; 7!0; l0) is a remainder of � after � 2 T (�), denoted �0 = �[�], i�� E 0 = E n �� 0= \ (E 0 � E 0)� 7!0= (7! nf (X; e) j X 7! e ^ X \ � 6= ? g) [f (?; e) j 9 e0 2 �; e 2 E 0 : e e0 g� l0 = l � E 0. �Each bundle X 7! e such that X \ � 6= ? is removed, because the enabling condition thatthis bundle poses, namely that some event in X should have happened before e can happen,is now ful�lled. This is according to the principle that the �rst possible cause of an event ethat happens will cause e.3.21. Example. Let dual event structure � be depicted in Figure 3.5(a). Figure 3.5(b)depicts �[ea] and Figure 3.5(c) depicts �[eb]. Remark that ec is enabled once ea occurs.Similarly, ec and ed are enabled once eb occurs. �As a prerequisite for the next theorem we need to lift the notion of pre�x on lposets to familiesof lposets. This is done in the following way:3.22. Definition. For P and Q families of lposets letP is a pre�x of Q , (8 p 2 P : (9 q 2 Q : p is a pre�x of q)) . �

Disjunctive causality 53
c

b

a

d

c

b

d

c

d

(a) (b) (c)

a

Figure 3.5: Remainders of dual event structures.Phrased in words, P is considered to be a pre�x of Q i� for each lposet p 2 P there exists anlposet q 2 Q such that p is a pre�x (in the sense of lposets) of q. Note that we do not requirethe reverse, i.e., that for each q 2 Q there exists a p 2 P such that p is a pre�x of q. So, Qmay contain lposets that have no pre�x in P.We now have the following correctness result for the remainder of �. (This seems identicalto Theorem 2.30 but it should be reminded that L�(�) is now a set of lposets rather than asingle lposet, and that the notion of pre�x is generalized to sets of lposets.)3.23. Theorem. Correctness of remainderFor � 2 T (�) and �0 a sequence of events:1. �0 2 T (�[�])() � �0 2 T (�)2. �0 2 T (�[�])) L�(�) is a pre�x of L�(� �0):Proof. Since the de�nitions of event trace and remainder for a dual event structure are identicalto that of an extended bundle event structure, the �rst theorem follows directly from Theorem 2.30.We prove that L�(�) is a pre�x of L�(� �0) given that � 2 T (�) and �0 2 T (�[�]) with � \ �0 = ?.Let �[�] = (E0; 0; 7!0; l0). Let p = hEp;6p; lpi be an lposet in L�(�) and r = hEr;6r; lri be anlposet in L�(�0) of �[�]. We prove that there exists an lposet q 2 L�(� �0) such that p is a pre�xof q by constructing an lposet q = hEq;6q; lqi and then show that (i) p is a pre�x of q and that (ii)q 2 L�(� �0). Let Eq = Ep [Er, lq = lp [lr and 6q= (6p [6r [<)� where < is an acyclicrelation satisfying:1. 8 e 2 Ep; e0 2 Er : e e0) e < e02. 8X � E; e0 2 Er : X 7! e0 ^ : (X 7!0 e0)) (9 e 2 X \Ep : e < e0)where the constraints on the bundle assignment functions are respected. The fact that p is a pre�x ofq follows immediately from the fact that no event in Eq nEp, i.e., Er, precedes under 6q an event inEp. The proof that q 2 L�(� �0) is rather straightforward (but elaborate) by checking the conditionsof De�nition 3.5 and is omitted here. �A few remarks are in order. To de�ne the notion of remainder for dual event structures wehave adopted the principle that in case of disjunctive causality the �rst possible cause of e thathappens will actually cause e. For instance, in Figure 3.5(b) the possibility that ec causally

54 Chapter 3: Disjunctive causality and interleavingdepends on eb is lost, since bundle f ea; eb g 7! ec is satis�ed as soon as ea has occurred.When considering bundles as enablings this is a defensible decision: once an event in a bundleoccurs, the event pointed to by this bundle is enabled, and so can occur. The same choice ismade by Gunawardena in his timed fAND;ORg automata when relating temporal and causalordering in case of OR causality [61, 62]. Another justi�able perspective is, referring againto Figure 3.5(b), that when ea has occurred there is still a possibility for ec to be causallydependent on eb (if eb happens). This requires a more involved notion of remainder, sincewe need to keep track of events that have occurred. The study of this alternative notion ofremainder is left for further study.For dual event structures we have, according to Theorem 3.10, that event traces are not su�-ciently expressive as an underlying semantical model, unlike extended bundle event structures.It would therefore be interesting to consider remainders after lposets, rather than event traces,like we did in this section.3.2.4 Transformation rulesThis section presents some transformation rules for dual event structures that can be used totransform � into �0 such that L�(�) = L�(�0). We take the same approach as in Section 2.3.4.Each rule is presented in pictorial form and in formal terms. To illustrate how correctnessproofs of rules are conducted we provide the proofs of some non-trivial rules.3.24. Theorem. (E; ; 7!; l) is lposet equivalent with1. (E; ; 7! nf (X; e) g; l) if X 7! e ^ Y 7! e ^ X 7! Y .2. (E; nf (e; e0) g; 7!; l) if X e0 ^ e0 X ^ X 7! e ^ e e0.3. (E; nf (e0; e) g; 7!; l) if e0 X ^ X 7! e ^ e0 e.4. (E; ; (7! nf (X; e) g) [f (X n e; e) g; l) if e 2 X ^ X 7! e.5. (E; ; (7! nf (X; e0) g) [f (X n e; e0) g; l) if e0 e ^ e 2 X ^ X 7! e0.6. (E; ; (7! nf (X; e0) g) [f (X n e; e0) g; l) if X 7! e0 ^ e 2 X ^ ? 7! e.7. (E; ; 7! nf (X; e) g; l) if ? 7! e ^ X 7! e.8. (E; nf (e0; e) g; 7!; l) if ? 7! e ^ e0 e.9. (E; nf (e; e0) g; 7!; l) if ? 7! e ^ e e0.Proof. We only provide the proofs for the �rst two rules. The proofs for the other rules aresimilar and omitted. For each rule let �l and �r denote the left-hand and right-hand dual eventstructure, respectively.1. The only di�erence between these two dual event structures is that �r does require e to bepreceded in any lposet by some event in X. The proof is by contradiction. Suppose �l hasan lposet p that contains e but where e is not preceded (under 6p) by an event in X. Byde�nition, e is preceded by event e0, say, in Y . So, e0 6p e. For e0 we have that X 7! e0 andso there should be some event e00 in X with e00 6p e0. But then, by transitivity of 6p we havee00 6 e. Contradiction. So, both dual event structures have the same set of lposets.

Disjunctive causality 552. The only di�erence between these two dual event structures is that �l does not allow an lposetin which e0 is preceded by e. The proof is by contradiction. Suppose �r has an lposet p forwhich e0 is preceded by e, i.e., e 6p e0. If e 2 Ep then there is some event e00, say, in Xsuch that e00 6p e. But, since e00# e0 this means that both e00 and e0 occur in a system run.Contradiction. So, both dual event structures have the same set of lposets. �The transformation rules of Theorem 3.24 are pictorially represented in Figure 3.6. The �rstthree rules and last three rules do also hold for extended bundle event structures, see Figure 2.4.Remark that there is no transformation rule that allows for the removal of sub-bundles, likewe had for extended bundle event structures. For instance,
c

b

acannot be simpli�ed because removal of f ea g 7! ec would lead to a dual event structure inwhich the lposet ea&eb!ec becomes impossible. The same applies for the removal of f ea; eb g 7!ec. It is interesting to observe that for the operational characterization of lposets we have thatthe above dual event structure can be simpli�ed to
c

b

asince these two dual event structures are event trace equivalent.Impossible events in extended bundle event structures have the pleasant property that theycan always be eliminated while preserving the underlying lposet semantics. Fortunately, such aresult also holds for dual event structures as shown below. The rules of Theorem 3.24 facilitatethe separation of all impossible events in a dual event structure. The following theorem showsthat all the isolated impossible events can be safely eliminated.3.25. Theorem. Removal of impossible eventsLet � = (E; ; 7!; l) with e 62 E, and let a 2 A. Then � is lposet equivalent with(E [f e g; ; 7! [f (?; e) g; l [f (e; a) g).Proof. Straightforward and omitted. �The following theorem shows that impossible events do not extend the expressiveness of dualevent structures. This is opposed to ow event structures where self-conicting events, whichare also impossible, cannot always be removed without a�ecting the underlying semantics.

56 Chapter 3: Disjunctive causality and interleaving

X

e’

e = X

e’

e

e
X

= X\e e Bundle redundancy I

e e’ = X\e

e

e’ Bundle redundancy II

X e

e’

=
X e

e’

Asymmetric conflict
inheritance II

X Y e
=

X Y e Bundle transitivity

Asymmetric conflict
inheritance I

X

e
X

e’ = X\e e’
e

Bundle redundancy III

=X e X e Superfluous bundles

e’ e = e’ e

e’ e = e’ e Superfluous asymmetric
conflicts I

Superfluous asymmetric

conflicts IIFigure 3.6: Transformation rules for dual event structures.

Disjunctive causality 573.26. Theorem. � 2 DES can be transformed into �0 = (E 0; 0; 7!0; l0) such that L�(�) =L�(�0) and (8 (X; e) 2 7!0: X 6= ?).Proof. Analogous to [89, Theorem 5.5.4]. �3.27. Example. The transformation rules of this section can, for instance, be used toeliminate cyclic bundles such as X 7! : : : 7! X. Consider, for example, the dual eventstructure depicted in Figure 3.7(a). By applying the rule of bundle transitivity Figure 3.7(b)is obtained which can be proven to be lposet equivalent with Figure 3.7(c) by applying therule bundle redundancy I. By the rule superuous bundles we obtain Figure 3.7(d). Finally,using Theorem 3.25 this dual event structure is proven to be lposet equivalent with the emptydual event structure. �
(a) (b) (c) (d)

a b

c

a a ab b b

c
c c

Figure 3.7: Transformations of a cyclic event structure.We conclude this section by stating that redundant bundles can always be simpli�ed, i.e., forX 7! e impossible events inX can be removed fromX (bundle redundancy III), events in X inconict with e can be removed from X (bundle redundancy II), and in case e 2 X, e can alsobe removed from X (bundle redundancy I). To our opinion this proves that the transformationrules, although not complete, are useful to eliminate undesired phenomena from dual eventstructures.3.2.5 Expressiveness of dual event structuresBy de�nition dual event structures are strictly more expressive than extended bundle eventstructures, and thus than prime event structures. This also holds at the level of sets ofcon�gurations, since, for example, there does not exist an extended bundle event structurewith the same set of con�gurations as the dual event structure of Figure 3.4(a).On the level of sets of con�gurations extended bundle event structures are incomparable withstable and ow event structures. That is, there is an extended bundle event structure with aset of con�gurations that cannot be generated by any ow or stable event structure, and viceversa [89, Chapter 6]. This section shows that on the level of sets of con�gurations dual eventstructures are strictly more expressive than stable event structures and ow event structures.We provide a recipe for transforming a (labelled) stable event structure S into a correspondingdual event structure �(S). This recipe is proven to be correct on the level of event traces andindicates that dual event structures are at least as expressive as stable event structures on

58 Chapter 3: Disjunctive causality and interleavingthe level of event traces, and thus on the level of sets of con�gurations. By providing a dualevent structure for which it is impossible to construct a corresponding stable event structurewith the same set of con�gurations it is shown that dual event structures are strictly moreexpressive than stable event structures.(Labelled) stable event structure S = (E;#;`; l) is transformed into a dual event structure�(S) in the following way. The symmetric conict relation between events e and e0 is turnedinto the equivalent asymmetric conicts e e0 and e0 e. As a result e e0 in �(S) i�e0 e in �(S). The de�nition of the bundle relation 7! is somewhat more complex. Considerevent e with enablings X1 ` e and X2 ` e in S. Thus, if e happens either all events in X1 or inX2 have happened. We now obtain 7! by taking all pairs of events (e1; e2) with e1 2 X1 ande2 2 X2 and introduce a bundle f e1; e2 g 7! e for all such pairs. Using this construction it isensured that enabling Xi ` e (for i=1; 2) is satis�ed i� all bundles in �(S) are satis�ed (seeproof of Theorem 3.32). Generalizing this approach to the case of k bundles (k > 0) resultsin the following construction.3.28. Definition. (From stable to dual event structures)Let S = (E;#;`; l) be a (labelled) stable event structure. �(S) , (E; ; 7!; l) with� e e0 ^ e0 e, e# e0� f e1; : : : ; ek g 7! e, 8 0 < i 6 k : ei 2 Xi ^ Xi ` e,where k is the number of (non-empty) enablings of e in S. �3.29. Example. Let S be a stable event structure with set of events f ea; eb; ex; ey; ef g,eb# ey, f ea; eb g ` ef and f ex; ey g ` ef and the other events having empty enablings, seeFigure 3.8(a). The corresponding dual event structure �(S) is depicted in Figure 3.8(b).Conform De�nition 3.28 this dual event structure has bundles f ea; ex g 7! ef , f eb; ex g 7! ef ,f ea; ey g 7! ef and f eb; ey g 7! ef . �
y

(a) (b)

f

x

b

a
a

b

f

x

yFigure 3.8: A stable event structure (a) and its corresponding dual event structure (b).In order to prove the correctness of De�nition 3.28 we need to de�ne the lposets of a stableevent structure. This can be done in the following way.

Disjunctive causality 593.30. Definition. (Lposets of a stable event structure)The lposets of labelled stable event structure S, denoted L(S), is the family of lposetshC;��C ; l � Ci where �C � C�C is a minimal acyclic relation and C � E is conict-free,satisfying for all e 2 C:9X � C : X ` e ^ (8 e0 2 X : e0 �C e) . �It directly follows that each p 2 L(S) is an lposet. Moreover,3.31. Lemma. For all stable event structures S, S 0: L(S) = L(S 0) () T (S) = T (S 0).Proof. Straightforward and omitted. �We now have the following correctness result:3.32. Theorem. For all stable event structures S: L(S) = L�(�(S)).Proof. `�': Let p = hEp;6p; lpi be an lposet in L(S). Suppose X1 ` e; : : : ;Xk ` e in S.Since p 2 L(S) it follows from De�nition 3.30 that there exists an Xm, for 0 < m 6 k, such thatXm � Ep and (8 e0 2 Xm : e0 6p e). According to De�nition 3.28 all bundles in �(S) are of the formf e01; : : : ; e0k g 7! e with e0j 2 Xj , for 0 < j 6 k. Since all events in Xm precede (under 6p) event e wetake for each bundle Y pointing to e the event in Xm, i.e., Fe(Y) = e0m. In this way each bundle in�(S) pointing to e is satis�ed by precisely one event. This implies that p satis�es the constraints ofDe�nition 3.5 and is an (intensional) lposet of �(S).`�': Let p = hEp;6p; lpi be an lposet in L�(�(S)). The proof that p 2 L(S) is by contradiction.Suppose p 62 L(S). This can only be because no enabling Xj of e in S satis�es (8 ej 2 Xj : ej 6p e).Assume X1 ` e; : : : ;Xk ` e in S. Since p 62 L(S) it means that for all j we have (9 e0j 2 Xj : e0j 66p e).From De�nition 3.28 it now follows that for bundle f e01; : : : ; e0k g 7! e there is no event precedinge under 6p. But then there is no bundle assignment function for e satisfying the constraints ofDe�nition 3.5, so p 62 L�(�(S)). Contradiction. �The following example shows that dual event structures are strictly more expressive thanstable event structures.3.33. Example. Consider the dual event structure with events ea; eb, and ec with f ea; eb g 7!ec (i.e., Winskel's switch [155]). This event structure has the following set of con�gurations?; f ea g; f eb g; f ea; ec g; f eb; ec g; f ea; eb g, and f ea; eb; ec g. In a corresponding stable eventstructure there should be an enabling f ea g ` ec and f eb g ` ec, but due to the stabilityconstraint there should be a conict between ea and eb, making the maximal con�gurationf ea; eb; ec g impossible. So, it is impossible to construct a stable event structure with this setof con�gurations. �So, on the level of sets of con�gurations dual event structures are strictly more expressivethan stable event structures, and since stable event structures are strictly more expressivethan ow event structures it follows that dual event structures are more expressive than owevent structures. The realm of event structures indicating the hierarchy at the level of sets

60 Chapter 3: Disjunctive causality and interleavingof con�gurations is presented in Figure 3.9. (Expressiveness increases when going from leftto right.) A similar hierarchy of event structure models has recently been published by VanGlabbeek & Plotkin [52]. It is an interesting result that dual event structures are an `upperbound' of extended bundle and stable event structures. This is not to say that is the leastupper bound; it would be interesting to consider stable event structures equipped with anasymmetric conict relation for this purpose.
prime
event

structures

flow event
structures

bundle
event

structures

extended bundle
event structures

dual event
structures

stableevent
structuresFigure 3.9: The realm of event structures.The connection between dual and stable event structures has other important consequences.From Rensink [127] it is known that prime, bundle, ow and extended bundle event structuresdo respect a global relation <P � EP � EP (if it exists) on the level of a family P of lposets,called the causal ow relation. The existence of a causal ow relation is based on the intuitionthat there is a �xed cause-and-e�ect relation between the events. We recall from [127]:3.34. Definition. (Causal ow relation)For P a family of lposets a binary relation <P is a (causal) ow relation on P if it isirreexive and for all p 2 P and e; e0 2 Ep:e 6p e0 () (e; e0) 2 (<P \ (Ep � Ep))� . �P is said to reect causal ow if there exists a causal ow relation on P. Events related under<P should in every possible run of the system be causally related according to the causal owrelation|if e; e0 2 Ep for some p 2 P such that e <P e0 then also e 6p e0. In addition, theordering relations of the posets should be backed up by chains of causal relations: if e 6p e0then (e; e0) 2 (<P \ (Ep � Ep))�.Stable event structures do not respect causal ow. The following example is taken from [127,Chapter 2]. Consider stable event structure S with events f ea; eb; ec; ed g, ea# eb and enablings? ` ea;? ` eb; f ea g ` ec; f ea; ec g ` ed; f eb g ` ed and f eb; ed g ` ec. The corresponding dualevent structure �(S) consists of ea eb, eb ea and bundles f ea; eb g 7! ec, f ea; ed g 7! ec,f ea; eb g 7! ed, and f eb; ec g 7! ed, see Figure 3.10. Two (operational) lposets of this dualevent structure are eb!ed!ec and ea!ec!ed . Here we see that ed is enabled by ec in onerun of the system, while in another run it is just the other way around! This means that, ingeneral, for dual event structures, there is no �xed cause-and-e�ect relation between events.So, relaxing the stability constraint in extended bundle event structures, a model that respectscausal ow, results in dual event structures, a model that does not respect causal ow.

Interleaving 61
c

b

a
d

Figure 3.10: A dual event structure that does not respect causal ow.3.3 InterleavingInspired by the work of Ferreira Pires et al. [46, 145] we equip in this section dual eventstructures with a symmetric interleaving relation between events. Such a relation can be usedto model that events can happen in any order but are not independent, i.e., they may notoccur at the same time. Such scenarios typically appear in mutual exclusion situations.3Interleaving of events can be represented using the basic ingredients of event structures byexplicitly modelling each possible interleaving. For instance, three events ea, eb, and ec thatare mutually interleaved can be modelled as depicted in Figure 3.11(a). The bene�ts of sucha representation are that no extensions of the basic machinery of event structures are needed(conict and causality su�ce), and that the di�erent causal orderings between events areexplicitly shown. The main drawback of this representation is that it leads to an explosion of
(b)

c

ba

(a)
b

a

a

c

c

c
a

c

a

b

b

b

b

c a

Figure 3.11: Modelling the interleaving of events.the number of events.4 In addition, the symmetric nature of interleaving|if e is interleavedwith e0, then e0 is interleaved with e|is no longer explicitly represented as a symmetricrelationship.3We like to point out that in a process algebraic framework, which is not present in [46, 145], the interleavingof (observable) events of processes P and Q, say, can always be established by synchronizing P and Q with athird process, R say, that forces this interleaving explicitly.4More precisely, if kn denotes the number of copies of an event in case of n interleaved events it followsthat k1 = 1 and kn+1 = n � kn + 1, for n > 0.

62 Chapter 3: Disjunctive causality and interleavingWe, therefore, propose a di�erent route and introduce a (symmetric) interleaving relation,denoted
, between events. The interpretation of e
 e0 is that e and e0 are interleaved, ebeing caused by e0 when e occurs before e0, or vice versa. Using this relation we obtain forthe above example the (concise) event structure as depicted in Figure 3.11(b) where the greyline between events means that the connected events are interleaved.
 strongly resemblesthe global dependency relation introduced in [159] and [151]; the main di�erence is that
concerns events rather than actions.3.35. Definition. (Extended dual event structure)An extended dual event structure � is a tuple h�;
i with� �, a dual event structure (E; ; 7!; l)�
� E � E, the (irreexive and symmetric) interleaving relation. �Since several mechanisms to model impossible events (either by ? 7! e or f e g 7! e) existwe do not allow
 to be reexive. e
 e0 is represented by a thick solid grey line betweene and e0. EDES denotes the class of extended dual event structures and we use �, possiblysubscripted and/or primed, for elements of EDES.The notions of event trace and con�gurations are identical to dual event structures. Thelposets of an extended dual event structure are de�ned in an intensional way as follows:3.36. Definition. (Lposets of an extended dual event structure)The lposets of �, denoted L(�), is the family of lposets hC;��C; l � Ci where �C � C�Cis an acyclic relation and C � E is conict-free, satisfying for all e 2 C:1. 8 e0 2 C : e0 e) e0 �C e, and2. 8 e0 2 C : e0
 e) (e0 �C e _ e �C e0)3. 9Fe : fX j X 7! e g �! f e0 j e0 �C e g such that(a) f e0 j e0 �C e g � (fFe(X) j X 2 dom(Fe) g [f e0 j e0 e _ e0
 e g), and(b) 8X 2 dom(Fe) : Fe(X) 2 X. �The di�erence with De�nition 3.5 is the second constraint that takes care of interleaved events.In addition, constraint 3.(a) is adapted by the incorporation of interleaved events. It can beveri�ed along the same lines as for dual event structures that for each event e 2 C a bundleassignment function Fe exists satisfying constraints 3.(a) and 3.(b). This is left to the diligentreader.The following result indicates that all linearizations of an lposet of � that respect the orderingof the lposet are event traces of �.

Interleaving 633.37. Lemma. 8 � 2 E� : (9 p 2 L(�) : Ep = � ^ 6p �<��) () � 2 T (�).Proof. Similar to the proof of Lemma 3.9. �3.38. Lemma. 8�;�0 2 EDES : L(�) = L(�0)) T (�) = T (�0).Proof. Similar to the proof of Theorem 3.10 �Notice that the reverse implication does not hold. A counterexample is provided by theextended dual event structures
(a) (b)

a b baThey have the same set of event traces, but (a) has one maximal lposet eaeb whereas (b) hasmaximal lposets ea!eb and eb!ea . This example also shows that it makes not much senseto deduce lposets for extended dual event structures in an operational way, i.e., from eventtraces, since interleaving and independence of events can never be distinguished.3.39. Definition. (Remainder of an extended dual event structure)�0 = (�0;
0) is a remainder of � after � 2 T (�), denoted �0 = �[�], i� �0 = �[�] =(E 0; 0; 7!0; l0) and
0=
 \ (E 0 � E 0). �We have the following correctness result on remainders of extended dual event structures.3.40. Theorem. Correctness of remainderFor � 2 T (�) and �0 a sequence of events:1. �0 2 T (�[�])() � �0 2 T (�)2. �0 2 T (�[�])) L(�) is a pre�x of L(� �0):Proof. Similar to the proof of Theorem 3.23. �Figure 3.12 presents some transformation rules on extended dual event structures. The trans-formation rules of Figure 3.6 do also apply in this setting. The �rst rule facilitates the isolationof impossible events in presence of interleavings. The second and third rule provide a meansto remove redundant interleavings.3.41. Theorem. h(E; ; 7!; l);
i is lposet equivalent with h(E; ; 7!; l);
 nf (e; e0) giif e
 e0 ^ (? 7! e0 _ e e0 _ f e g 7! e0).Proof. Straightforward and omitted. �

64 Chapter 3: Disjunctive causality and interleaving
e e’ = e e’ Superfluous interleavings II

e e’ = e e’ Superfluous interleavings III

e e’ =
e e’ Superfluous interleavings I

Figure 3.12: Transformation rules for eliminating interleavings.3.4 ConclusionsIn this chapter we have presented two qualitative extensions of extended bundle event struc-tures. The main part of this chapter was devoted to a novel type of event structures, calleddual event structures, which are obtained from extended bundle event structures by droppingthe stability constraint. Dual event structures support disjunctive causality, i.e., they allow toexpress that an event is enabled once some causal predecessor has happened. The main con-sequences of dropping the stability constraint are that having the same set of lposets implieshaving the same set of event traces, but the reverse implication does no longer hold. Thisentails that event traces are not su�ciently expressive as an underlying semantical model fordual event structures|lposets can only be partly recovered from event traces; this is illustratedby presenting a novel recipe to generate lposets from event traces.Dual event structures were shown to be strictly more expressive than stable event structuresand, as a result, they do not respect a global causal ow relation between events (in contrastwith prime, ow, bundle, and extended bundle event structures). This means that the causaldependencies between events in di�erent runs of the system may be reversed. So, for dualevent structures there does not need to be a �xed cause-and-e�ect relation between events.In the same style as for extended bundle event structure transformation rules were presentedthat allow for the elimination of undesired phenomena in dual event structures, such as cyclicbundles, redundancy in bundles and impossible events. Due to the presence of disjunctivecausality there is no rule for eliminating sub-bundles.In the second part of this chapter we extended dual event structures with a symmetric (andirreexive) interleaving relation between events. This relation provides an explicit mechanismto state that either e causes e0 or e0 causes e in a system run.We consider the work presented in this chapter as a �rst investigation on the incorporation ofdisjunctive causality in event structures. Some issues deserve further attention. For instance,it would be interesting to see whether the recipe to generate lposets from event traces can bere�ned (without equipping traces with extra causality information) such that the intensionallposets can be better `approximated', and to study other types of remainders, such as remain-ders after lposets, and remainders for which the principle that the �rst potential cause of anevent that happens is the actual cause, is dropped.

4 A simple timing module
This chapter describes a simple timed variant of extended bundle eventstructures. We equip events and bundles with a time attribute. An event ewith time t denotes that e is enabled from t time units on since the systemis started, usually assumed to be time 0. t associated with bundle X 7! edenotes that the time between the occurrence of an event in X and theappearance of e should be at least t time units. The result is a causality-based model allowing the speci�cation of minimal time constraints. Thetiming extension is a conservative extension of the untimed causality-basedmodel, is suitable for discrete and continuous time, and does not includenotions to explicitly force the passage of time. A temporal process algebrais de�ned that includes a delay function which constrains the occurrencetime of actions. The suitability of timed event structures for providing acompositional causality-based semantics to this algebra is studied.4.1 IntroductionExtended bundle event structures allow for the modelling of systems by specifying their branch-ing structure (conicts) and causal ordering (bundles). This facilitates the speci�cation of therelative ordering of events. The need for describing time constraints is well recognized. Thespeci�cation of time-related properties is essential to describe, for instance, the time lapsebetween causally dependent events and to specify that a con�rmation should be deliveredwithin a certain time after issuing a request. In addition, the fact that events can only occurin a certain period of time cannot be described without information about time lapses.This chapter considers a (simple) timed extension of extended bundle event structures. Sec-tion 4.2 introduces and justi�es the timed causality-based model. Several notions that werede�ned for EBES are carried over to the timed case: timed event traces, timed remaindersand the generation of (timed) lposets. The suitability of the resulting timed model for pro-viding a causality-based semantics to a timed process algebra is investigated in Section 4.3.We prove that this semantics is a conservative extension of E [[]], the denotational semanticsof PA. We investigate under which syntactical constraints the timed event structure modelcould be simpli�ed. Finally, Section 4.4 draws some conclusions of this chapter.

65

66 Chapter 4: A simple timing module4.2 Timed event structuresThis section introduces our basic timed model, which we call timed event structures. Sec-tion 4.2.1 introduces the basic ideas and the notion of timed event structure. Section 4.2.2deals with the notion of timed event trace, a generalization of event trace. A lattice of traces,in fact of equivalence classes of traces, is proposed in Section 4.2.3; this section is not essentialfor the rest of this chapter, and can be skipped if desired. Section 4.2.4 de�nes how to obtainlposets from timed event structures and relates this approach to the untimed case. The sta-tus of a timed event structure after the execution of a sequence of timed events is de�ned inSection 4.2.5. Finally, Section 4.2.6 presents some transformation rules.4.2.1 What are timed event structures?Let Time denote an arbitrary time domain with a total ordering relation <. We use t, possiblysubscripted and/or primed, to range over Time.The idea is to add time delays to event structures by associating time with bundles. Supposewe have an event eb with a bundle f ea g 7! eb and we associate a time delay t to this bundle.The intuitive interpretation is that if ea happens at a certain time, then eb is enabled t timeunits later. That is, if ea happens at time ta, then eb is enabled at time ta + t. Event ebdoes not have to happen immediately, so it may happen at any time from ta + t on. t is thusthe minimal delay between ea and eb. In Chapter 7 we introduce a timed model which alsosupports the speci�cation of time constraints that specify the last moment at which an eventmay happen.The reason for not requiring what is often referred to as maximal progress, i.e., an eventhappens as soon as it is enabled, is that in general an event may be subject to interactionwith the environment which may introduce further delays. Since we consider multi-partysynchronization this also applies to events resulting from interaction between two components,unlike the case for binary synchronization (as in CCS) where synchronizations can be requiredto happen as soon as both (= all) participants are ready for it since no further interaction cantake place.We assume function T to associate a value of Time, the time domain, to bundles. A bundle(X; e) with T ((X; e)) = t is denoted by X t7! e.Events may have several bundles pointing to them. Suppose we have an event ec with bundlesf ea g t7! ec and f eb g t07! ec. The interpretation that we choose for this construct is that anevent can happen as soon as all timing constraints on it have been met. This means thata synchronization is enabled once all participants are ready to engage in it. For the aboveexample, this means that if ea happens at time ta and eb happens at time tb, then ec is enabledat time max(ta + t; tb + t0). So, in case ta + t < tb + t0 the component that performs ea has towait until the other component is ready for synchronization, after which it may continue (byperforming ec).Summarizing, by associating time to bundles relative minimal time delays between events, ormore precisely, between a set of events and an event, can be speci�ed. We also would like to

Timed event structures 67be able to specify time constraints for events that have no bundle pointing to them (i.e., theinitial events). Such constraints specify the delay of an event with respect to the time at whichthe `execution' began, normally assumed to be time 0. One might consider such constraintsto be absolute time constraints.There are basically two ways to support the speci�cation of such time constraints: (i) as-sociating time to events, or (ii) introducing a �ctitious event, ! say, modelling the start ofthe system with a bundle pointing to the initial events equipped with the appropriate timedelay. The second possibility, used in di�erent contexts by, for instance, Murphy [106, 108]and �Zic [158], has the main advantage that time is only associated to bundles, so|at �rstsight|keeping the model conceptually simple. The main drawback of this approach, however,is that de�nitions become more complex (event ! has to be treated quite di�erently from other`normal' events; for instance, in the remainder of a timed event structure a new start eventmust be created in order to record the absolute time constraints of the remaining events) andproof obligations become more severe (e.g., one has to prove that bundles X 7! e satisfy e 6= !and X = f! g or ! 62 X, and that asymmetric conicts e e0 satisfy e 6= ! and e0 6= !).In order not to complicate the theory, which could easily distract the reader from the essentialpoints of the model, we consider possibility (i) of above, delays associated to events. Weassume a function D that associates a value in Time to an event. Due to synchronization itdoes not su�ce to only associate time values to initial events, but also non-initial events canbe delayed. Consider, for example,
b

1
||b =

27

ba 5

1

ba 5

27where the result speci�es that if ea occurs at ta then eb is enabled from max(ta+5; 27). Theinterpretation is that an event e with D(e) = t is enabled from t time units on since the startof the system.Concluding, we propose the following notion of timed event structure.4.1. Definition. (Timed event structure)A timed event structure is a triple hE ;D; T i with� E , an (extended bundle) event structure (E; ; 7!; l)� D : E �! Time, the event delay function� T : 7! �! Time, the bundle delay function. �For depicting timed event structures we use the following conventions. The time associatedwith a bundle or an event is a non-negative real number1 and is depicted near to a bundle oran event, respectively. For convenience, we often omit delays equal to 0. We use � to denote1This choice for Time allows for zero separation of time between causally dependent events. For instancef ea g 07! eb allows ea and eb to occur at the same time instant. Other choices for Time could prevent this, ifdesired.

68 Chapter 4: A simple timing modulea timed event structure and EBEST to denote the class of timed event structures. Recall thatE is considered to have a �nite number of events; in�nite event structures are dealt with inChapter 10.4.2. Example. Some example timed event structures are depicted in Figure 4.1. Fig-ure 4.1(a) has bundles f ea g 37! ec, f eb g 57! ec, f eb g 27! ed, and a symmetric conict betweenec and ed. In Figure 4.1(b) we have D(ea) = 2, D(eb) = 3 and D(ec) = 7. Note that eb is anon-initial event having a non-zero delay associated with it. �
c

c3 2

2

5

1

7

4
a

b
a b

c d

2 1

a
b

d

(a) (b) (c)

3

Figure 4.1: Some example timed event structures.4.2.2 Timed event tracesWe de�ne the notion of timed event trace as a generalization of the notion of event trace. Atimed event (e; t) denotes that e happened at time t.4.3. Notation. For sequences of timed events � = (e1; t1) : : : (en; tn) let [�] denote thesequence of events of �, i.e., [�] , e1 : : : en for n > 1 and ["] , ". Note that [�] denotes theset of events in �, while � denotes the set of timed events in �. �Given a sequence � of timed events (e1; t1) : : : (en; tn) and an event e that is enabled after �,that is e 2 en([�]), let time(�; e) denote the minimal time instant from which e can occur.Event e can occur if (i) its absolute delay D(e) is respected, (ii) the time relative to all itsimmediate causal predecessors is respected, and (iii) for each event ej with ej e we havethat e occurs at at least tj.4.4. Definition. For � a sequence of timed events (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Timefor 0 < i 6 n, and e 2 en([�]), lettime(�; e) ,Max(fD(e) g [H1 [H2) whereH1 = f t+ tj j 9X � E : X t7! e ^ X \ [�] = f ej g gH2 = f tj j 9 ej 2 [�] : ej e g . �When ej e and ej has occurred, then ej should temporally precede e. This is a naturalextension of the untimed case in which ej causally precedes e if both events occur. Since eventscannot happen before their causes, causal ordering implies temporal ordering.

Timed event structures 69A timed sequential observation of the system is now de�ned as an untimed sequential obser-vation where each event has a correct timing associated with it.4.5. Definition. (Timed event trace)A timed event trace of timed event structure � = hE ;D; T i is a sequence � of timedevents (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time, for all 0 < i 6 n, satisfying1. e1 : : : en 2 T (E)2. 8 i : ti > time(�i; ei). �Note that, according to the last constraint, an event can happen at any time from the momentit is enabled. Let TT (�) denote the set of timed event traces of �4.6. Example. For the following sequences of timed events we give the conditions underwhich they are timed event traces of Figure 4.1(a):(ea; ta) (eb; tb) (ed; td) if td > tb+2; and(ea; ta) (eb; tb) (ec; tc) if tc > max(ta+3; tb+5) . �4.7. Definition. �; �0 2 TT (�) are timed con�guration equivalent, denoted � �T �0, i�� = �0. �Note that �T ��, where � � �0 i� [�] = [�0].Timed event traces do respect causality, but not necessarily time. That is, two (or more)independent events can occur in a trace in either order regardless of their timing. For example,(eb; 1)(ea; 3) and (ea; 3)(eb; 1) are timed event traces of Figure 4.1(a). The possible choicescorrespond to the possible interleavings of the causally independent events. Although it mayat �rst sight be counterintuitive to allow traces that do not respect time, their appearancecan be understood from the fact that event traces are linearizations of (timed) partial orders.Since the causal ordering between events implies their temporal ordering the causal orderingcan never contradict the temporal order.4.8. Definition. Timed event trace � is time-consistent i� 8 i; j : i < j) ti 6 tj. �Predicate tc(�) is true i� � is time-consistent. A timed event trace that is not time-consistent iscalled ill-timed. The fact that ill-timed traces can only appear due to the possible interleavingsof independent events follows from the following result.4.9. Theorem. Ill-timed theoremFor t0 < t: � (e; t) (e0; t0) �0 2 TT (�)) � (e0; t0) (e; t) �0 2 TT (�).Proof. Let �1 = � (e; t) (e0; t0)�0 and �2 = � (e0; t0) (e; t)�0. Let t0 < t and �1 2 TT (�). The proofis by contradiction. Suppose �2 62 TT (�). This can only be because one of the following reasons:

70 Chapter 4: A simple timing module1. [�2] is not an event trace of E . This can only be because one of the following reasons:(a) There exists a bundle X 7! e0 with e 2 X. But then, according to the second constraintof De�nition 4.5, t0 > t. Contradiction.(b) e e0 (i.e., e0 disables e). According to the second constraint of De�nition 4.5 thent0 > t. Contradiction.This proves that [�2] is an event trace of E .2. 9 j : tj < time(�2j ; ej). This can only be because of one of the following reasons:(a) (i) t < D(e), or (i') t0 < D(e0). These cases contradict with the fact �1 2 TT (�).(b) (i) there exists a bundle X t7! e0 with ej 2 X and t0 < tj+t. This contradicts with�1 2 TT (�). (i') there exists a bundle X t7! e with ej 2 X and t < tj+t. For thiscase we distinguish between ej 6= e0 and ej = e0. For ej 6= e0 we have that t > tj+t,otherwise �1 62 TT (�). Consider ej = e0. This is impossible, since e precedes e0 in �1 and�1 2 TT (�). Contradiction.(c) (i) e e0 and t > t0, or (i') e0 e and t0 > t. Case (i) cannot occur (similar to case1.(b)) and (i') contradicts with the assumption that t0 < t. �This theorem implies that for any ill-timed event trace � there exists a corresponding time-consistent event trace �0, that can be obtained from � by swapping repeatedly ill-timed pairsof timed events, yielding � = �0. Note that the reverse implication of Theorem 4.9 does nothold; for instance, if e causally depends on e0 then the order of events e0 e in a trace cannotbe reversed since this would contradict their causal ordering.For a more extensive discussion on ill-timed traces we refer to Aceto & Murphy [1, 2].4.2.3 A lattice of timed tracesThe timed model only allows for the speci�cation of minimal time constraints. That is, onlylower bounds on the occurrence time of events can be dealt with. In this section we show thatall timed event traces that contain the same events but possibly with di�erent timing can beconsidered as a lattice (ordered under a `faster than' relation) with as a least element a tracein this class with the minimal correct timing.� is called a fast trace i� all events in � have a minimal correct timing, i.e., they all occuras soon as possible. E.g. (ea; 0)(eb; 0), (eb; 0)(ea; 0), (eb; 0)(ed; 2) and(eb; 0)(ea; 0)(ec; 5) are fasttraces of Figure 4.1(a).4.10. Definition. � 2 TT (�) is fast i� 8 i : ti = time(�i; ei). �In the rest of this section we assume that � and �0 are representers of equivalence classesunder �T , i.e., � and �0 represent classes of timed traces that all have the same timed events,but possibly in a di�erent order. The following is relative to � with �; �0 2 TT (�). Let� = (e1; t1) : : : (en; tn) and �0 = (e1; t01) : : : (en; t0n).

Timed event structures 714.11. Definition. For �; �0 with � � �0 let � 4 �0 i� 8 i : ti 6 t0i. �It can easily be veri�ed that 4 (pronounced faster than) is a partial order on event equivalentclasses of con�guration equivalent timed event traces.4.12. Lemma. � is a fast timed event trace i� (8 �0 2 [�]� : � 4 �0).Proof. `)': Let � be a fast timed event trace of �. For � = �0 the lemma trivially holds. Consider� 6= �0 and � � �0. The proof for this case is by contradiction, distinguishing between (1) �0 4 �,and (2) � 64 �0 ^ �0 64 �.1. Suppose �0 4 �. Then, there exists ei, say, such that t0i < ti. Since � is a fast timed trace wehave ti =Max(fD(ei) g [H1 [H2), cf. De�nition 4.10. Suppose there are K (K > 0) bundlesXk tk7! ei in � (0 < k 6 K) and Xk \ [�] = f ejk g. Then we have H1 = f tj1+t1; : : : ; tjK+tK g.For N (N > 0) events ejn ei in � with ejn in [�] we have H2 = f tj1; : : : ; tjN g. Now considert0i < ti. Then either (a) t0i < Max(H1) or (b) t0i < Max(H2).(a) Suppose t0i < Max(H1). As � � �0 and for each bundle X 7! ei in �, ei has a uniquecausal predecessor in �, ei is enabled in � and �0 by the same set of events:X 7! ei ^ X \ [�] = f ej g) (8�0 2 [�]� : X \ [�0] = f ej g) .But then it immediately follows t0i > Max(H1). Contradiction.(b) Suppose t0i < Max(H2). As � � �0 we also have thatf e 2 [�] j e ei g = f e 2 [�0] j e ei g .But then it immediately follows t0i > Max(H2). Contradiction.2. Suppose � 64 �0 ^ �0 64 �. By de�nition of 4 this equals (9 ei : ti > t0i) ^ (9 ei : t0i > ti).Using an analogous argument as for case 1. we can prove that the �rst conjunct does not hold.`(': Straightforward by contradiction and omitted. �4.13. Lemma. h[�]�;4i is a poset with a least element.Proof. Straightforward from the previous lemma and the fact that for each � class [�]� containsa fast timed event trace. �4.14. Example. Consider the timed event structure of Figure 4.1(c) and some of its timedevent traces:�1 = (ea; 0) (ed; 3) (ec; 4)�2 = (ea; 0) (ed; 10) (ec; 4)�3 = (ea; 3) (ed; 12) (ec; 7) �4 = (ea; 3) (ed; 5) (ec; 7)�5 = (ea; 0) (ed; 1) (ec; 4) .�5 is a fast timed event trace. 4 is the reexive and transitive closure of �5 4 �1, �1 4 �4,�1 4 �2, �2 4 �3, and �4 4 �3. �For �; �0 such that � � �0, let lub(�; �0) be the sequence of slowest timed events faster thanboth � and �0. Similarly, glb(�; �0) is de�ned as the sequence of fastest events slower thanboth � and �0.

72 Chapter 4: A simple timing module4.15. Definition. For � = (e1; t1) : : : (en; tn) and �0 = (e1; t01) : : : (en; t0n) let� lub(�; �0) , (e1;min(t1; t01)) : : : (en;min(tn; t0n))� glb(�; �0) , (e1;max(t1; t01)) : : : (en;max(tn; t0n)) . �4.16. Lemma. 8 �; �0 2 TT (�) : lub(�; �0) 2 TT (�) ^ glb(�; �0) 2 TT (�).Proof. By contradiction. We provide the proof for lub, the proof for glb is similar. Let�; �0 2 TT (�) and suppose �00 = lub(�; �0) 62 TT (�). This can only be because of one of the followingreasons:1. [�00] 62 T (E). Then [�]; [�0] 62 T (E). Contradiction.2. 9 ei : t00i < time(�00i ; ei). This can only be because one of the following reasons:(a) t00i < D(ei), i.e., min(ti; t0i) < D(ei). Then ti < D(ei) or t0i < D(ei). Contradiction.(b) ei ej and t00i > t00j . Then, by de�nition of lub, min(ti; t0i) > min(tj ; t0j).min(ti; t0i) > min(tj ; t0j), f de�nition of min g(ti 6 t0i ^ ti > min(tj ; t0j)) _ (t0i 6 ti ^ t0i > min(tj ; t0j)), f de�nition of min g(ti 6 t0i ^ (ti > tj _ ti > t0j)) _ (t0i 6 ti ^ (t0i > tj _ t0i > t0j)), f � 2 TT (�)) ti 6 tj (idem for �0) g(ti 6 t0i ^ ti > t0j) _ (t0i 6 ti ^ t0i > tj), f � 2 TT (�)) ti 6 tj (idem for �0) gfalse .(c) 9X : X t7! ei and ej 2 X and t00i < t00j+t. Then by de�nition of lub, min(ti; t0i) <min(tj ; t0j) + t. In a similar way as the previous case it can be proven that this leads to acontradiction. �4.17. Theorem. hh[�]�;4i; lub; glbi is a lattice with a least element.Proof. Directly from Lemma 4.13 and 4.16. �This lattice construction is possible since timed event structures allow for the speci�cation ofminimal time constraints only. Later on we will encounter models which do also allow thespeci�cation of maximal time constraints, and we will see that for those models the abovelattice construction does not work.

Timed event structures 734.2.4 Families of lposetsThe semantics of a timed event structure is de�ned by means of its family of labelled partiallyordered sets (lposets). In this section we de�ne how to obtain these lposets and investigatethe relation between the lposets of � and the lposets of its corresponding untimed counterpartE . For simplicity we only de�ne lposets in an operational way, i.e., starting from timed eventtraces. The intensional characterization as provided in Chapter 6 for urgent event structurescan be applied in a similar way to the model of this chapter.4.18. Definition. (Lposets of a timed event structure)For � 2 EBEST : LT (�) , f h�;T�02[�]�T <��0 ; l � �i j � 2 TT (�) g. �Here l is the labelling function of � and l((e; t)) = l(e). We consider all � 2 TT (�) and considerits class of timed con�guration-equivalent timed traces, [�]�T . With each �0 2 [�]�T anordering on timed events <��0 is associated which reects the precedence of timed events in �0.More speci�cally, if �0 = (e01; t01) : : : (e0n; t0n) then <��0 is de�ned as (the reexive and transitiveclosure of) (e01; t01) <�0 (e02; t02) <�0 : : : <�0 (e0n; t0n). It is easy to verify that T�02[�]�T <��0 is apartial order on �.For � 2 TT (�) we sometimes use LT (�) as an abbreviation for h�;T�02[�]�T <��0 ; l � �i.4.19. Theorem. 8�;�0 2 EBEST : TT (�) = TT (�0)() LT (�) = LT (�0).Proof. Similar to the untimed case [89, Theorem 6.3.12] and omitted here. �The untimed lposets of � are now deduced from LT (�) as follows:4.20. Definition. For � 2 EBEST the untimed lposets of � are de�ned asL(�) , f h[E];6� [E]; li j hE;6; li 2 LT (�) g: �Here, [E] denotes the set of events in E. That is, for E = f (e1; t1); : : : ; (en; tn) g we have that[E] , f e1; : : : ; en g. 6� [E] denotes f (e; e0) 2 [E] j 9 t; t0 : (e; t) 6 (e0; t0) g.The following theorem shows that the inclusion of minimal time constraints into event struc-tures retains the causal dependencies as present in the untimed case. Suppose we remove thetimed components of � and determine the lposets of this untimed structure, then this yieldsthe same result as if we would �rst calculate the lposets of � and then abstract from time.We denote the removal of timed components from � by '. For � = hE ;D; T i we simply have'(�) , E .4.21. Theorem. 8� 2 EBEST : L(�) = L(�(�)).Proof.L(�)

74 Chapter 4: A simple timing module= f De�nition 4.20 gf h[E];6� [E]; li j hE;6; li 2 LT (�) g= f De�nition 4.18 gf h[E];6� [E]; li j hE;6; li 2 f h�;T�02[�]�T <��0 ; l � �i j � 2 TT (�) g g= f gf h[�];T[�0]2[�]�T <�[�0]; l � [�] j � 2 TT (�) g= f � 2 TT (�), [�] 2 T ('(�)) gf h[�];T�02[[�]]� <��0 ; l � [�] j [�] 2 T ('(�)) g= f De�nition 2.24 gL('(�)) . �4.2.5 Timed remainderLike for the untimed case we are interested in the status of a timed event structure afterthe execution of a sequence of timed events. In this section we de�ne the notion of timedremainder and prove its correctness.4.22. Definition. (Timed remainder)The timed remainder of timed event structure � = hE ;D; T i after timed event trace �,is �[�] = hE 0;D0; T 0i where� E 0 = E [[�]] = (E 0; 0; 7!0; l0)� 8 e 2 E 0 : D0(e) = Max(fD(e) g [H1 [H2) withH1 = f t+ tj j 9X � E : X t7! e ^ X \ [�] = f ej g g andH2 = f tj j 9 ej 2 [�] : ej e g� T 0 = (T � 7!0) [f ((?; e); ?) j ? 7!0 e g for some ? 2 Time. �The �rst component is equal to the remainder of E . The timings associated with the retainedbundles are una�ected and since T 0 is a total function the introduced bundles (cf. De�ni-tion 2.28) are associated a time value. Since the events pointed to by these bundles will neverhappen, this time value is arbitrary.In addition, the delay of an event e which has a bundle pointing to it originating from someevent ej in � has to be checked: if tj plus the required relative time, t say, between ej and e islarger than the delay of e, e should be postponed to (at least) t+tj. Because this should holdfor all bundles pointing to e originating from some event in �, the maximum is taken suchthat all required relative delays are satis�ed.Finally, in order to enforce that the causal relation between ej and e induces a temporalprecedence, the delay of e becomes at least tj in case ej e. Again, this should hold for allasymmetric conicts to e originating from some event in �, resulting in the max-constructionabove.

Timed event structures 75It is quite straightforward to check that for all � 2 EBEST and � 2 TT (�) we have �[�] 2EBEST , since E [[�]] 2 EBES and all events and bundles in �[�] are assigned a time value.4.23. Example. The remainder of a timed event structure is exempli�ed in Figure 4.2 andFigure 4.3. Figure 4.2 shows how event delays are updated due to the presence of bundlesoriginating from events in the con�guration, whereas Figure 4.3 shows how this procedureworks when asymmetric conicts cause the update. �
3

2

7

3

12

a

b

c d

(a,6)

3

b

c d

8

13
18

(c,13)

b

d

13

18Figure 4.2: Example remainder of a timed event structure (I).
2

1 7

3

a b

c

d

(a,8)

2

7

8

b

c

d

(b,7)
2

8c

dFigure 4.3: Example remainder of a timed event structure (II).We have the following correctness result concerning the de�nition of timed remainder. It saysthat if � can evolve into �0 by executing � then �0 is a trace of �0 i� � �0 is a trace of �. Inaddition, it states that the lposet induced by � �0 is an extension of the lposet induced by �.4.24. Theorem. Correctness of timed remainderFor � 2 TT (�) and �0 a sequence of timed events:1. �0 2 TT (�[�])() � �0 2 TT (�)2. �0 2 TT (�[�])) LT (�) is a pre�x of LT (� �0).Proof.1. Let � = hE ;D;T i and �[�] = �0 = hE 0;T 0;D0i.`)' : Assume � 2 TT (�) and �0 2 TT (�0). We prove that �00 = � �0 2 TT (�) by contradiction.So, suppose �00 62 TT (�). From the untimed case (cf. Theorem 2.30) we know that if [�] 2 T (E)

76 Chapter 4: A simple timing moduleand [�0] 2 T (E 0) then [�00] 2 T (E). Thus there can only be one reason for �00 not being a timedevent trace of �, viz. violation of constraint 2 of De�nition 4.5: 9 i : ti < time(�00i ; ei). This canonly have the following causes:(a) ti < D(ei). If ei 2 [�] this is impossible, since � 2 TT (�), requiring ti > D(ei). Supposeei 2 [�0]. For �0 it follows directly from De�nition 4.22 that for all e 2 E0 : D(e) 6 D0(e).As �0 2 TT (�0) we have ti > D0(ei), and thus, ti > D(ei). Contradiction.(b) 9X � E : X t7! ei ^ ej 2 X and ti < tj+t. The interesting case is whenX \ [�] 6= ? andei 2 [�0]. Since X \ [�] 6= ? the bundle X t7! ei cannot be in �0, so it has been removedaccording to De�nition 2.28. But then D0(ei) has been updated (cf. De�nition 4.22)such that D0(ei) > tj + t. As �0 2 TT (�0) we have ti > D0(ei), and thus ti > tj + t.Contradiction.(c) 9 ei; ej : ei ej ^ tj < ti. The interesting case is when ei 2 [�] and ej 2 [�0]. Supposeei happens at ti. Then, according to De�nition 4.22, D(ej) has been updated suchthat D0(ej) > ti. Since �0 2 TT (�0) we have tj > D0(ej), and consequently, tj > ti.Contradiction.`(' : Assume � 2 TT (�) and � �0 2 TT (�). We prove that �0 2 TT (�0) by contradiction. So,suppose �0 62 TT (�0). From the untimed case we know that [�0] 2 T (E 0), so if �0 is not a timedevent trace of �0 this can only be because 9 ei : ti < time(�0i; ei). That is, either(a) ti < D0(ei). From the fact that � �0 2 TT (�) we know that ti > D(ei). ti < D0(ei) andti > D(ei) means that the delay of ei is updated by the execution of �. There are twopossibilities for doing so:i. 9 ej 2 [�] : ej ei. Then D0(ei) = tj and tj > D(ei). As � �0 2 TT (�) we haveti > tj , and consequently, ti > D0(ei). Contradiction.ii. 9 ej : X t7! ei ^ X \ [�] = f ej g. Then D0(ei) = tj + t and tj + t > D(ei). As� �0 2 TT (�) we have ti > tj + t, and thus, ti > D0(ei). Contradiction.(b) X t7! 0 ei with ej 2 X and ti < tj + t. But then this bundle is either already present in� or is a newly created bundle. For the �rst case it immediately follows from the factthat � �0 2 TT (�) that ti > tj + t. Contradiction. For the second case we have that (cf.De�nition 2.28) X = ? and that there is an e 2 [�] such that ei e. Since [�] � [� �0]this would mean that � �0 62 TT (�). Contradiction.(c) 9 ei; ej : ei 0 ej ^ tj < ti. Since 0 � this implies that ei ej . As � �0 2 TT (�) wehave ti 6 tj . Contradiction.2. From 1. it follows that � �0 2 TT (�), so LT (� �0) is de�ned. Clearly � � � �0 and <���<�� �0 .Besides, since no event in �0 precedes an event in � under <� �0 it follows that<�� �0 \ ((<��0 [<��)� <��) =<�� �0 \ (<�� � <��) =<�� .This proves that LT (�) is a pre�x of LT (� �0). �

Timed event structures 774.2.6 Some transformation rulesFigure 4.4 presents some transformation rules for timed event structures that preserve lposets.We use the same notational conventions as in Section 2.3.4. The �rst rule gives a recipe forremoving redundant bundles. Since t00 6 t+t0 the relative time between X and e does notcontribute to the delay of e, and hence can be safely removed. The fact that the bundlemay be removed follows from the rule for the untimed case obtained by omitting all timinginformation in the depicted rule. In the second rule delay d of X indicates the minimal delayof some event in X. Since X t7! e event e has at least delay t+d. In case d0 6 t+d the eventdelay d0 of e is superuous and may be replaced by 0. The third rule allows for the removalof sub-bundles and is a straightforward generalization of a similar rule for the untimed case.
X Y e=

X Y e Bundle transitivityt t’

t t’

t’’

(t’’ <= t + t’)

X e
t

d d’
= X e

t
d 0

(d’ <= t + d)

Event delay redundancy

X

Y e

e

Sub-bundle removalt

t’ max (t, t’)

X\Y

Y

=

Figure 4.4: Some transformation rules for timed event structures.The formal representation of the transformation rules is as follows:4.25. Theorem. Timed event structure hE ;D; T i is lposet equivalent with1. h(E; ; 7! nf (X; e) g; l);D; T n f ((X; e); t00) giif Y t07! e ^ X t7! Y ^ X t007! e ^ t00 6 t+t0.2. h(E; ; 7!; l); (D n f (e; d0) g) [f (e; 0) g; T iif X t7! e ^ D(e) = d0 ^ d0 6 t+MinfD(e0) j e0 2 X g.3. h(E; ; 7! nf (X; e) g; l);D; (T n f ((Y; e); t); ((X; e); t0) g) [f ((Y; e); d) giif Y � X ^ X t07! e ^ Y t7! e ^ d = max(t; t0).Proof. We only prove rules 2. and 3. as an example; the proof for rule 1. is similar. For each rulelet �l and �r denote the left-hand and right-hand timed event structure, respectively.

78 Chapter 4: A simple timing module2. The only di�erence between these two timed event structures is that �l requires e to happenafter time d0. The proof is by contradiction. Suppose that �r has a timed event trace � (e; t0)for which t0 < d0 and d0 6 t+d where d = MinfD(e0) j e0 2 X g. Since X points to e, evente must be preceded by some event ei in X. We have ti > d. But then, since X t7! e we havet0 > t+d, and since t+d > d0, it follows t0 > d0. Contradiction. So, the timed event structureshave the same set of timed event traces, and by Theorem 4.19, also the same family of lposets.3. Suppose �l has timed trace � (e; t0)�0. Event e can only occur if both bundles X and Y aresatis�ed. Since Y � X and all events inX are in mutual conict there is one event, ei say, in [�]which belongs to Y . As time(�; e) = Maxf : : : ; ti+t; ti+t0; : : : g = Maxf : : : ; ti+max(t; t0); : : : git follows that � (e; t0)�0 is a trace of �r. Obviously, for traces not involving e we also havethat �l and �r are event trace equivalent. So, the timed event structures have the same set oftimed traces, and by Theorem 4.19, also the same family of lposets. �4.3 A timed process algebraThis section introduces a simple timed process algebra and provides a causality-based se-mantics using timed event structures. Section 4.3.1 introduces the temporal process algebra,Section 4.3.2 provides the semantics and Section 4.3.3 provides some syntactical constraintsthat aim at a simpli�cation of the timed event structures model.4.3.1 SyntaxFor t 2 Time the syntax of PAT of �nite simple timed behaviours is de�ned as:4.26. Definition. (Simple timed process algebra PAT)B ::= 0 j p j (t) a ; B j B +B j B jjGB j B[H] j B nG j B >> B j B [> B. �PAT is a timed extension of PA, the process algebra introduced in Chapter 1. Actions areconsidered to be atomic and occur instantaneously. The elementary timing construct of ourlanguage is a delay function that expresses the relative delay of an action. Behaviour a ; (t) b ; 0behaves identically to a ; b ; 0, except that it is able to engage in b from t time units after theoccurrence of a. For initial actions the time is related to the beginning of the system athand. We abbreviate (0) a by a. We also allow arithmetic expressions and consider syntacticequivalence to be modulo equal arithmetic expressions, identifying for example (2+5) a ; Band (7) a ; B.Behaviours may synchronize on a common action as soon as all participants are ready toengage in it, i.e., when all individual timing constraints on such action are met. This choicehas been inspired by the constraint-oriented speci�cation style of Vissers et al. [148], whereglobal constraints (on the ordering of events) are expressed by conjunction (using parallelcomposition) of individual (or local) constraints. One may thus consider that the enabling of

A timed process algebra 79a common action is constrained by the various individual timing requirements. For example,in a ; (3) c ; 0 and b ; (7) c ; 0, action c is enabled in the composite behavioura ; (3) c ; 0 jjc b ; (7) c ; 0 ,if both a has occurred at least 3 time units before and b has occurred at least 7 time unitsbefore, that is, tc > ta+3 ^ tc > tb+7 which is equivalent to tc > max(ta+3; tb+7). Using asimilar reasoning, in behavioura ; (t1) b ; 0 jjf a;b g a ; (t2) b ; 0 ,b is enabled after max(ta+t1; ta+t2) = ta +max(t1; t2).Intuitively it means that a system which is willing to participate in some action a from timet say, has to wait until the environment is ready for participation. The integrated behaviourof the system and the environment may then execute a from the moment on that both thesystem and the environment are willing to perform a.4.3.2 Causality-based semanticsWe now show how the timed event structures of Section 4.2 can be used as a vehicle to providea true concurrency semantics to PAT in a compositional way. We do so by de�ning a mappingET [[]] : PAT �! EBEST . In addition we use:4.27. Definition. �T : PAT �! PA is de�ned as follows:�T (0) , 0�T (p) , p�T ((t) a ; B) , a ; �T (B)�T (B1 opB2) , �T (B1) op �T (B2) for op 2 f+; jjG ; >>; [> g�T (opB) , op �T (B) for op 2 f n; [] g: �So, �T associates to a timed behaviour B its corresponding untimed behaviour �T (B) bysimply omitting all time annotations in B.The positive events of � are the events in � with a non-zero delay.4.28. Definition. For � = hE ;D; T i the set pos(�) of positive events is de�ned bypos(�) , f e 2 E j D(e) 6= 0 g . �

80 Chapter 4: A simple timing moduleIn the rest of this section let ET [[Bi]] = �i = hEi;Di; Tii, for i = 1; 2, with Ei = (Ei; i; 7!i; li)and E1 \ E2 = ?. The functions init and exit which denote the set of initial and successfultermination events, respectively, are de�ned in Chapter 2 for event structures and are used fortimed event structures in the same way. Let pin(�) , pos(�) [init(�) and EU the universeof events. For convenience we use the denotational semantics E 0[[]] for the untimed case whichis de�ned in Chapter 2. This becomes explicit for timed action-pre�x and enabling; for theseconstructs it is indicated which instantiation of E 0[[]] is chosen.4.29. Definition. (Timed semantics of 0, p, and (t) a ;)ET [[0]] , hE 0[[�T (0)]];?;?iET [[p]] , hE 0[[�T (p)]]; f (e�; 0) g;?iET [[(t) a ; B1]] , h(E; 1; 7!; l1 [f (ea; a) g);D; T i whereE = E1 [f ea g for some ea 2 EU n E17! = 7!1 [(f f ea g g � pin(�1))D = f (ea; t) g [(E1 � f 0 g)T = T1 [f ((f ea g; e);D1(e)) j e 2 pin(�1) g: �The semantics of 0 and p is self-explanatory. In ET [[(t) a ; B1]] a bundle is introduced froma new event ea (labelled a) to all initial events in �1 and, in addition, to all events in �1 thathave a non-zero delay. The delay of these events e becomes relative to ea, so each bundlef ea g 7! e is associated with a time delay D1(e), and D(e) is made zero. Delay D(ea) is set tot. In the untimed case it su�ces to only introduce bundles from e to the initial events of �1,cf. De�nition 2.35. The additional bundles to the positive events of �1 that are introduced inthe timed case are used for the sole purpose of making delays relative to ea. For events thathave a zero delay this is not necessary; they can happen from any moment since the start ofthe system.4.30. Example. Figure 4.5 depicts (a) ET [[B]], and (b) ET [[(2) a ; B]]. The reader is invitedto compare these �gures with Figure 2.5. �
1

1

5
a

b c

d

e
5

2

7

b c

d

e

4 4

3 3
7

(a):B (b): (2) a ; BFigure 4.5: Example of semantics for timed action pre�x.

A timed process algebra 814.31. Definition. (Timed semantics of n, [], +, >> and [>)ET [[B1 opB2]] , hE 0[[�T (B1 opB2)]];D1 [D2; T1 [T2i; op 2 f+; [> gET [[opB1]] , hE 0[[�T (opB1)]];D1; T1i for op 2 f n; [] gET [[B1 >> B2]] , h(E1 [E2; ; 7!; l);D; T i where = 1 [2 [f (e; e0) j e; e0 2 exit(�1) ^ e 6= e0 g7! = 7!1 [7!2 [(f exit(�1) g � pin(�2))l = ((l1 [l2) n (exit(�1)� f � g)) [(exit(�1)� f � g)D = D1 [(E2 � f 0 g)T = T1 [T2 [f ((exit(�1); e);D2(e)) j e 2 pin(�2) g: �For op equal to choice or disrupt ET [[B1 op B2]] is the untimed event structure of the corre-sponding expression in PA, E 0[[�T (B1 opB2)]], where the timings of events and bundles in �1and �2 are una�ected. Similarly, ET [[]] is de�ned for relabelling and hiding.ET [[B1 >> B2]] is equal to �1 [�2 where bundles are introduced between the successfultermination events of �1 and the initial and positive events in �2. The reason for introducingbundles to the positive events of �2 is to make the event delays in �2 relative to the terminationof �1. This is similar as for timed action-pre�x. The timing of the introduced bundles andthe positive events in �2 are treated in a similar way as for timed action-pre�x.4.32. Example. Let Figure 4.6(a) and (b) depict ET [[B1]] and ET [[B2]], respectively.ET [[B1 >> B2]] and ET [[B1 [> B2]] are depicted in Figure 4.6(c) and (d), respectively. Thereader is invited to compare this �gure with Figure 2.6. �
(b): B2

(c): B1 >> B2

ba(a):B1
��δ

ed

c

ba ��τ

ed

c

e

dc

(d): B1 [> B2

ba ��δ

3

1

4

2

4

7
1

1

3 4

2
1

7

4

3

1

4

24
1

7Figure 4.6: Example of semantics for enable and disrupt.Finally, we explain the timed components of the semantics of the parallel composition operator.Recall that events are pairs of events of �1 and �2, or with one component equal to �. The

82 Chapter 4: A simple timing moduledelay of an event is the maximum of the delays of its components that are di�erent from �.The time associated with a bundle is equal to the maximum of the times associated with thebundles we get by projecting on the i-th components (i=1; 2) of the events in the bundle, ifthis projection yields a bundle in �i.As a subsidiary notion we de�ne projection of bundles as follows:4.33. Definition. Let E = (E1 [f � g)� (E2 [f � g); (e1; e2) 2 E and X � E. Let� pri((e1; e2)) , ei, if ei 6= �, for i=1; 2� pri(X) , f pri(e) j e 2 X \ dom(pri) g, for i=1; 2. �4.34. Definition. (Timed semantics of jjG)ET [[B1 jjGB2]] , hE 0[[�T (B1 jjGB2)]];D; T i whereD((e1; e2)) = max(D1(e1);D2(e2)) with Di(�) = 0:T ((X; (e1; e2))) = max(T1((pr1(X); e1)); T2((pr2(X); e2)))with Ti((?; ei)) = 0; for i=1; 2: �4.35. Example. Consider the following timed behavioursB1 = (1) a ; (5) b ; 0 jjb (4) c ; (7) b ; 0B2 = (4) a ; (2) b ; 0 jjb ((4) b ; 0+ (3) d ; 0) .Figure 4.7 shows how ET [[B1 jjfa;b gB2]] is constructed from ET [[B1]] and ET [[B2]]. For example,D(ea) = max(1; 4), T ((f ea g; eb)) = max(5; 2), and T ((f ec g; eb)) = max(7; 0).
7

ba

1

5
4

c4

||{a,b}
ba

4

2

d
3

=
ba

4

5
4

c4 d
3

7

Figure 4.7: Example of semantics for parallel composition (I).Figure 4.8 shows the timed event structures corresponding to the following behaviours:(a) ((2) a ; (3) d ; 0+ (1) b ; (2) e ; 0) jjj (27) c ; 0(b) ((2) a ; (7) c ; 0 + (4) a ; (11) d ; 0) jja ((5) a ; (2) b ; 0)(c) (2) a ; (1) b ; 0 jjfa;b g (7) b ; 0 . �

A timed process algebra 83
c

d e

3 2

27

(a)

a
2

b
1

(b)

b

c

d

5

2

7

11

a

a

5

7
b

(c)Figure 4.8: Example of semantics for parallel composition (II).The de�nition of ET [[P]] where P := B can be de�ned by an extension of the untimed caseand is fully treated in Chapter 10 of this dissertation.The timed extension of behaviours is \backward compatible" with the untimed case, in thefollowing sense. For an expression B 2 PAT the lposets that are obtained by removing thetimes from LT (�) where � is the denotational semantics of B, i.e., � = ET [[B]], are equal to thelposets obtained from the event structure corresponding to �T (B), the untimed counterpartof B. This means that causal dependencies are una�ected by the timed components in PAT .4.36. Theorem. Compatibility theorem8B 2 PAT : L(ET [[B]]) = L(E [[�T (B)]]).Proof. We derive:L(ET [[B]])= f Theorem 4.21 gL('(ET [[B]]))= f ET [[B]] = hE 0[[�T (B)]];D;T i gL(E 0[[�T (B)]])= f Theorem 2.44 gL(E [[�T (B)]]) . �4.37. Theorem. 8B 2 PAT : ET [[B]] 2 EBEST .Proof. Simply by the fact that ET [[B]] = hE 0[[�T (B)]];D;T i and the fact that E 0[[�T (B)]]2 EBES. It is easy to check from the de�nition of ET [[]] that T and D associate time values to allbundles and events, respectively, in ET [[B]]. �ET [[B]] can successfully terminate as soon as all events causally preceding a successful termi-nation event have happened.4.38. Lemma. For B 2 PAT let ET [[B]] = � = hE ;D; T i. Then1. 8 e 2 exit(�) : D(e) = 02. 8X � E : X t7! e ^ e 2 exit(�)) t = 0.Proof. Straightforward by induction on the structure of B. Routine and omitted. �

84 Chapter 4: A simple timing module4.3.3 Syntactic conditions for simpli�cationIn this section we investigate under which syntactic conditions the timed event structure modelcan be simpli�ed. More speci�cally we aim at a constraint on behaviour expressions such thatevent delays become superuous and thus can be omitted from the model.As an auxiliary notion we de�ne (syntactically) the set of initial actions of B which B cannotperform immediately.4.39. Definition. (Non-immediate initial actions)nii : PAT �! P(Act�;�) is de�ned as follows:nii(0) , ?nii(p) , ?nii((t) a ; B) , (f a g if t > 0? if t = 0nii(B1 +B2) , nii(B1) [nii(B2)nii(B nG) , (nii(B) nG) [f � j nii(B) \G 6= ? gnii(B[H]) , fH(a) j a 2 nii(B) gnii(B1 >> B2) , (nii(B1) n f � g) [f � j � 2 nii(B1) gnii(B1 [> B2) , nii(B1) [nii(B2)nii(B1 jjGB2) , (nii(B1) [nii(B2)) nG� [(nii(B1) \ nii(B2) \G�): �Note that successful termination events can always be executed immediately, so � 62 nii(B),for all B 2 PAT .The following lemma shows that nii(B) indeed characterizes the set of initial actions of B thatcannot be performed immediately.4.40. Lemma. For B 2 PAT with � = ET [[B]] = hE ;D; T i:nii(B) = f l(e) j e 2 init(�) ^ D(e) 6= 0 g:Proof. By induction on the structure of B; the proof is quite straightforward but somewhatelaborative. �We now concentrate on a syntactic constraint under which event delays become superu-ous, for instance, by enforcing that all event delays are 0. At �rst sight it seems that allevents in ET [[B]] have delay 0 i� all initial actions of the corresponding behaviour, B, havedelay 0 (i.e., nii(B) = ?). Due to the fact that synchronization can give rise to empty bun-dles pointing to events (see also Chapter 2) this conjecture is, however, not true. Consider
a b5

A timed process algebra 85which corresponds to a jjj (c ; (2) b) jjf b;c g (5) b. Obviously, this structure violates the afore-mentioned conjecture|initial actions a and c have delay 0 but event eb in the resulting timedevent structure has a non-zero delay. The problem is that synchronization is required on aninitial action (i.e., c) of one of the components in jjG which does not succeed.To avoid such cases we require that all parallel compositions B1 jjGB2 occurring as subex-pression in B satisfy nii(B1) \ G� = nii(B2) \ G�. This guarantees that B1 and B2 are bothable to participate on the same initial actions in G�. Let PA�T denote the set of expressionsin PAT that satisfy this syntactic constraint. Then we have that for B 2 PA�T all events inET [[B]] have delay 0 i� all initial actions of B have delay 0. This implies that our timed eventstructures model can be simpli�ed, only having bundle delays and omitting the event delays,once this (syntactical) condition is met.4.41. Lemma. 8B 2 PA�T : nii(B) = ?() pos(ET [[B]]) = ?:Proof. `(': Straightforward from Lemma 4.40 and omitted.`)' : By induction on the structure of B.Base: For B = 0 and B = p the theorem trivially holds as nii(0) = ? and nii(p) = ?, and all eventsin ET [[B]] have delay 0. For B = (t) a ; B1 we have nii(B) = f a g if t = 0. But then D(ea) = t = 0,and for all other events D(e) = 0 (cf. de�nition of ET [[]]).Induction Step: Assume the lemma holds for B1 and B2. Let �i = hEi;Di;Tii = ET [[Bi]], for i=1; 2with Ei = (Ei; i; 7!i; li). We provide proofs for abstraction, enabling and parallel composition. Theproofs for the other constructs are quite similar and omitted here.1. B = B1 nG. We prove thatnii(B1 nG) = ?, f De�nition 4.39 gnii(B1) nG = ? ^ f � j nii(B1) \G 6= ? g = ?, f gnii(B1) nG = ? ^ nii(B1) \G = ?, f gnii(B1) = ?) f induction hypothesis gpos(ET [[B1]]) = ?, f de�nition of ET [[]] gpos(ET [[B1 nG]]) = ? .2. B = B1 >> B2. For this case we derive:nii(B1 >> B2) = ?, f De�nition 4.39 gnii(B1) n f � g = ? ^ f � j � 2 nii(B1) g = ?, f gnii(B1) = ?) f induction hypothesis g

86 Chapter 4: A simple timing modulepos(ET [[B1]]) = ?, f de�nition of ET [[]] gpos(ET [[B1 >> B2]]) = ? .3. B = B1 jjGB2. For this case we infer:nii(B1 jjGB2) = ?, f De�nition 4.39 gnii(B1) nG� [nii(B2) nG� [(nii(B1) \ nii(B2) \G�) = ?, f A n C [B n C [(A \B \ C) = A n C [B n C [(A \B) gnii(B1) nG� [nii(B2) nG� [(nii(B1) \ nii(B2)) = ?, f B 2 PA�T ; A n C [B n C [(A \B) = A [B if A \ C = B \ C gnii(B1) [nii(B2) = ?) f induction hypothesis gpos(ET [[B1]]) = ? ^ pos(ET [[B2]]) = ?) f de�nition ET [[]] gpos(ET [[B1 jjGB2]]) = ? . �4.4 ConclusionsIn this chapter we have presented a simple timed extension of extended bundle event structuresthat allows the speci�cation of minimal time constraints. The theory of extended bundle eventstructures is carried over to the timed setting in a rather smooth way|notions like timedevent trace and timed remainder are straightforward conservative extensions of their untimedcounterparts.One of the features of the model is the absence of actions that represent the passage of time,which in one way or another make their appearance in most interleaving models (see alsoChapter 5). Here, time is dealt with in a way comparable to ordinary physical models, viz. bymeans of parameterization (e.g., for recording the delays). Another important feature of thetimed model is that it is a conservative extension of the untimed case; the causal dependenciespresent in the untimed model are una�ected by the inclusion of minimal time constraints.This stems from the fact that events do not become impossible by imposing minimal timeconstraints. In Chapters 6 and 7 we will encounter timed extensions which violate backwardcompatibility.The timed model in this chapter is kept rather simple|expressiveness was not our �rst maingoal. The incorporation of urgency in the simple timed model of this chapter is dealt with inChapter 6. In Chapter 7 we will investigate how the theory of this chapter can be generalizedby allowing intervals (or even sets) of time instants to be associated with events and bundles;in this chapter we also compare our approach with existing timed extensions of partial-ordermodels.

Conclusions 87From several perspectives it would be interesting to elaborate the timed model in even otherdirections, some of which are mentioned below:� Associate time with the asymmetric conict relation. The intuitive meaning of ea t ebis that (i) if eb occurs it disables the occurrence of ea (as in the untimed case), and (ii)if ea and eb both occur in a single system run then ea causally precedes eb (as in theuntimed case) and the minimal time between the enabling of eb and the occurrence ofea is t. When in addition ec t0 eb and all three events ea; eb and ec occur in a single run,then eb is enabled at max(ta+t; tc+t0). Note that = 0 . The extension of the modelwith this construct is fairly straightforward.� In the current model time is associated with bundles. E.g., when f ea; eb g t7! ec theminimal relative time between ec and either of its causal predecessors is equal to t. Analternative would be to allow for the association of di�erent time values to the di�erent`branches' of the bundle. For instance,
a

b

c3

5intuitively speci�es that (i) if ec and ea occur in a run then the minimal timing betweenthe occurrences of these events equals 3 and (ii) if eb and ec occur then this time is 5.We believe that also this construct can be added to our model in a reasonably straight-forward way.� The previous construct can also be used as a basis to add time to one of the primitivesin our model of Chapter 3, disjunctive causality. Even adding time to the interleavingrelation of that model could make sense. The interpretation of ea t
t0 eb is that ea andeb are interleaved, eb being caused by ea after a minimal delay of t0 time units, or ea isbeing caused by eb after a minimal delay of t time units. This subject is left for furtherstudy.

88 Chapter 4: A simple timing module

5 Timed operational semantics
This chapter presents two timed event transition systems for the timed pro-cess algebra PAT . Opposed to the standard case transitions are equippedwith event and action (and time) labels. The timed event transition sys-tems are de�ned by structured operational semantics. One transition modelis based on timed-action transitions and the other is based on the separa-tion between time- and (untimed) action-transitions. The compatibility ofthese timed transition models with the causality-based semantics of PATas provided in Chapter 4 is investigated. The timed event traces of thetimed-action transition model and the causality-based semantical model areshown to coincide. For the model distinguishing between time- and action-transitions this holds when restricting to time-consistent traces.5.1 IntroductionIn Chapter 4 we have presented a causality-based semantics for a temporal variant of theprocess algebra PA. The basic timing ingredient in PAT is a delay function that speci�es theminimal relative delay of an action with respect to its causal predecessors (if any). This chapterpresents an event-based operational semantics for this formalism in two ways and shows thatthese operational semantical models are compatible with the causality-based semantics of PAT .If we are mainly interested in a causality-based semantics why do we have to de�ne an op-erational semantics as well? This understandable question can be answered adequately asfollows. First of all, a rather `standard' means to provide a semantics to process algebras, letalone timed variants thereof, is to present an operational semantics. By providing an opera-tional view on our timed event structure semantics we facilitate a comparison with existingapproaches. Various timed extensions of process algebras have been (and still are being) pro-posed in the literature based on timed variants of labelled transition systems. Since there is nocanonical way to include time into transition systems di�erent approaches appear. A (timed)event-based operational semantics for PAT provides a basis to determine our position in thisbroad �eld.Secondly, like for interleaving semantics of timed formalisms there are various ways in whicha partial-order semantics can be de�ned for such formalisms. A natural demand is that thepartial-order semantics is compatible with less discriminating semantics such as pomset, stepand interleaving semantics. This has been well-recognized in the literature. Langerak, forinstance, shows that his event structure semantics of LOTOS is compatible with the standardinterleaving semantics of LOTOS [89], Boudol & Castellani [23, 26] consider the compatibility89

90 Chapter 5: Timed operational semanticsbetween a ow event structure and interleaving semantics of CCS, and Baier & Majster-Cederbaum [10] prove the consistency between a prime event structure and interleaving se-mantics of theoretical CSP, extending the results of a previous attempt by Loogen & Goltz[95].These studies are all performed in an untimed setting. A problem, compared to the untimedcase, is that there is no consensus on how to include time into a transition system and, asa consequence, di�erent styles have been developed for providing an operational semanticsfor timed process algebras. This chapter concentrates on, what we consider to be, the twomajor schools in timed interleaving models|models that explicitly distinguish between time-advancing transitions and the occurrence of `normal' actions, and models that do not andcombine these two notions into a single transition relation.The di�erence between timed-action and time- and action transition systems can best be un-derstood by means of a simple example. In the timed-action model (Figure 5.1(a)) transitions
(a,1)

(b,0) (c,4)

(b,1)

(c,2) (c,3)

a b

b

c

cc

1

1

1

2
3

(a) (b)Figure 5.1: Timed-action transitions versus time- and action transitions.are labelled with timed actions and the passage of time is not explicitly modelled. In time- andaction-transition systems (Figure 5.1(b)) the passage of time is modelled explicitly (depictedvertically) and action transitions (depicted horizontally) are untimed. Action transitions areorthogonal to time transitions and the projection of action transitions on the time axis haszero length, indicating that actions consume no time.The approach followed in this chapter is adopted from [89, Chapter 7]; the same scheme isused by Rensink [127] to obtain an operational semantics for a process algebraic formalismincluding a re�nement operator. Since our timed variant of extended bundle event structuresis in fact just a parameterization of this model we might expect that we can quite closelyfollow this approach. The approach|inspired by [23, 26]|embodies de�ning a timed eventtransition system, which is a transition system in which we keep track of action occurrences(i.e., events) rather than the actions themselves (as usual in structured operational semantics),and showing that this transition system generates the same set of timed event traces as thecausality-based semantics.As argued above we concentrate on two types of timed interleaving models. This results intwo timed event-based operational semantics for PAT .

Event-based operational semantics for PAT 91In the �rst part of this chapter we consider a timed model for PAT based on timed-action tran-sitions. This model turns out to be a straightforward (and minimal) extension of the untimedevent transition system of Chapter 2|by just omitting the time labels in each inference rulethe untimed event transition system for PA is obtained. The resulting event-based operationalsemantics is fully compatible to the causality-based semantics of Chapter 4 in the sense thatit generates the same set of timed traces, and, since timed event traces can be used to deducelposets, it generates the same set of lposets.In Section 5.4 we distinguish between time-transitions (denoted) and action-transitions(denoted �!). This gives rise to a transition system which is an orthogonal extension of theuntimed event transition system for PA (of Chapter 2) in the sense that the rules for �! areidentical to the untimed event-based inference rules. Thus, time is indeed considered as an or-thogonal dimension of the untimed model. The model forces derivations to be time-consistent,and therefore is only partially compatible to the causality-based semantics of Chapter 4|itgenerates the same set of time-consistent traces.In more detail this chapter is organized as follows. Section 5.2 de�nes an operational semanticsfor PAT . Section 5.3 considers the consistency between the operational and causality-basedsemantics of PAT at the level of timed event transition systems. The alternative approach withseparate time- and action-transitions is presented in Section 5.4. The consistency between thealternative model and the denotational semantics is studied in Section 5.5. Model propertieslike time determinism, action persistency, and time additivity|properties of timed transitionsystems that are commonly considered to be of importance, see Nicollin & Sifakis [112]|areconsidered in Section 5.6. Finally, Section 5.7 discusses some related work and Section 5.8draws conclusions.In this chapter we con�ne ourselves (as in the previous chapters) to �nite behaviours; event-based operational semantics for P := B where B might contain occurrences of P is dealt within Chapter 10.5.2 Event-based operational semantics for PATIn this section we present an operational semantics, for PAT , the simple timed process algebraof Chapter 4. This semantics is de�ned by means of inference rules (in the style of Plotkin [120])that determine a timed event transition relation. We follow the procedure of Section 2.5.Event identities are generated by annotating each action occurrence in term B with a uniqueevent occurrence identi�er, denoted by a Greek letter. Recall that for parallel compositionnew event names can be created. If e is an event name of B and e0 an event name in B0, thenpossible new event names in B jjGB0 are (e; �) and (�; e0) for unsynchronized events and (e; e0)for synchronized events.The operational semantics de�nes a set of transition relations (e;a;t)����!!. B (e;a;t)����!! B0 denotesthat behaviour B can perform event e 2 Ev, labelled with action a 2 Act�;�, at time t 2 Time,and subsequently evolve into B0. The transition relation �!! is the smallest relation closedunder all inference rules in Table 5.1.

92 Chapter 5: Timed operational semantics
p� (�;�;t)����!! 0(t) a� ; B (�;a;t0)����!! t0 [B] (t0 > t) B (�;a;t)����!! B0t0 [B] (�;a;t+t0)������!! t0 [B0]B1 (�;a;t)����!! B01B1 +B2 (�;a;t)����!! B01 B2 (�;a;t)����!! B02B1 +B2 (�;a;t)����!! B02B1 (�;a;t)����!! B01B1 >> B2 (�;a;t)����!! B01 >> B2 (a 6= �) B1 (�;�;t)����!! B01B1 >> B2 (�;�;t)����!! t[B2]B1 (�;a;t)����!! B01B1 [> B2 (�;a;t)����!! B01 [> tfB2 g (a 6= �) B1 (�;�;t)����!! B01B1 [> B2 (�;�;t)����!! B01B2 (�;a;t)����!! B02B1 [> B2 (�;a;t)����!! B02 B (�;a;t)����!! B0t0fB g (�;a;t)����!! t0fB0 g (t > t0)B1 (�;a;t)����!! B01B1 jjGB2 ((�;�);a;t)������!! B01 jjGB2 (a 62 G�) B2 (�;a;t)����!! B02B1 jjGB2 ((�;�);a;t)������!! B1 jjGB02 (a 62 G�)B1 (�;a;t)����!! B01 ^ B2 (;a;t)����!! B02B1 jjGB2 ((�;);a;t)������!! B01 jjGB02 (a 2 G�)B (�;a;t)����!! B0B nG (�;a;t)����!! B0 nG (a 62 G) B (�;a;t)����!! B0B nG (�;�;t)����!! B0 nG (a 2 G)B (�;a;t)����!! B0B[H] (�;H(a);t)������!! B0[H]Table 5.1: Event-based operational semantics for PAT .

Event-based operational semantics for PAT 93As 0 cannot perform any transition there is no rule for this construct. p can perform thesuccessful termination action � at any time t. (t) a� ; B can perform event � at time t0, t0 > t,and evolves into t0 [B]. t0 [B] can be considered as behaviour B shifted t0 time units in advance.That is, if B can perform event �, say, at time t, then t0 [B] can perform � at time t+t0. Notethat t0 [B] is only an auxiliary construct; it has no counterpart at the language level.The rules for choice are a straightforward extension of the untimed case|if either B1 or B2can do an event e labelled a at time t, then B1+B2 can do so either. The same applies for therules for parallel composition in which no synchronization takes place, hiding, and relabelling.Synchronization can only take place when both participants can perform an equally labelledevent whose label is in the synchronization set G (or equals �) at time t.The rules for >> are also a straightforward extension of the rules for the untimed case exceptthat in case B1 performs a successful termination action � at time t, then B1 >> B2 evolvesinto t[B2] rather than B2. This represents that t time units have been passed before B2 canstart with its execution. This is similar to the timed action-pre�x case.For B1 [> B2 the rules are justi�ed as follows. If B1 performs an event at time t and evolvesinto B01 then B1 [> B2 can do the same while evolving into B01 [> tfB2 g. tfB2 g behaves likeB2 except that it is unable to perform events before t. This ensures that B2 cannot disruptB01 [> B2 by performing an event at time t0, say, while B1 has performed an event at timet > t0. The other inference rules for disrupt are straightforward extensions of the rules for theuntimed case.The inference rule for t0fB g is that if B can perform an event at time t, then t0fB g can doso if t > t0. Note that t0fB g is|like t0 [B]|an auxiliary operator that cannot be speci�ed bythe user.The inference rules are a conservative (and minimal) extension of the SOS-rules that determinethe (untimed) event transition system for PA (cf. Table 2.1)|when we omit the time labels inthe transitions and turn t[B] into B we obtain identical rules. Note that the inference rulesfor t[B] and tfB g then reduce to a tautology.5.1. Example. Let B = (3) a� ; (((2) b� ; 0 + (7) c ; (3) d� ; 0) jjd (12) d� ; 0). Then wederive using the inference rules of Table 5.1:(3) a� ; (((2) b� ; 0+ (7) c ; (3) d� ; 0) jjd (12) d� ; 0)(�;a;6)����!! f (timed-action pre�x) g6[((2) b� ; 0+ (7) c ; (3) d� ; 0) jjd (12) d� ; 0](;c;13)�����!! f (timed-action pre�x), (choice-right), (par-left), (time-shift) g6[7[(3) d� ; 0] jjd (12) d� ; 0]((�;�);d;22)�������!!f (synchronization), (time-shift) g6[7[9[0]] jjd 16[0]] .It should be noted that time labels in successive transitions do not have to increase, in fact,they can even decrease. Take, for instance, B = (3) a� ; 0 jjj (7) b ; 0. A possible derivationof B is B (;b;9)����!! B0 (�;a;4)����!! B00 where B0 = (3) a� jjj 9[0] and B00 = 4[0] jjj 9[0]; see also

94 Chapter 5: Timed operational semanticsCorollary 5.19. �5.2. Example. As a second example considerB := �((2) a� ; p jjj (14) b� ; p�) >> (1) c� ; 0� [> ((1) d� ; 0 jjj (3) f� ; 0) .Using the inference rules of Table 5.1 we derive�((2) a� ; p jjj (14) b� ; p�) >> (1) c� ; 0� [> ((1) d� ; 0 jjj (3) f� ; 0)((�;�);b;17)�������!!f (timed action-pre�x), (par-right), (enabling-left), (disrupt-left) g�((2) a� ; p jjj 17[p�]) >> (1) c� ; 0� [> 17f (1) d� ; 0 jjj (3) f� ; 0 g((�;�);a;5)������!! f (timed action-pre�x), (par-left), (enabling-left), (disrupt-left) g�(5[p] jjj 17[p�]) >> (1) c� ; 0� [> 5f 17f (1) d� ; 0 jjj (3) f� ; 0 g g(�;d;33)�����!! f (timed action-pre�x), (disrupt-right), (rule for tfB g) g5f 17f 33[0] jjj (3) f� ; 0 g g(�;f;18)�����!! f (timed action-pre�x), (rule for tfB g), (par-right) g5f 17f 33[0] jjj 18[0] g g . �Remark that nested t[] and tf g operators can be simpli�ed as follows: t[t0 [B]] = t+t0 [B]and tf t0fB g g = max(t;t0)fB g.In the remainder of this section we formally de�ne the transition system de�ned by �!! andshow the correspondence of this transition system with the standard transition system for PAde�ned in Chapter 1. The intuition is that if we take the transition system for B induced by�!! and abstract from the timing aspects and event identities then we obtain the standardtransition system for �T (B), the untimed counterpart of B.The set of derivatives of expression B consists of all expressions B0 that can be reached fromB by performing zero or more �!! transitions.5.3. Definition. (Behaviour derivatives)For B 2 PAT the set of derivatives of B, Der(B), is the smallest set satisfying:� B 2 Der(B)� B0 2 Der(B) ^ B0 (e;a;t)����!! B00) B00 2 Der(B). �5.4. Definition. For B 2 PAT the set of events in B, denoted E(B), is de�ned byE(B) , f e 2 Ev j 9 a 2 Act�;�; B0; B00 2 Der(B); t 2 Time : B0 (e;a;t)����!! B00 g: �Let lB : E(B) �! Act�;� associate to each event in B its action label. That is, lB(e) = ai� 9B0; B00 2 Der(B) : B0 (e;a;t)����!! B00. This permits us to write B (e;t)���!! B0 instead ofB (e;lB(e);t)������!! B00.

Event-based operational semantics for PAT 955.5. Definition. (Timed event transition system)For B 2 PAT the timed event transition system TST (B) , hS; L; T; s0i with� S = Der(B)� L = f (e; t) j 9 a 2 Act�;�; B0; B00 2 Der(B) : B0 (e;a;t)����!! B00 g� T = f (e;t)���!!j (e; t) 2 L g where (e;t)���!!= f (B1; B2) 2 S � S j B1 (e;t)���!! B2 g� s0 = B. �Transition relation �!! is said to be deterministic i�8B : (9B0; B00 : B (e;a;t)����!! B0 ^ B (e;a;t)����!! B00) B0 = B00) .A transition relation that does not satisfy this property is called nondeterministic.Since event identi�ers are unique and (together with the time at which they occur) uniquelydetermine the successor state of a state in TST (B) we have that the transition system doesnot contain nondeterminism.5.6. Lemma. 8B 2 PAT : TST (B) is deterministic.Proof. Straightforward by induction on the structure of B. �We extend the function �T : PAT �! PA, which associates to a timed behaviour its cor-responding untimed behaviour by simply omitting all time annotations, to include t[B]and tfB g as well. Let PA+T denote the extension of PAT with t[B] and tfB g and let�T (t[B]) , �T (B) and �T (tfB g) , �T (B) for any B. We then have (recall from Chapter1 that a�! is the transition relation from the standard interleaving semantics of PA):5.7. Lemma. 8B;B0 2 PA+T : (9 e; t : B (e;t)���!! B0 ^ lB(e) = a) i� �T (B) a�!�T (B0).Proof. By induction on the structure of B.Base : The base cases that we consider are 0, p� and timed action-pre�x.1. B = 0. Trivial as 0 cannot perform any �!! transitions and �T (0) = 0 cannot perform any�! transitions.2. B = p�. Trivial as p� can only perform � at time t, evolving into 0. �T (p�) = p� can onlyperform � and evolves into 0 = �T (0).3. B = (t) a� ; B1. Then we have B (�;a;t0)����!! t0 [B1] for t0 > t. �T (B) = a� ; �T (B1). For thisconstruct the only possible �! transition is �T (B) a�!�T (B1). Since �T (t0 [B1]) = �T (B1)this proves the case.Induction Step: Assume the lemma holds for B1 and B2. We only provide the proof for time-shiftand parallel composition. The proofs for the other operators are rather similar and omitted here.

96 Chapter 5: Timed operational semantics1. B = t[B1]. For this case we derive9 e; t0 : t[B1] (e;t+t0)�����!! t[B2] ^ lB(e) = a, f SOS-rule for t[] g9 e; t0 : B1 (e;t0)���!! B2 ^ lB1(e) = a, f induction hypothesis g�T (B1) a�!�T (B2), f de�nition of �T g�T (t[B1]) a�!�T (t[B2]) .2. B = B1 jjGB2. For this case we derive9 e; t : B1 jjGB2 (e;t)���!! B0 ^ lB(e) = a, f SOS-rule (�!!) for jjG g(9 e; t : B1 (e;t)���!! B01 ^ lB1(e) = a ^ a 62 G�)_ (9 e; t : B2 (e;t)���!! B02 ^ lB2(e) = a ^ a 62 G�)_ (9 e; e0; t : B1 (e;t)���!! B01 ^ B2 (e0;t)���!! B02 ^ lB1(e)=lB2(e0)=a ^ a 2 G�), f induction hypothesis g(�T (B1) a�!�T (B01) ^ a 62 G�) _ (�T (B2) a�!�T (B02) ^ a 62 G�)_ (�T (B1) a�!�T (B01) ^ �T (B2) a�!�T (B02) ^ a 2 G�), f SOS-rule (�!) for jjG g�T (B1) jjG �T (B2) a�!B00, f de�nition of �T g�T (B1 jjGB2) a�!B00 .It is now easy to check that B00 = �T (B0). �For a set S of behaviours fB1; : : : ; Bn g let �T (S) , f�T (B1); : : : ;�T (Bn) g.5.8. Corollary. 8B 2 PAT : �T (Der(B)) = Der(�T (B)).Proof. Straightforward from Lemma 5.7. �5.9. Definition. Let TST (B) = hS; L; T; s0i. The corresponding untimed transition system,denoted �(TST (B)), is de�ned as �(TST (B)) , hS 0; L0; T 0; s00i where� S 0 = �T (S)� L0 = f lB(e) j (e; t) 2 L g� T 0 = f a�! j a 2 L0 g wherea�! = f (�T (B1);�T (B2)) j 9 e; t : B1 (e;t)���!! B2 ^ lB(e) = a g� s00 = �T (s0). �

Correspondence with causality-based semantics 97The correspondence between the timed event transition system of PAT and the standardinterleaving system of PA is presented in the following theorem. It says that when we constructfor timed behaviourB the automaton TST (B) and subsequently omit times from this transitionsystem while focusing on action labels rather than on event labels (i.e., construct �(TST (B))),we obtain the same result as we get by constructing the standard transition system TS for thecorresponding untimed behaviour �T (B). That is,5.10. Theorem. 8B 2 PAT : �(TST (B)) = TS(�T (B)).Proof. Let �(TST (B)) = hS0; L0; T 0; s00i. We then derive1. For the set of states S0 we have by de�nition of TST (B) that S0 = �T (S), and since S = Der(B),we obtain S0 = �T (Der(B)). From Corollary 5.8 it immediately follows S0 = Der(�T (B)).2. For the label set L0 we derivef lB(e) j (e; t) 2 L g= f De�nition 5.5 gf lB(e) j 9 a 2 Act�;�; e; t 2 Time; B0; B00 2 Der(B) : B0 (e;a;t)����!! B00 g= f Lemma 5.7 gf a j 9�T (B0);�T (B00) 2 Der(�T (B)) : �T (B0) a�!�T (B00) g .3. For T 0 we havef (�T (B1);�T (B2)) j 9 e; t : B1 (e;t)���!! B2 ^ lB(e) = a g= f Lemma 5.7 gf (�T (B1);�T (B2)) j 9 a : �T (B1) a�!�T (B2) g .4. For the initial state we have s00 = �T (s0) = �T (B).It is now easy to check that �(TST (B)) = TS(�T (B)) for any B. �This shows that the timed event transition system (induced by �!!) for B 2 PAT is astraightforward and conservative extension of the transition system (induced by �!) for�T (B) 2 PA.5.3 Correspondence with causality-based semanticsThis section proves the consistency between the denotational semantics ET [[]] of PAT in terms oftimed event structures (see Chapter 4) and its operational semantics induced by the inferencerules for �!!. The consistency proof is carried out in two steps. First, we characterize thetimed event traces that are generated by the operational semantics of B in a denotational way.This yields a denotational trace semantics for B, denoted TT [[B]]. Secondly, it is proven thatthis trace semantics coincides with the timed event traces obtained from the causality-basedsemantics of B, ET [[B]].We start by extending �!! towards a trace derivation relation ��!! in the usual way:

98 Chapter 5: Timed operational semantics5.11. Definition. For B 2 PAT , and � = (e1; a1; t1) : : : (en; an; tn) for n > 0, letB ��!! B0 , (9Bi : B = B0 (e1;a1;t1)������!! B1 (e2;a2;t2)������!! : : : (en;an;tn)������!! Bn = B0): �The following notion is needed to characterize the timed event traces for parallel composition.5.12. Definition. Let S1 and S2 be sets of triples of events, actions and a time, and let Gbe a set of action labels (G � Act). The set S1 onG S2 is de�ned byS1 onG S2 , f ((e; e0); a; t) j (a 2 G� ^ (e; a; t) 2 S1 ^ (e0; a; t) 2 S2) _(a 62 G� ^ (e; a; t) 2 S1 ^ e0 = �) _(a 62 G� ^ e = � ^ (e0; a; t) 2 S2) g . �So, ((e; e0); a; t) is a member of S1 onG S2 if (i) a is a synchronization event (i.e., a 2 G�),(e; a; t) 2 S1 and (e0; a; t) 2 S2 or (ii) a is a non-synchronization event (i.e., a 62 G�), (e; a; t) 2S1 and e0 = � (or similar for (e0; a; t) 2 S2 and e = �). Notice that for case (i) triples of S1and S2 are required to have identical timings.(S1 onG S2)� consists of all �nite sequences constructed from elements of the set S1 onG S2.5.13. Definition. For � 2 (S1 onG S2)� projections �1(�) and �2(�) are de�ned by:� �i(") , "; for i = 1; 2� �1(((e; e0); a; t) �0) , (�1(�0) if e = �(e; a; t) �1(�0) otherwise� �2(((e; e0); a; t) �0) , (�2(�0) if e0 = �(e0; a; t) �2(�0) otherwise : �In order to characterize the set of timed event traces generated by the SOS-rules for �!! weneed the following auxiliary operations on traces.5.14. Definition. The following operations on timed event trace � are de�ned:1. For set of actions G, � nG (`� with G hidden') is de�ned by(a) " nG , "(b) ((e; a; t) �0) nG , ((e; �; t) (�0 nG) if a 2 G(e; a; t) (�0 nG) if a 62 G2. For relabelling function H, �[H] (`� relabelled with H') is de�ned by(a) "[H] , "(b) ((e; a; t) �0)[H] , (e;H(a); t) (�0[H])

Correspondence with causality-based semantics 993. For t 2 Time, t[�] (`� delayed by t') is de�ned by(a) t["] , "(b) t[(e; a; t0) �0] , (e; a; t0+t) t[�0]4. mx(�) denotes the maximal time instant occurring in � and is de�ned by(a) mx(") , 0(b) mx((e; a; t) �0) , max(t;mx(�0)). �Let V for V a set of timed event traces denote the set of timed labelled events occurring in atimed trace in V .5.15. Definition. For V a set of timed event traces let V , f s j 9 � 2 V : s 2 � g. �The set of timed event traces of B is de�ned in a denotational way as follows.5.16. Definition. For B 2 PAT the set of timed traces of B, TT [[B]], is de�ned by:TT [[0]] , f " gTT [[p�]] , f " g [f (�; �; t) j t 2 Time gTT [[(t) a� ; B]] , f (�; a; t0) t0[�] j t0 > t ^ � 2 TT [[B]] g [f " gTT [[B1 +B2]] , TT [[B1]] [TT [[B2]]TT [[B1 >> B2]] , f �1 (e; �; t) t[�2] j �1 (e; �; t) 2 TT [[B1]] ^ �2 2 TT [[B2]] g[f � 2 TT [[B1]] j � 6= �0 (e; �; t) gTT [[B1 [> B2]] , f �1 �2 j �1 2 TT [[B1]] ^ �1 6= �01(e; �; t) ^ �2 2 TT [[B2]]^ (8 ei 2 �2 : ti > mx(�1)) g[f � 2 TT [[B1]] j � = �0 (e; �; t) gTT [[B[H]]] , f � j 9 �0 2 TT [[B]] : � = �0[H] gTT [[B nG]] , f � j 9 �0 2 TT [[B]] : � = �0 nG gTT [[B1 jjGB2]] , f � 2 (TT [[B1]]onGTT [[B2]])� j �i(�) 2 TT [[Bi]] for i=1; 2 g: �De�nition 5.16 provides a denotational timed event trace semantics for PAT . The followinglemma shows that this denotational timed event trace semantics TT [[B]] coincides with thetimed event traces generated by �!!.5.17. Lemma. 8B 2 PAT : TT [[B]] = f � j 9B0 : B ��!! B0 g.Proof. By induction on the structure of B.Base: For B = 0 we have that f� j 9B0 : 0 ��!! B0 g equals f " g. By De�nition 5.16 this equalsTT [[0]]. From the SOS-rules it follows directly that for B = p� the only timed event traces are " and(�; �; t) for any t 2 Time. By De�nition 5.16 this equals TT [[p�]].Induction Step: Assume the lemma holds for B1 and B2. For convenience let T (B) denote f� j 9B0 :B ��!! B0 g. We consider the proofs for timed action-pre�x and disrupt. The proofs for the otherconstructs are similar and omitted.

100 Chapter 5: Timed operational semantics1. B = (t) a� ; B1. By induction on the length of � it is rather straightforward to prove, usingthe SOS-rules of Table 5.1, that for nonempty � behaviour (t) a� ; B1 ��!! i� � = (�; a; t0)�0with t0 > t such that (t) a� ; B1 (�;a;t0)����!! t0 [B1] and t0 [B1] �0��!!. Thus, we have:f� j 9B0 : (t) a� ; B1 ��!! B0 g= f see above gf (�; a; t0)�0 j t0 > t ^ �0 2 T (t0 [B1]) g [f " g= f �0 2 T (t0 [B1]), (� 2 T (B1) ^ �0 = t0 [�]) gf (�; a; t0) t0 [�] j t0 > t ^ � 2 T (B1) g [f " g= f induction hypothesis gf (�; a; t0) t0 [�] j t0 > t ^ � 2 TT [[B1]] g [f " g= f De�nition 5.16 gTT [[(t) a� ; B1]] .2. B = B1 [> B2. By induction on the length of �, using the SOS-rules of Table 5.1, it is nothard to prove (but tedious) that B1 [> B2 ��!! i� either(i) � = �1 (e; �; t), and B1 ��!! B01 or(ii) � = �1 �2, B1 �1��!! B01, �1 6= �01 (e; �; t), and tnf : : : t1fB2 g g �2��!! B02 for�1 = (e1; t1) : : : (en; tn).So, we can derive:f� j 9B0 : B1 [> B2 ��!! B0 g= f (i) and (ii) gf� 2 T (B1) j � 6= �0 (e; �; t) g[f�1 �2 j �1 2 T (B1) ^ �1 6= �01 (e; �; t) ^ �2 2 T (tnf : : : t1fB2 g g) g= f tf t0fB g g = max(t;t0)fB g; de�nition mx gf� 2 T (B1) j � 6= �0 (e; �; t) g[f�1 �2 j �1 2 T (B1) ^ �1 6= �01 (e; �; t) ^ �2 2 T (mx(�1)fB2 g) g= f � 2 T (tfB g), (�0 2 T (B) ^ (8 ei 2 �0 : ti > t) gf� 2 T (B1) j � 6= �0 (e; �; t) g[f�1 �2 j �1 2 T (B1) ^ �1 6= �01 (e; �; t) ^ �2 2 T (B2) ^ (8 ei 2 �2 : ti > mx(�1)) g= f induction hypothesis gf� 2 TT [[B1]] j � 6= �0 (e; �; t) g [f�1 �2 j �1 2 TT [[B1]] ^ �1 6= �01 (e; �; t) ^ �2 2 TT [[B2]] ^ (8 ei 2 �2 : ti > mx(�1)) g= f De�nition 5.16 gTT [[B1 [> B2]] . �In order to relate the operationally characterized timed event traces and the traces obtainedfrom the causality-based semantics ET [[]] we slightly adapt the de�nition of ET [[]] for p and(t) a ; B. In the current de�nition of ET [[]] a unique but arbitrary event is introduced for these

Correspondence with causality-based semantics 101constructs modelling the appearance of � and a, respectively. Here we assume that all occur-rences of p and action-pre�x are uniquely identi�ed, and we take this unique identi�cation asthe unique event name in the de�nition of ET [[]].The following theorem says that the set of timed event traces of behaviour B of PAT is identicalto the set of timed event traces of the corresponding timed event structure ET [[B]].5.18. Theorem. 8B 2 PAT : TT (ET [[B]]) = TT [[B]].Proof. By induction on the structure of B.Base: For B = 0 we simply have TT (ET [[0]]) = f " g = TT [[0]].For B = p� we have TT (ET [[p�]]) = f " g [f (�; �; t) j t 2 Time g = TT [[p�]].Induction Step: Assume the theorem holds for B1 and B2. We only provide proofs for timed action-pre�x, choice, enabling and disrupt. The proofs for the other operators are conducted in a similarway as for the untimed case [89, Theorem 7.5.3], and are omitted here.Let �i = ET [[Bi]] = h(Ei; i; 7!i; li);Di;Tii for i=1; 2, and � = ET [[B]].1. B = (t) a� ; B1. For � bundles f f (�; a) g g � pin(E1) have been added to h(f � g;?;?;f (�; a) g); f (�; t) g;?i. The non-empty timed event traces of � are therefore those interleav-ings of (�; a; t0) and t0 [�], with � 2 TT (�1), that satisfy the following constraints: (i) the �rstelement of t0 [�] is preceded by (�; a; t0), and (ii) t0 > D(�) = t. Thus we derive:TT (ET [[(t) a� ; B1]])= f see above gf (�; a; t0) t0 [�] j t0 > t ^ � 2 TT (�1) g [f " g= f induction hypothesis gf (�; a; t0) t0 [�] j t0 > t ^ � 2 TT [[B1]] g [f " g= f De�nition 5.16 gTT [[(t) a� ; B1]] .2. B = B1 + B2. In � mutual conicts are introduced between init(�1) and init(�2). So, thetimed event traces of � are those interleavings of �1 2 TT (�1) and �2 2 TT (�2) such that the�rst timed event in �1 precedes the �rst timed event in �2, and vice versa. That is, the traceis either �1 or �2. So, TT (ET [[B1 + B2]]) = TT (�1) [TT (�2), which, by induction hypothesis,equals TT [[B1]] [TT [[B2]]. By De�nition 5.16 this equals TT [[B1 +B2]].3. B = B1 >> B2. In � a bundle from exit(�1) to pin(�2) is introduced. This means that tracesof � are either (i) traces of �1 that do not contain a �, or (ii) concatenations of �1 (e; �; t) andt[�2] with �1 (e; �; t) a trace of �1, and �2 a trace of �2. That is,TT (ET [[B1 >> B2]])= f see discussion above gf� 2 TT (�1) j � 6= �0 (e; �; t) g [f�1 (e; �; t) t[�2] j �1 (e; �; t) 2 TT (�1)^ �2 2 TT (�2) g= f induction hypothesis gf� 2 TT [[B1]] j � 6= �0 (e; �; t) g[f�1 (e; �; t) t[�2] j �1 (e; �; t) 2 TT [[B1]] ^ �2 2 TT [[B2]] g= f De�nition 5.16 gTT [[B1 >> B2]] .

102 Chapter 5: Timed operational semantics4. B = B1 [> B2. From the untimed case we know that traces of � are either (i) traces of �1that end with a �, or (ii) concatenations of traces �1 2 TT (�1) and �2 2 TT (�2) where �1does not contain a �. In � asymmetric conicts are introduced between E1 and init(�2). Thismeans|according to De�nition 4.5|that the timing of events in �2 should exceed the timingof all events of �1 that have occurred in �1. So, we derive:TT (ET [[B1 [> B2]])= f see discussion above gf� 2 TT (�1) j � = � (e; �; t) g [f�1 �2 j �1 2 TT (�1) ^ �2 2 TT (�2) ^ �1 6= �01 (e; �; t) ^ (8 ei 2 �2 : ti > mx(�1)) g= f induction hypothesis gf� 2 TT [[B1]] j � = � (e; �; t) g [f�1�2 j �1 2 TT [[B1]] ^ �2 2 TT [[B2]] ^ �1 6= �01 (e; �; t) ^ (8 ei 2 �2 : ti > mx(�1)) g= f De�nition 5.16 gTT [[B1 [> B2]] . �5.19. Corollary. 8B;B1; B2 2 PAT ; t; t0 2 Time :�B (e;a;t)����!! B1 (e0;a0;t0)�����!! B2 ^ t0 < t�) (9B0 : B (e0;a0;t0)�����!! B0 (e;a;t)����!! B2) .Proof. Directly from Theorems 5.18 and 4.9. �We now rephrase Theorem 5.18 in the sense of timed event trace equivalence between transitionsystems. Let TST (B) be the transition system obtained by applying the inference rules ofTable 5.1 to B. For ET [[B]] a transition system is constructed in the following way.5.20. Definition. For � 2 EBEST , the set of derivatives, der(�), is de�ned as the smallestset satisfying:� � 2 der(�)� (�0 2 der(�) ^ �00 = �0[(e; t)])) �00 2 der(�). �States of the transition system for ET [[B]] are derivatives of ET [[B]] with ET [[B]] being theinitial state. There is a transition from � to �0 if �0 = �[�] for trace � with j � j = 1.5.21. Definition. For � 2 EBEST let ETST (�) , hS; L; T; s0i with� S = der(�)� L = f (e; t) j 9�0;�00 2 der(�) : �00 = �0[(e; t)] g� T = f (�0; (e; t);�00) j �0;�00 2 der(�) ^ �00 = �0[(e; t)] g� s0 = �. �

An alternative approach for PAT 103Theorem 5.18 implies that the timed event transition systems TST (B) and ETST (ET [[B]]) are(timed) event trace equivalent. It is easy to check that for each transition B (e;t)���!! B0 thereis a unique way in which this transition is derived from the SOS-rules for �!!. Since|inaddition|both (timed) event transition systems are deterministic it follows that TST (B) andETST (ET [[B]]) are strong (timed) bisimulation equivalent.15.22. Theorem. 8B 2 PAT : TST (B) � ETST (ET [[B]]).Proof. Similar to the proof of Theorem 2.46. �5.4 An alternative approach for PATThis section presents an alternative event-based operational semantics for PAT which is in-spired by the separation of the passage of time (relation) and the occurrence of actions(relation �!) as introduced by Moller & Tofts [105] and Wang [149] and adopted by, amongstothers, Bolognesi et al. [18] and (partly) Schneider [133].The transition relations and �! transform a pair hB; ti, where B 2 PAT and t 2 Time.hB; ti should be interpreted as behaviour B at time t. Usually one starts with hB; 0i. hB; ti hB0; t0i denotes that B at time t can pass time to B0, which is often equal to B, at time t0(t0 > t). Thus, time is advanced with an amount of t0�t time units. hB; ti (e;a)���!hB0; ti meansthat B at time t performs event e, labelled with action a, and turns into B0 (at t).The relations and �! are the smallest relations closed under all inference rules de�nedbelow.InactionThis behaviour cannot perform any action, i.e., it can perform no �! transitions. 0 permitsany amount of time to pass, remaining 0.h0; ti h0; t0i (t0 > t)Successful terminationp can only perform a � action, and permits any amount of time to pass, remaining p.hp�; ti hp�; t0i (t0 > t) hp�; ti (�;�)���!h0; ti
1For the sake of brevity, we refrain from formally de�ning the notion of strong timed bisimulation equiva-lence; its de�nition is similar to De�nition 1.4 labelling transitions also with time labels.

104 Chapter 5: Timed operational semanticsTimed action-pre�xThe behaviour (t) a� ; B will wait for t time units to become (0) a� ; B after which it eitherpermits any amount of time to pass, remaining the same behaviour, or it may perform event(�; a) and behave subsequently like B. (Recall that x	y denotes max(x�y; 0) for x; y 2 Time.)The fact that (0) a ; B may delay is reasonable; if the environment is not possible to engagein a then it should be allowed to delay until the environment is able to engage.h(t0) a� ; B; ti h(t0 	 (t00�t)) a� ; B; t00i (t00 > t)h(0) a� ; B; ti (�;a)���!hB; tiChoiceIf the component behaviours B1 and B2 permit the passage of time with some amount then sodoes their choice B1 +B2. Note that the passage of time does not decide the choice betweenB1 and B2.2 If B1 (or B2) performs event (�; a) and evolves into B01 (B02) then B1 + B2 cando the same. Thus,hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 +B2; ti hB01 +B02; t0ihB1; ti (�;a)���!hB01; tihB1 +B2; ti (�;a)���!hB01; ti hB2; ti (�;a)���!hB02; tihB1 +B2; ti (�;a)���!hB02; tiEnablingIf the �rst component B1 permits the passage of time with some amount, then so does theenabling of it with B2. The action transitions are similar to the untimed case.hB1; ti hB01; t0ihB1 >> B2; ti hB01 >> B2; t0ihB1; ti (�;a)���!hB01; tihB1 >> B2; ti (�;a)���!hB01 >> B2; ti (a 6= �) hB1; ti (�;�)���!hB01; tihB1 >> B2; ti (�;�)���!hB2; ti
2In the `standard' jargon of Nicollin & Sifakis [112] our choice construct is classi�ed as a strong choice; aweak choice allows the passage of time to decide the choice.

An alternative approach for PAT 105DisruptIf the component behaviours B1 and B2 permit the passage of time with some amount thenso does B1 [> B2. The action transitions are similar to the untimed case.hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 [> B2; ti hB01 [> B02; t0i hB1; ti (�;�)���!hB01; tihB1 [> B2; ti (�;�)���!hB01; tihB1; ti (�;a)���!hB01; tihB1 [> B2; ti (�;a)���!hB01 [> B2; ti (a 6= �) hB2; ti (�;a)���!hB02; tihB1 [> B2; ti (�;a)���!hB02; tiParallel compositionLike for choice, B1 jjGB2 allows the passage of time with some amount if both componentbehaviours permit this. Components of a parallel composition may perform actions not in thesynchronization set G� independent of each other, while if both B1 and B2 can participate ina synchronization action a 2 G� then so can their parallel composition.hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 jjGB2; ti hB01 jjGB02; t0ihB1; ti (�;a)���!hB01; tihB1 jjGB2; ti ((�;�);a)�����!hB01 jjGB2; ti (a 62 G�)hB2; ti (�;a)���!hB02; tihB1 jjGB2; ti ((�;�);a)�����!hB1 jjGB02; ti (a 62 G�)hB1; ti (�;a)���!hB01; ti ^ hB2; ti (;a)���!hB02; tihB1 jjGB2; ti ((�;);a)�����!hB01 jjGB02; ti (a 2 G�)HidingIf B allows the passage of time with a certain amount, then so does B nG. Any action that Bcan perform, can also be performed by B nG whereby actions in set G are turned into silentactions � . hB; ti hB0; t0ihB nG; ti hB0 nG; t0ihB; ti (�;a)���!hB0; tihB nG; ti (�;a)���!hB0 nG; ti (a 62 G) hB; ti (�;a)���!hB0; tihB nG; ti (�;�)���!hB0 nG; ti (a 2 G)

106 Chapter 5: Timed operational semanticsRelabellingLike for hiding, if B allows the passage of time with a certain amount, then so does B[H].If B can perform action a and evolve into B0, then B[H] can perform H(a) and evolve intoB0[H]. hB; ti hB0; t0ihB[H]; ti hB0[H]; t0i hB; ti (�;a)���!hB0; tihB[H]; ti (�;H(a))�����!hB0[H]; tiFrom the event transition system de�ned by �! we can easily obtain the standard interleavingsemantics for PA (as de�ned in Chapter 1) by omitting time components of tuples h: : :i andthe event identi�ers from transitions and expressions. When retaining the event identi�ersand only omitting the time components we obtain the event-based operational semantics ofPA (see Table 2.1). In this sense the presented transition system(s) can be considered to bean orthogonal extension of the untimed one.5.23. Example. Consider B = (3) a� ; (((2) b� ; 0+(7) c ; (3) d� ; 0) jjd (12) d� ; 0). Thenwe derive using the inference rules for and �! (compare with Example 5.1):h(3) a� ; (((2) b� ; 0+ (7) c ; (3) d� ; 0) jjd (12) d� ; 0); 0i f (timed action-pre�x) gh(0) a� ; (((2) b� ; 0+ (7) c ; (3) d� ; 0) jjd (12) d� ; 0); 6i(�;a)���! f (timed action-pre�x) gh((2) b� ; 0+ (7) c ; (3) d� ; 0) jjd (12) d� ; 0; 6i f (parallel composition), (choice), (timed action-pre�x) gh((0) b� ; 0+ (0) c ; (3) d� ; 0) jjd (5) d� ; 0; 13i(;c)���! f (par-left), (choice-right), (timed action-pre�x) gh(3) d� ; 0 jjd (5) d� ; 0; 13i f (parallel composition), (timed action-pre�x) gh(0) d� ; 0 jjd (0) d� ; 0; 22i((�;�);d)�����! f (synchronization), (timed action-pre�x) gh0 jjd 0; 22i .Opposed to the transition system based on timed-action transitions, time labels in successivetransitions do increase, and as a result all derivations are time-consistent. E.g., for B =(3) a� ; 0 jjj (7) b ; 0 we have hB; 0i (;b;9)����!�hB0; 9i (�;a;4)�����!= �, where �!� is de�ned below. ��!� is de�ned as the combination of and �! .5.24. Definition. hB; ti (e;a;t0)����!�hB0; t0i i� �9B00 : hB; ti hB00; t0i (e;a)���!hB0; t0i�. �Using the relation �!� the notion of timed event trace and a trace derivation relation ��!�for timed event trace � can be de�ned in the usual way.

Alternative timed event transition semantics 1075.5 Alternative timed event transition semanticsThis section proves the consistency between the denotational semantics ET [[]] of PAT in termsof timed event structures and its operational semantics induced by the inference rules for�! and . We start by giving an operational characterization of timed event traces of Bunder �!�, and relate this to the denotational characterization of timed traces, TT [[B]] (seeDe�nition 5.16).We have the following result for timed event traces generated by �!�. For parallel compositionwe use the projections �1(�) and �2(�) for � 2 (S1 onG S2)+ (rather than �), the set containingall time-consistent sequences constructed from elements of the set S1 onG S2.5.25. Lemma. For trace �, behaviours B, B1 and B2, and time t; t00 we have:1. h0; ti ��!�hB0; t0i i� � = "; B0 = 0 and t0 > t.2. hp�; ti ��!�hB0; t0i i� either(i) � = "; B0 = p� and t0 > t, or(ii) � = (�; �; t0), B0 = 0 and t0 > t.3. h(t) a� ; B; t00i ��!�hB0; t0i i� either(i) � = "; B0 = (t	 (t0�t00)) a� ; B and t0 > t00, or(ii) � = (�; a; ta) �0 with ta > t00+t such that h(t) a� ; B; t00i (�;a;ta)����!�hB; tai andhB; tai �0��!�hB0; t0i.4. hB1 +B2; ti ��!�hB0; t0i i� either(i) � = " ^ hB1; ti "�!�hB01; t0i ^ hB2; ti "�!�hB02; t0i ^ B0 = B01 +B02, or(ii) hB1; ti �0��!�hB01; t0i ^ B0 = B01 ^ � = �0 ^ � 6= ", or(iii) hB2; ti �0��!�hB02; t0i ^ B0 = B02 ^ � = �0 ^ � 6= ".5. hB1 >> B2; ti ��!�hB0; t0i i� either(i) � 6= �1(e; �; t0), hB1; ti ��!�hB01; t0i, and B0 = B01 >> B2, or(ii) � = �1(e; �; t00)�2, hB1; ti �1(e;�;t00)������!�hB01; t00i, hB2; t00i �2��!�hB02; t0i and B0 = B02.6. hB1 [> B2; ti ��!�hB0; t0i i� either(i) � = �1, hB1; ti �1��!�hB01; t0i, �1 6= �01 (e; �; t0) and B0 = B01 [> B2, or(ii) � = �1 (e; �; t0), hB1; ti �1 (e;�;t0)������!�hB01; t0i and B0 = B01, or(iii) � = �1 �2, hB1; ti �1��!�hB01; t00i, �1 6= �01(e; �; t00), and hB2; ti "�!�hB002 ; t00i,hB002 ; t00i �2��!�hB02; t0i, �2 6= " and B0 = B02.7. hB1 jjGB2; ti ��!�hB0; t0i i�hB1; ti �1(�)���!�hB01; t0i and hB2; ti �2(�)���!�hB02; t0i and B0 = B01 jjGB02.8. hB[H]; ti ��!�hB0; t0i i� hB; ti �0��!�hB00; t0i and B0 = B00[H] and � = �0[H].9. hB nG; ti ��!�hB0; t0i i� hB; ti �0��!�hB00; t0i and B0 = B00 nG and � = �0 nG.

108 Chapter 5: Timed operational semanticsProof. For all syntactical constructs the proof is by induction on the length of � using thetransition rules for �! and . These proofs are rather laborious, but quite straightforward. Here,we only provide the proof for action-pre�x. Consider (t) a� ; B we distinguish between two cases,� = " and � 6= ".1. For � = " we deriveh(t) a� ; B; t00i "�!�hB0; t0i, f De�nition 5.24 gh(t) a� ; B; t00i hB0; t0i, f SOS-rules for gt0 > t00 ^ B0 = (t	 (t0�t00)) a� ; B .2. For � 6= " it follows immediately from the SOS-rules for and �! that � = (�; a; ta) �0.h(t) a� ; B; t00i (�;a;ta) �0�������!�hB0; t0i, f De�nition 5.24 and ��!� gh(t) a� ; B; t00i hB00; tai (�;a)���!hB000; tai �0��!�hB0; t0i, f see proof just above for � = " gh(t) a� ; B; t00i h(t	 (ta�t00)) a� ; B; tai (�;a)���!hB000; tai �0��!�hB0; t0i, f SOS-rule for �! implies ta > t+t00 and B000 = B gh(t) a� ; B; t00i h(0) a� ; B; tai (�;a)���!hB; tai �0��!�hB0; t0i ^ ta > t+ t00, f De�nition 5.24 gh(t) a� ; B; t00i (�;a;ta)�����!�hB; tai �0��!�hB0; t0i ^ ta > t+ t00 . �5.26. Definition. The set of timed event traces of B at t under �!� is de�ned as:T �T [[B]] t , f � j 9B0; t0 : hB; ti ��!�hB0; t0i g . �The following lemma shows that the set of timed traces of B under �!�, T �T [[B]], correspondsto the time-consistent timed traces obtained from the transition system based on timed-actions, TT [[B]].5.27. Lemma. 8B 2 PAT ; t 2 Time : T �T [[B]] t = f t[�] j � 2 TT [[B]] ^ tc(�) g.Proof. By induction on the structure of B.Base: For B = 0 we have T �T [[0]] t = f " g. From De�nition 5.16 we infer that TT [[0]] = f " g. Sincet["] = " and tc("), the lemma holds for this case. For B = p� we have T �T [[0]] t = f " g [f (�; �; t0) jt0 > t g, that is, f " g [f t[(�; �; t00)] j t00 > 0 g. From De�nition 5.16 the lemma follows directly.Induction Step: Assume the lemma holds for B1 and B2. We provide the proofs for timed action-pre�xand enabling. The proofs for the other operators are similar and are omitted here.

Alternative timed event transition semantics 1091. Timed action-pre�x. For this case we derive:T �T [[(t00) a� ; B]] t= f De�nition 5.26 gf� j 9B0; t0 : h(t00) a� ; B; ti ��!�hB0; t0i g= f Lemma 5.25; De�nition 5.26 gf " g [f (�; a; ta)�0 j ta > t+t00 ^ �0 2 T �T [[B]] ta g= f induction hypothesis gf " g [f (�; a; ta) ta [�00] j ta > t+t00 ^ �00 2 TT [[B]] ^ tc(�00) g= f calculus; tc(�), tc(t[�]) gf " g [f (�; a; t0a+t) t0a+t[�00] j t0a > t00 ^ �00 2 TT [[B]] ^ tc(t0a [�00]) g= f de�nition of t[�] gf " g [f t[(�; a; t0a) t0a [�00]] j t0a > t00 ^ �00 2 TT [[B]] ^ tc((�; a; t0a) t0a [�00]) g= f De�nition 5.16; t["] = "; tc(") gf t[�] j � 2 TT [[(t00) a� ; B]] ^ tc(�) g .2. Enabling. For this case we derive:T �T [[B1 >> B2]] t= f De�nition 5.26 gf� j 9B0; t0 : hB1 >> B2; ti ��!�hB0; t0i g= f Lemma 5.25; De�nition 5.26 gf� j � 6= �1 (e; �; t0) ^ � 2 T �T [[B1]] t g[f�1 (e; �; t00)�2 j �1 (e; �; t00) 2 T �T [[B1]] t ^ �2 2 T �T [[B2]] t00 g= f induction hypothesis gf t[�] j t[�] 6= �1 (e; �; t0) ^ � 2 TT [[B1]] ^ tc(�) g[f t[�01 (e; �; t00�t)] t00 [�02] j �01 (e; �; t00�t) 2 TT [[B1]] ^ �02 2 TT [[B2]]^ tc(�01 (e; �; t00�t)) ^ tc(�02) g= f calculus gf t[�] j t[�] 6= �1 (e; �; t0) ^ � 2 TT [[B1]] ^ tc(�) g[f t[�01 (e; �; t00�t) t00�t[�02]] j �01 (e; �; t00�t) 2 TT [[B1]] ^ �02 2 TT [[B2]]^ tc(�01 (e; �; t00�t) t00�t[�02]) g= f De�nition 5.16 gf t[�] j � 2 TT [[B1 >> B2]] ^ tc(�) g . �Since we know from Theorem 5.18 that TT [[B]] equals the set of timed traces generated fromthe event structure corresponding to B, ET [[B]], we immediately have5.28. Corollary. 8B 2 PAT : T �T [[B]] t = f t[�] j � 2 TT (ET [[B]]) ^ tc(�) g.Proof. Straightforward from the previous lemma and Theorem 5.18. �

110 Chapter 5: Timed operational semantics5.6 Model propertiesIn this section we prove some properties of our timed transition system based on time- andaction-transitions. More precisely, we will prove time determinism, time additivity and per-sistency (this terminology is adopted from Nicollin & Sifakis [112]).The �rst property conforms to the intuition that a process can always evolve into itself by notadvancing time.5.29. Theorem. For all B 2 PAT ; t 2 Time : hB; ti hB; ti.Proof. Straightforward by induction on the structure of B. �It is easy to verify that the transition system de�ned by �! is deterministic. The transitionsystem de�ned by is time deterministic. This means that the passage of time does notintroduce any nondeterminism into the execution of a behaviour.5.30. Theorem. Time determinism8B;B0; B00 2 PAT ; t; t0 2 Time : (hB; ti hB0; t0i ^ hB; ti hB00; t0i)) B0 = B00.Proof. By induction on the structure of B with 0, p, and action-pre�x as base cases.Base : For B = 0 and B = p the theorem trivially follows from the fact that there is only oneSOS-rule for for these cases. For B = (t00) a ; B1 we haveh(t00) a ; B1; ti hB0; t0i ^ h(t00) a ; B1; ti hB00; t0i) f Lemma 5.25 gB0 = (t00 	 (t0 � t)) a ; B1 ^ B00 = (t00 	 (t0 � t)) a ; B1) f calculus gB0 = B00 .Induction Step : Assume the theorem holds for B1 and B2. We only provide the proof for choice.The proofs for the other constructs are similar and omitted here. For B = B1 +B2 we derive:hB1 +B2; ti hB0; t0i ^ hB1 +B2; ti hB00; t0i, f SOS-rules for ghB1 +B2; ti hB01 +B02; t0i ^B0 = B01 +B02 ^ hB1 +B2; ti hB001 +B002 ; t0i ^B00 = B001 +B002, f Lemma 5.25 ghB1; ti hB01; ti ^ hB2; ti hB02; ti ^ B0 = B01 +B02^ hB1; ti hB001 ; ti ^ hB2; ti hB002 ; ti ^ B00 = B001 +B002) f induction hypothesis gB01 = B001 ^ B02 = B002 ^ B0 = B01 +B02 ^ B00 = B001 +B002) f calculus gB0 = B00 . �The next property (sometimes referred to as action persistency) conforms to the intuition thatthe progress of time should not suppress the ability to perform an action. That is,

Model properties 1115.31. Theorem. Action persistency8B;B0 2 PAT ; t; t0 2 Time : �hB; ti (e;a)���! ^ hB; ti hB0; t0i�) hB0; t0i (e;a)���! .Proof. By induction on the structure of B.Base: For B = 0 the theorem trivially holds as 0 cannot perform any �! transitions. For B = p�the theorem holds as hp�; ti for any t can perform � and hp�; ti hp�; t0i, for any t0 > t. Nowconsider B = (t00) b� ; B1. For this case we deriveh(t00) b� ; B1; ti (e;a)���! ^ h(t00) b� ; B1; ti hB0; t0i, f SOS-rules for action-pre�x gh(0) b� ; B1; ti (�;b)���! ^ h(0) b� ; B1; ti h(0	 (t0�t)) b� ; B1; t0i) f gh(0) b� ; B1; ti h(0) b� ; B1; t0i, f SOS-rule (�!) for action-pre�x gh(0) b� ; B1; t0i (�;b)���! .Induction Step: Assume the theorem holds for B1 and B2. We consider the proof for parallelcomposition; the proofs for the other constructs are similar and omitted.hB1 jjGB2; ti (e;a)���! ^ hB1 jjGB2; ti hB0; t0i, f distinguish between a 2 G� and a 62 G�; SOS-rule () for jjG g(hB1; ti (e1;a)����! ^ hB2; ti (e2;a)����! ^ e = (e1; e2) ^ a 2 G�)_ (hB1; ti (e1;a)����! ^ e = (e1; �) ^ a 62 G�) _ (hB2; ti (e2;a)����! ^ e = (�; e2) ^ a 62 G�)^ hB1 jjGB2; ti hB01 jjGB02; ti) f SOS-rule () for jjG ; induction hypothesis g(hB01; t0i (e1;a)����! ^ hB02; t0i (e2;a)����! ^ e = (e1; e2) ^ a 2 G�)_ (hB01; t0i (e1;a)����! ^ e = (e1; �) ^ a 62 G�) _ (hB02; t0i (e2;a)����! ^ e = (�; e2) ^ a 62 G�), f SOS-rule (�!) for jjG ghB01 jjGB02; t0i (e;a)���! . �Finally, a process at time t is able to evolve to a certain time t0 i� it can evolve to any timeinstant in between t and t0. This property which is often referred to as time additivity (or timecontinuity) is formally stated as35.32. Theorem. Time additivity8B;B0 2 PAT ; t; t0; t00 2 Time :hB; ti hB0; t+(t0+t00)i () (9B00 : hB; ti hB00; t+t0i hB0; t+(t0+t00)i):Proof. Straightforward by induction on the structure of B. �3Lynch & Vaandrager [98] adopt for their timed I/O-automata a stronger notion that says that there mustbe a trajectory of consistent states through the interval [t; t0]. Since our timed transition system satis�es theimage-�niteness condition (i.e., for any B and t there are at most �nitely many B0 such that hB; ti hB0; t0i)it follows from Je�rey et al. [79] that our model also satis�es this stronger trajectory condition.

112 Chapter 5: Timed operational semantics5.7 Related workTo our knowledge this chapter constitutes the �rst attempt to relate a causality-based seman-tics and an (event-based) operational model in a timed setting. For the untimed case severalrelated approaches have been published to relate a causality-based semantics to an operationalone [10, 26, 95]. These investigations di�er from our work in particular in the causality-basedmodel, the language at hand, and the type of consistency relation between the two types of se-mantics. The relation between the approach we followed and the work of Boudol & Castellani[26, 23] (for �nite CCS and ow event structures) is discussed at length in Langerak [89].Baier & Majster-Cederbaum [10] prove the consistency between an operational semanticsfor theoretical CSP (TCSP) and a compositional true concurrency semantics based on la-belled prime event structures. They show that the `interleaved view' of the event structuresemantics|obtained by considering remainders of prime event structures after the executionof a single event|is (weak) bisimilar to the operational semantics of TCSP. An identical tech-nique was used by Loogen & Goltz [95] but they studied TCSP without recursion. We willconsider consistency for recursion in Chapter 10.Degano et al. [42] proposed an approach to prove the consistency of an operational nonin-terleaving semantics of CCS (with guarded recursion) and a denotational semantics based onlabelled prime event structures. From the operational semantics an occurrence net is derivedwhich is shown|using the well-known connection between this class of nets and event struc-tures by Nielsen et al. [114]|to be equal to the event structure obtained in the denotationalway.On relating operational and denotational models in a timed setting we mention the work ofSchneider [133] and Murphy [107]. [133] provides an operational semantics of timed CSP, amature timed extension of CSP, and studies the relation of this semantics with an (interleaved)denotational model for timed CSP based on timed failures. [107] introduces a timed processalgebra where actions are assumed to have a �xed duration. Murphy provides a true concurrentoperational semantics, based on timed asynchronous transition systems, and sketches therelation with timed Petri nets.5.8 ConclusionsIn this chapter we have introduced two event-based operational semantics for PAT which keeptrack of timed action occurrences (that is, timed events).The �rst timed operational semantics is based on timed-actions (relation �!!) and is astraightforward generalization of the untimed event transition system for PA, see Chapter 2.Consequently, a natural and minimal extension of the standard operational semantics for PA(as introduced in Chapter 1) is obtained. (Notwithstanding Bolognesi et al. [19] who concludethat it `would seem particularly di�cult' to obtain a natural, or what they call conservative,extension of an untimed process algebra like LOTOS without a clear separation between timeand action transition rules.) One of the features of the timed-action model is the absence of

Conclusions 113actions/transitions that represent solely the passage of time. Here time is dealt with in a waycomparable to physical models, viz. by means of parameterization.The model based on timed-actions allows for the generation of ill-timed traces like in Aceto &Murphy [1, 2]. Recently, Gorrieri et al. [56] proposed a timed process algebra with the TCSPparallel operator that also includes ill-timed traces. In the proposals of Aceto & Murphy andGorrieri et al. sub-processes have their independent local clock, and since local clocks are onlysynchronized at interaction, ill-timedness appears. We believe that the operational semanticspresented in this chapter is simpler by avoiding local clocks.Ill-timedness is a phenomenon that is sometimes explicitly avoided by others (like in real-timeACP of Baeten & Bergstra [7] and TIC of Quemada et al. [123]), since the precedence of timedevents in the trace does not reect the order in time. To our opinion ill-timed traces are notthat obscure|we have shown earlier that for each ill-timed trace there exists a correspondingtime-consistent trace with the same timed events|and we think that the avoidance of themleads to a more complicated operational semantics. We remark that the operational semanticsof Table 5.1 can easily be adapted such that only time-consistent traces are generated, byreplacing the rule for independent parallelism byB1 (�;a;t)����!! B01B1 jjGB2 ((�;�);a;t)������!! B01 jjG tfB2 g (a 62 G�)and similar for the symmetric case.The second transition system is inspired by the separation of the passage of time (relation)and the occurrence of actions (relation �!) as introduced by Moller & Tofts [105] and Wang[149] and adopted by several others [18, 133]. It turns out that the transition system for �!is identical to the untimed transition model presented in Chapter 2. That is, time is added ina completely orthogonal way. This model allows for the generation of well-timed traces onlyand will be used in Chapter 6 where the notion of urgency is discussed.The compatibility of both event-based operational semantical models with respect to thecausality-based semantics for PAT provided in Chapter 4 has been investigated. The timed-action model generates the same set of timed traces for behaviour B as the causality-basedsemantics, whereas for the transition model induced by and �! this holds when onlyconsidering time-consistent traces. This result provides the basis for proving that the timed-action model and the `interleaving view' of the causality-based semantics are strong bisimu-lation equivalent. Since the second transition model forces derivations to be time-consistent,a similar result for this model does not hold. The main features of the interleaving modelsare their simplicity and compatibility with the standard interleaving semantics of PA, and theuntimed event transition system of Langerak (see Chapter 2). We consider these aspects toprovide evidence for the adequacy of our timed event structures model.

114 Chapter 5: Timed operational semantics

6 The urgency module
This chapter introduces the concept of urgent events|roughly speaking,events that are forced to occur once they are enabled|in timed eventstructures. Typically an urgent event `guards' the occurrence time of analternative event in the sense that this other event is prevented from hap-pening after a particular time instant. Timeout mechanisms are well-knownurgent phenomena. It is investigated how the theory of Chapter 4 carriesover to this new model, referred to as urgent event structures. The timedprocess algebra PAT is extended with an urgency operator that forces (lo-cal or synchronized) actions to happen in an urgent fashion. Urgent eventstructures are used as a vehicle to provide a denotational causality-basedsemantics for this formalism. In the spirit of Chapter 5 a consistent event-based operational semantics based on a separation of the passage of timeand the occurrence of actions is presented.6.1 IntroductionIn realistic designs one often encounters events that once enabled|i.e., their causal predeces-sors have occurred and their timing constraints are respected|are forced to occur, providedthey are not disabled by other events. Typically such events are timeout mechanisms thatguard the occurrence time of other events (like receiving an acknowledgement message) in thesense that they prevent these events from happening after a certain time instant. We call suchevents urgent. Urgent events are graphically denoted as open dots, nonurgent events as closeddots (as before).To provide a better understanding of our intuition consider, for example, a timer process thatis started once a message m is transmitted (represented by event send), and assume that itis reasonable to expect an acknowledgment from 3 time units (event receive) on since m wastransmitted. When after 5 time units, say, the expected acknowledgement message is notyet received it is assumed that some error occurred; at that time the timer will expire (eventtimeout) and a retransmission of m is initiated (not modelled explicitly here). Figure 6.1depicts an event structure that models this situation. The interpretation is as follows.Event send may happen from the start of the system; no timing constraint is imposed on itsoccurrence. Once event send has appeared either receive or timeout can happen. Event receivecan happen between 3 and 5 time units after send; if not, event timeout happens at exactly 5time units after send. At 5 time units after send a nondeterministic choice appears betweenevents timeout and receive. Such timeout mechanisms are sometimes referred to as `weak'115

116 Chapter 6: The urgency module
receive

timeout

send

3

5Figure 6.1: Timer example using urgent events.timeouts, as opposed to `strong' timeouts where in the timer example at time 5 event receivewould already become impossible [112].In this chapter we equip timed event structures, as introduced in Chapter 4, with the notionof urgent events. Section 6.2 introduces the notion of urgent event structures, and investigateshow the theory of Chapter 4 carries over to the urgent setting. In Section 6.3 the temporalprocess algebra PAT is enriched with an urgency operator, denoted UU(), that forces (local orsynchronized) actions (in U) to happen urgently. A denotational causality-based semanticsis provided for the resulting timed process algebra, called PAU , and is related to a consistentevent-based operational semantics. Due to the presence of urgent actions the consistency proofis more involved than for the nonurgent case as treated in Chapter 6. Therefore, this consis-tency proof is divided into two parts. In Section 6.4 we prove that the way in which urgencyis dealt with in the operational semantics of PAU corresponds to our intuition. Subsequently,in Section 6.5 the actual consistency proof is carried out (in three steps). Section 6.6 relatesPAU to some proposals in the literature that incorporate urgency in a timed process algebra.Section 6.7 summarizes the technical results.6.2 Urgent event structuresAn urgent event structure is a timed event structure in which a distinction is made betweennonurgent and urgent events. Urgency is modelled by a predicate U on events|U(e) is trueif and only if e is urgent.6.1. Definition. (Urgent event structure)An urgent event structure is a tuple h�;Ui with � a timed event structure and U : E �!Bool, the urgency predicate. �We use 	, possibly subscripted and/or primed, to denote an urgent event structure and EBESUto denote the universe of urgent event structures. In this chapter we consider urgent eventstructures with a �nite number of events; in�nite structures are considered in Chapter 10.6.2.1 Timed event tracesFor convenience we recall the de�nition of the auxiliary function time:

Urgent event structures 1176.2. Definition. For � a sequence of timed events (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time,for 0 < i 6 n, and e 2 en([�]), lettime(�; e) ,Max(fD(e) g [H1 [H2) whereH1 = f t+ tj j 9X � E : X t7! e ^ X \ [�] = f ej g g andH2 = f tj j 9 ej 2 [�] : ej e g . �As a next step we generalize the notion of timed event trace (cf. De�nition 4.5) towards theurgent case.6.3. Definition. (Timed event trace (revisited))A timed event trace of urgent event structure 	 = hE ;D; T ;Ui is a sequence � of timedevents (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time, for 0 < i 6 n, satisfying1. e1 : : : en 2 T (E)2. 8 i : (:U(ei)) ti > time(�i; ei)) ^ (U(ei)) ti = time(�i; ei))3. 8 i; e : e 2 en([�i]) ^ U(e)) ti 6 time(�i; e)4. 8 i; j : i < j) ti 6 tj .C � E�Time is a timed con�guration i� there is a timed event trace � such that C = �.�TU() denotes the set of timed event traces of 	 and CU() its set of timed con�gurations.According to the �rst constraint we should obtain an (untimed) event trace of the correspond-ing event structure E when we omit the times from a timed event trace. The second constraintrequires correct times to be associated to events in �|ordinary events can happen at any mo-ment from the time they are enabled and urgent events can happen only as soon as they areenabled, they cannot be further delayed.These two constraints do, however, not take into account the fact that urgent events mayprevent other events to occur after a certain time. For instance, according to the �rst two con-straints, Figure 6.1 would have event trace (send; 3) (receive; 9) whereas if event receive has nothappened before time instant 8, the timeout should have occurred. Thus (send; 3) (receive; 9)should not be considered a legal timed event trace. The third constraint takes this matterinto account. It says that �i may be extended with (ei; ti) i� there is no urgent event enabledafter �i that could occur at any time earlier than ti.The fourth constraint requires timed event traces to be time-consistent. The reason for this isthat urgency is an intrinsically global property: the fact that some event e is urgent inuencesfor events, which seem at �rst sight completely independent of e, the ability to appear ata certain time instant. So, in order to decide whether an event may happen it is necessaryto know in the entire system which events have happened already (in time). For instance,according to the �rst three constraints the urgent event structure

118 Chapter 6: The urgency module
a

1

1 1

3

c

b

dwould have timed event trace (ea; 1) (eb; 4) (ec; 2), whereas if ec happens at time 2 urgent evented is forced at time 3 and should disable the occurrence of eb.6.4. Example. For the following sequences of timed events the conditions are given under
c

3 2
5

7

a b

c d

2 1

a
b

(a) (b)Figure 6.2: Some example urgent event structures.which they are timed event traces of Figure 6.2(a):(ea; ta) (eb; tb) (ed; td) if ta 6 tb ^ tb+2 6 td 6 max(ta+3; tb+5); and(ea; ta) (eb; tb) (ec; tc) if ta 6 tb ^ tc = max(ta+3; tb+5):The only maximal timed event trace of Figure 6.2(b) is (ea; 2) (eb; 3). In this urgent eventstructure event ec can never happen since after the occurrence of ea (which will be forced attime 2) eb will occur (at time 3), so excluding ec. Thus, ea excludes ec though they seemto be completely independent! It appears that the asymmetric conict between ec and eb`propagates back' to an asymmetric conict between ea and ec. �Now consider Section 4.2.3. In that section we proved that timed event traces having thesame timed events constitute a lattice with a least element. It can easily be veri�ed that inpresence of urgent events h[�]�;4i is still a poset with a least element. That is, we can stillconstruct chains of event traces (more precisely, equivalence classes of traces) under 4 witha fast event trace as least element. The lattice construction in Section 4.2.3 does, however,no longer apply, since it cannot be guaranteed that the lub and glb are again timed eventtraces of the event structure at hand. Consider, for example, the urgent event structures ofFigure 6.3. (a) has traces (ea; 0) (eb; 1) (ec; 2) and (eb; 0) (ea; 1) (ec; 2), but the lub of thesetraces (ea; 0) (eb; 0) (ec; 2) is not a legal trace. Similarly, (b) has traces (ea; 1) (eb; 1) (ec; 3) and(ea; 0) (ec; 1) (eb; 3), but the glb of these traces (ea; 0) (eb; 3) (ec; 3) is not a legal trace.6.2.2 Families of lposetsThis section characterizes the lposets of an urgent event structure. For timed event structureswe used an operational scheme by generating lposets from timed event traces. This procedure

Urgent event structures 119
(a) (b)

a

b

c

c

1

1

2 d

b

a

Figure 6.3: Structures for which (a) lub and (b) glb are not traces.does not work for urgent event structures. E.g., the urgent event structures
2 3

a b
2 3

a bhave identical timed event traces, and consequently, would have identical lposets if we woulddeduce lposets out of traces. We, therefore, take another route and associate to a timedcon�guration an lposet in the same intensional way as in Chapter 2 for the untimed case.6.5. Definition. For C 2 CU() let �C � C �C be the smallest relation satisfying, for all(ei; ti); (ej; tj) 2 C:1. (9X � E : ei 2 X ^ X t7! ej)) (ei; ti) �C (ej; tj)2. ei ej) (ei; ti) �C (ej; tj) . �Let ��C be the reexive and transitive closure of �C and let the labelling of (e; t) equal l(e).6.6. Lemma. 8 � 2 TU() :��� � <��.Proof. Suppose � 2 TU () and let C = �. Let (ei; ti); (ej ; tj) 2 C such that (ei; ti) �C (ej ; tj).According to De�nition 6.5 this can only be because either1. 9X � E : ei 2 X ^ X t7! ej . Then by de�nition of event trace we have X \ [�j] 6= ?.Suppose X \ [�j] = f ek g. If ek 6= ei then it follows from the stability constraint that ek eiand ei ek. Since [�] is an event trace then ek <[�] ei ^ ei <[�] ek, which is a contradiction.So, ei = ek and (ei; ti) <� (ej ; tj).2. ei ej . Then, by the de�nition of event trace, (ei; ti) <� (ej ; tj).This proves �� � <� and implies that ��� � <��. �Given this lemma it is now easy to verify that ��C is a partial order on C.6.7. Corollary. hC;��Ci is a poset.Proof. Similar to the proof of Corollary 2.21. �The family of lposets of 	, denoted LU(), is de�ned as the set of all lposets correspondingto its timed con�gurations.

120 Chapter 6: The urgency module6.8. Definition. (Lposets of an urgent event structure)For 	 2 EBESU : LU() , f hC;��C; l � Ci j C 2 CU() g. �6.9. Theorem. 8	;	0 2 EBESU : LU () = LU (0)) TU() = TU(0).Proof. Straightforward and omitted. �A few remarks concerning the relationship between the lposets of 	 and the lposets of itsuntimed equivalent E are in order. The lposets of a timed event structure are equal to thoseof E , see Theorem 4.21. For urgent event structures this does not hold, since some events maynot occur at all because an urgent event prevents them to happen. Since this phenomenon isabsent in E there does not need to be a timed con�guration C for each con�guration in C(E).6.2.3 Urgent remainderThe notion of timed remainder (cf. De�nition 4.22) can easily be extended by incorporatingurgent events|an event in the remainder of 	 is urgent i� it is an urgent event in 	.6.10. Definition. (Urgent remainder)The urgent remainder of urgent event structure 	 = h�;Ui after timed event � is 	[�] =h�0;U 0i where �0 = �[�] = h(E 0; 0; 7!0; l0);D0; T 0i, and U 0 = U � E 0. �In order to prove the correctness of the urgent remainder it is convenient to introduce thefollowing lemmata. Consider 	 and let � be a timed event trace of 	. Assume �0 is a timedevent trace of 	 after �, 	[�]. Then event e is enabled in 	[�] after the execution of �0 i�it is enabled in 	 after the execution of � �0. This is stated in Lemma 6.11. In addition, thetime at which e can occur in 	[�] after �0 equals the time at which it can occur in 	 after� �0. This is stated in Lemma 6.12.6.11. Lemma. For � 2 TU() and �0 2 TU([�]) we have:8 0 < i 6 j �0 j : en	[�]([�0i]) = en	([� �0i]) .Proof. Similar to the proof of Lemma 6.12 and omitted. �6.12. Lemma. For � 2 TU() and �0 2 TU([�]) we have:8 0 < i 6 j �0 j; e 2 en	[�]([�0i]) : time	[�](�0i; e) = time	(� �0i; e) .Proof. Assume � 2 TU() and �0 2 TU([�]). Let 	 = h(E; ; 7!; l);D;T ;Ui and 	[�] = 	0 =h(E0; 0; 7!0; l0);D0;T 0;U 0i. Let 0 < i 6 j �0 j and e 2 en	0([�0i]). (time = time	 and time0 = time	0 .)time0(�0i; e)= f de�nition of time gMax(fD0(e) g [H 01 [H 02) where

Urgent event structures 121H 01 = f t+tj j 9X � E0 : X t7! 0 e ^ X \ [�0i] = f ej g g andH 02 = f tj j 9 ej 2 [�0i] : ej 0 e g= f De�nition 4.22 gMax(fMax(fD(e) g [H1 [H2) g [H 01 [H 02) whereH 01 = f t+tj j 9X � E0 : X t7! 0 e ^ X \ [�0i] = f ej g g andH1 = f t+tj j 9X � E : X t7! e ^ X \ [�] = f ej g g andH 02 = f tj j 9 ej 2 [�0i] : ej 0 e g andH2 = f tj j 9 ej 2 [�] : ej e g= f calculus gMax(fD(e) g [H 01 [H1 [H 02 [H2) where : : : as above : : := f Hi [H 0i = H 00i (i=1; 2) (see below) gMax(fD(e) g [H 001 [H 002) whereH 001 = f t+tj j 9X � E : X t7! e ^ X \ [� �0i] = f ej g g andH 002 = f tj j 9 ej 2 [� �0i] : ej e g= f de�nition time; Lemma 6.11 gtime(� �0i; e) .The proof that H1 [H 01 = H 001 is presented below. The proof for H2 [H 02 = H 002 is similar, butsimpler, and is omitted.f t+tj j 9X � E0 : X t7! 0 e ^ X \ [�0i] = f ej g g[f t+tj j 9X � E : X t7! e ^ X \ [�] = f ej g g= f De�nition 2.28 gf t+tj j 9X � E0 : X t7! e ^ X \ [�] = ? ^ X \ [�0i] = f ej g g[f t+tj j 9X � E0 : X t7! e ^ X = ? ^ X \ [�0i] = f ej g g[f t+tj j 9X � E : X t7! e ^ X \ [�] = f ej g g= f E0 � E; X \ [�] = ? gf t+tj j 9X � E : X t7! e ^ X \ [�] = ? ^ X \ [� �0i] = f ej g g[f t+tj j 9X � E : X t7! e ^ X \ [�] = f ej g g= f calculus gf t+tj j 9X � E : X t7! e ^ X \ [� �0i] = f ej g g . �We now have the following correctness result for the remainder of an urgent event structure.Note that the correctness criterion is identical to that of timed remainders (cf. Theorem 4.24)except that we require � �0 to be time-consistent.6.13. Theorem. Correctness of urgent remainderFor � 2 TU() and �0 a sequence of timed events satisfying tc(� �0):1. �0 2 TU([�])() � �0 2 TU ()2. �0 2 TU([�])) LU(�) is a pre�x of LU(� �0).

122 Chapter 6: The urgency moduleProof. Let 	 = hE ;D;T ;Ui with E = (E; ; 7!; l) and 	[�] = 	0 = hE 0;D0;T 0;U 0i withE 0 = (E0; 0; 7!0; l0).1. `)': Assume that � 2 TU () and �0 2 TU (0). We prove that � �0 2 TU () by systematicallychecking the conditions of being a timed event trace (see De�nition 6.3).(a) [� �0] 2 T (E). Given that [�] 2 T (E) and [�0] 2 T (E 0) this follows directly from Theo-rem 2.30.(b) 8 i : :U(ei)) ti > time((� �0)i; ei) ^ U(ei)) ti = time((� �0)i; ei). We consider thesecond conjunct; the proof of the �rst conjunct is conducted in a similar way and isomitted. We derive:8 i : U(ei)) ti = time((� �0)i; ei), f domain split g(8 0 < i 6 j � j : U(ei)) ti = time((� �0)i; ei))^ (8 j � j < i 6 j � �0 j : U(ei)) ti = time((� �0)i; ei)), f calculus g(8 0 < i 6 j � j : U(ei)) ti = time(�i; ei))^ (8 0 < j 6 j �0 j : U(ej)) tj = time(� �0j; ej)), f calculus; U(e) = U 0(e) for e 2 E0; Lemma 6.12 g(8 0 < i 6 j � j : U(ei)) ti = time(�i; ei))^ (8 0 < j 6 j �0 j : U 0(ej)) tj = time0(�0j ; ej))(f De�nition 6.3 g� 2 TU() ^ �0 2 TU (0) .(c) For the third constraint of being a timed event trace we have8 i; e : e 2 en([(� �0)i]) ^ U(e)) ti 6 time((� �0)i; e), f domain split g(8 0 < i 6 j � j; e : e 2 en([(� �0)i]) ^ U(e)) ti 6 time((� �0)i; e)) ^(8 j � j < i 6 j � �0 j; e : e 2 en([(� �0)i]) ^ U(e)) ti 6 time((� �0)i; e)), f calculus; U(e) = U 0(e) for e 2 E0 g(8 0 < i 6 j � j; e : e 2 en([�i]) ^ U(e)) ti 6 time(�i; e)) ^(8 0 < j 6 j �0 j; e : e 2 en([� �0j]) ^ U 0(e)) tj 6 time(� �0j ; e)), f Lemma 6.12; Lemma 6.11 g(8 0 < i 6 j � j; e : e 2 en([�i]) ^ U(e)) ti 6 time(�i; e)) ^(8 0 < j 6 j �0 j; e : e 2 en0([�0j]) ^ U 0(e)) tj 6 time0(�0j ; e))(f De�nition 6.3 g� 2 TU() ^ �0 2 TU (0) .(d) � �0 is time-consistent by assumption.This concludes the proof that � �0 2 TU ().`(': the proof for this direction can be provided along the same lines as the proof for) usingLemma 6.12 and Lemma 6.11.

A timed process algebra including urgency 1232. Let �0 2 TU (0). From 1. it follows that � �0 2 TU (), so LU(� �0) exists. Evidently, we have� � � �0 and ��� � ��� �0 . Since � �0 2 TU () and Lemma 6.6 it follows that no event in �0precedes (under ��� �0) an event in �. This proves that LU(�) is a pre�x of LU (� �0). �6.3 A timed process algebra including urgencyThis section extends the simple timed process algebra PAT with an urgency operator. Sec-tion 6.3.1 introduces the syntax of the resulting timed formalism PAU . Section 6.3.2 de�nesthe causality-based semantics of PAU and Section 6.3.3 presents an event-based operationalsemantics of PAU . Since we consider a time-consistent setting we use the transition model ofChapter 6 based on separate time- and action transitions for this purpose. The consistencybetween these two semantics is proven in Section 6.5.6.3.1 SyntaxIn order to have a means to express urgency PAT is extended with an urgency operator, denotedUU(), for U � Act� . Let PA+T denote the resulting formalism.6.14. Definition. (Timed process algebra with urgency PA+T)B ::= 0 j p j (t) a ; B j B +B j B jjGB j B[H] j B nG j B >> B j B [> B j UU (B).�UU(B) behaves likeB except that actions in U are forced to happen as soon as they are enabled.If U is a singleton set, f a g say, we simply write Ua() instead of Uf a g(). Notice that U maycontain also internal action � . UU() is a generalization of the urgency operator^introduced byBrinksma et al. [28], where â denotes action a that is forced to happen urgently. ^is restrictedto be only applied to actions whose occurrence can be controlled completely internally. Here,urgency can involve several participants and is strongly inuenced by the more general notionof urgency in proposals for timed extensions of LOTOS by Bolognesi et al. [18, 19] and similarwork by Klusener, inspired by [18], in the setting of real-time ACP [86].6.15. Example. Consider Uc(a ; ((t1) b ; B1 + (t2) c ; B2)).After the occurrence of a it speci�es a choice between b ; B1 and c ; B2. The �rst behaviour isenabled t1 time units after a's occurrence, the second behaviour after t2 time units. When bis performed before the second argument is enabled (i.e., tb 2 ta+[t1; t2]) the entire behavioursubsequently behaves like B1. Otherwise, precisely t2 time units after the appearance of a itbehaves like c ; B2, since c is urgent. �Urgent interactions are forced to happen once all participants are ready for it. E.g., inB = a ; (3) c ; 0 jjc b ; ((2) d ; 0+ (5) c ; 0)

124 Chapter 6: The urgency modulec can occur at any tc > max(ta+3; tb+5) provided d has not yet appeared. If c has notyet occurred, d can occur from tb+2 on. In Uc(B) action c is forced to happen at tc =max(ta+3; tb+5) in case d has not yet appeared at that time. That is, d is prevented tooccur at any time later than tc, and can only occur in the interval [tb+2; tc]. At time tc anondeterministic choice between c and d occurs|urgency does not impose a priority in thiscase.Once made urgent, actions cannot be used for synchronization any further. Without such arestriction, expressions like B = Ub((2) b) jjb Ub((1) b) would be allowed. Conforming to theprinciple that an urgent action happens as soon as all participants are ready for it, (b; 2) wouldbe a trace of B. This would cause a delay of action b in the right component, contradicting its(local) urgency. The fact that we do not allow synchronizations on urgent events is capturedby a syntactical constraint on behaviours which is formulated as follows. As a subsidiarynotion we introduce a function that determines syntactically the set of urgent actions of abehaviour.6.16. Definition. For B 2 PA+T , function Urgent : PA+T �! P(Act�) is de�ned as:Urgent(B) , ? for B 2 f 0;pgUrgent((t) a ; B) , Urgent(B)Urgent(B1 opB2) , Urgent(B1) [Urgent(B2) for op 2 f+; jjG ; >>; [> gUrgent(B nG) , ((Urgent(B) nG) [f � g if Urgent(B) \G 6= ?Urgent(B) otherwiseUrgent(B[H]) , fH(a) j a 2 Urgent(B) gUrgent(UU(B)) , Urgent(B) [U: �6.17. Definition. (Temporal process algebra PAU)PAU is the largest subset of PA+T such that any subexpression B0 of B 2 PAU satis�es:B0 = B1 jjGB2) (G \ Urgent(B1) = ? ^ G \ Urgent(B2) = ?) . �6.3.2 Causality-based semanticsIn this section we give a causality-based semantics to PAU . We do so by de�ning a mappingEU [[]] : PAU �! EBESU . Let EU [[Bi]] = 	i = h�i;Uii, for i=1; 2. Then:6.18. Definition. (Causality-based semantics of PAU)Let EU [[]] : PAU �! EBESU be de�ned as follows:EU [[0]] , hET [[0]];?iEU [[p]] , hET [[p]]; f (e�; false) gi

A timed process algebra including urgency 125EU [[(t) a ; B1]] , hET [[(t) a ; B1]];U1 [f (ea; false) giEU [[B1 opB2]] , hET [[B1 opB2]];U1 [U2i for op 2 f+; >>; [> gEU [[opB1]] , hET [[opB1]];U1i for op 2 f n; [] gEU [[UU(B1)]] , hET [[B1]];Ui where U(e) = U1(e) _ (l1(e) 2 U)EU [[B1 jjGB2]] , hET [[B1 jjGB2]];Ui whereU((e1; e2)) = U1(e1) _ U2(e2) with Ui(�) = false; for i=1; 2: �It is easy to check that due to the syntactical constraints of De�nition 6.17 we have for jjGthat (e1 6= � ^ e2 6= �)) :U((e1; e2)), since in this case e1 and e2 synchronize. It is alsonot di�cult to check that for all B 2 PAU we have that EU [[B]] is an urgent event structure.6.19. Example. In Figure 6.4 the urgent event structures corresponding to the followingexpressions are depicted:(a) Ub((2) a ; (4) b ; 0 jjb (7) b ; 0),(b) ((2) a ; (7) x ; 0 jjj Uy((4) a ; (11) y ; 0)) jja ((5) a ; (2) b ; 0), and(c) Uy1(a1 ; ((t1) x ; 0+ (d1) y1 ; 0)) jjx Uy2(a2 ; ((t2) x ; 0+ (d2) y2 ; 0)).
2 74

a b

(a) (b) (c)

b

x

y

5

2

7

11

a

a

5

t1d1

a1

xy1

t2 d2

a2

y2Figure 6.4: Examples of semantics of urgent behaviours.For urgent event structure (c) we have that if (x; tx) belongs to a timed event trace thenta1+t1 6 tx 6 ta1+d1 ^ ta2+t2 6 tx 6 ta2+d2. �6.3.3 Event-based operational semantics for PAUThis section extends the timed event transition system of Section 5.4 with urgency. Therelations and �! are de�ned as the smallest relations closed under all inference rules ofSection 5.4 and the rules for UU(B) de�ned below.As a subsidiary notion, let dmin(a; B) determine for initial action a in B the minimal time atwhich a can appear. The interpretation of dmin(a; B) =1 is that B is not able to perform ana action initially.

126 Chapter 6: The urgency module6.20. Definition. Function dmin : Act�;� � PAU �! Time1 is de�ned as:dmin(a; 0) , 1dmin(a;p) , (1 if a 6= �0 if a = �dmin(a; (t) b ; B) , (1 if a 6= bt if a = bdmin(a; B1 +B2) , min(dmin(a; B1); dmin(a; B2))dmin(a; B1 >> B2) , 8><>: 1 if a = �dmin(a; B1) if a 62 f �; � gmin(dmin(a; B1); dmin(�; B1)) if a = �dmin(a; B1 [> B2) , min(dmin(a; B1); dmin(a; B2))dmin(a; B1 jjGB2) , (min(dmin(a; B1); dmin(a; B2)) if a 62 G�max(dmin(a; B1); dmin(a; B2)) if a 2 G�dmin(a; B nG) , 8><>: Minf dmin(b; B) j b 2 G� g if a = �1 if a 2 Gdmin(a; B) if a 62 G�dmin(a; B[H]) , Minf dmin(b; B) j a = H(b) gdmin(a;UU(B)) , dmin(a; B): �Here it is assumed that min, max and their generalizations over sets of events are de�ned onTime1 in the obvious way. E.g., min(t;1) , t and max(t;1) , 1.UrgencyIf B permits time to pass with some amount, then UU(B) is able to do the same providedthat there is no urgent action in U that can be performed by B at any time earlier. Thus,the e�ect of the urgency operator is to prevent the passage of time as an alternative to theoccurrence of an action in the urgency set U . If B can perform (e; a) and evolve into B0 thenso can UU(B), evolving into UU(B0).hB; ti hB0; t0ihUU(B); ti hUU(B0); t0i (8 a 2 U : t0�t 6 dmin(a; B))hB; ti (�;a)���!hB0; tihUU(B); ti (�;a)���!hUU(B0); tiFor convenience we have listed all rules for time transitions in Table 6.1 and all rules for actiontransitions in Table 6.2 .6.21. Example. Consider B = Ub(B0) with B0 = (2) a ; (1) b ; 0 jjb (0) b ; 0. (For sim-plicity we omit the occurrence identi�ers.) It follows that dmin(a; B) = 2 and dmin(b; B) =

A timed process algebra including urgency 127
h0; ti h0; t0i (t0 > t) h(t0) a� ; B; ti h(t0 	 (t00�t)) a� ; B; t00i (t00 > t)hp�; ti hp�; t0i (t0 > t) hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 +B2; ti hB01 +B02; t0ihB1; ti hB01; t0ihB1 >> B2; ti hB01 >> B2; t0i hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 [> B2; ti hB01 [> B02; t0ihB; ti hB0; t0ihB nG; ti hB0 nG; t0i hB1; ti hB01; t0i ^ hB2; ti hB02; t0ihB1 jjGB2; ti hB01 jjGB02; t0ihB; ti hB0; t0ihB[H]; ti hB0[H]; t0i hB; ti hB0; t0ihUU(B); ti hUU(B0); t0i (C)Table 6.1: Time transition rules for PAU where C equals 8a 2 U : t0�t 6 dmin(a;B).max(1; 0) = 1. Assume that a happens at time 7, say. Then we infer for the componentbehaviours of B0:h(2) a ; (1) b ; 0; 0i h(0) a ; (1) b ; 0; 7i and h(0) b ; 0; 0i h(0) b ; 0; 7i .Using the inference rules for for parallel composition and urgency we obtainhB; 0i hUb((0) a ; (1) b ; 0 jjb (0) b ; 0); 7i .By the inference rules for �! for parallel composition (a 62 G�) and urgency we gethUb((0) a ; (1) b ; 0 jjb (0) b ; 0); 7i a�!hUb((1) b ; 0 jjb (0) b ; 0); 7i .Let us denote Ub((1) b ; 0 jjb (0) b ; 0) by B00. It follows by De�nition 6.20 that dmin(b; B00) = 1.Due to the inference rule for , behaviour B00 allows the passage of time for at most 1 timeunit only. By this mechanism it is enforced that b happens precisely at time 8. �6.22. Example. Let B = UU((2) a ; (1) b ; 0 jjb (0) b ; 0 [> (7) c ; 0) with U = f a; b g.(Again, event identi�ers are omitted.) Using De�nition 6.20 we have dmin(a; B) = 2, anddmin(b; B) =1. We then have the following derivation:hUU ((2) a ; (1) b ; 0 jjb (0) b ; 0 [> (7) c ; 0); 0i f (timed action-pre�x), (choice), (parallel composition), (urgency) ghUU ((0) a ; (1) b ; 0 jjb (0) b ; 0 [> (5) c ; 0); 2ia�! f (timed action-pre�x), (parallel composition), (urgency) g

128 Chapter 6: The urgency module
hp�; ti (�;�)���!h0; ti h(0) a� ; B; ti (�;a)���!hB; tihB1; ti (�;a)���!hB01; tihB1 +B2; ti (�;a)���!hB01; ti hB2; ti (�;a)���!hB02; tihB1 +B2; ti (�;a)���!hB02; tihB1; ti (�;a)���!hB01; tihB1 >> B2; ti (�;a)���!hB01 >> B2; ti (a 6= �) hB1; ti (�;�)���!hB01; tihB1 >> B2; ti (�;�)���!hB2; tihB1; ti (�;�)���!hB01; tihB1 [> B2; ti (�;�)���!hB01; ti hB2; ti (�;a)���!hB02; tihB1 [> B2; ti (�;a)���!hB02; tihB1; ti (�;a)���!hB01; tihB1 [> B2; ti (�;a)���!hB01 [> B2; ti (a 6= �)hB1; ti (�;a)���!hB01; tihB1 jjGB2; ti ((�;�);a)�����!hB01 jjGB2; ti (a 62 G�)hB2; ti (�;a)���!hB02; tihB1 jjGB2; ti ((�;�);a)�����!hB1 jjGB02; ti (a 62 G�)hB1; ti (�;a)���!hB01; ti ^ hB2; ti (;a)���!hB02; tihB1 jjGB2; ti ((�;);a)�����!hB01 jjGB02; ti (a 2 G�)hB; ti (�;a)���!hB0; tihB nG; ti (�;a)���!hB0 nG; ti (a 62 G) hB; ti (�;a)���!hB0; tihB nG; ti (�;�)���!hB0 nG; ti (a 2 G)hB; ti (�;a)���!hB0; tihB[H]; ti (�;H(a))�����!hB0[H]; ti hB; ti (�;a)���!hB0; tihUU(B); ti (�;a)���!hUU(B0); tiTable 6.2: Action transition rules for PAU .

Is urgency captured faithfully? 129hUU ((1) b ; 0 jjb (0) b ; 0 [> (5) c ; 0); 2i f (timed action-pre�x), (choice), (parallel composition), (urgency) ghUU ((0) b ; 0 jjb (0) b ; 0 [> (4) c ; 0); 3ib�! f (timed action-pre�x), (choice), (synchronization), (urgency) ghUU (0 jjb 0); 3i .Since this is the only allowed derivation (apart from intermediate transitions) it followsthat c will never happen. B corresponds to the urgent event structure in Figure 6.2(b). �We conclude this section by considering the properties time determinism, action persistency,and time additivity for PAU . It turns out that the introduction of urgency does not disturbthese properties.6.23. Theorem. Action persistency, time determinism, and time additivityFor all B;B0; B00 2 PAU , t; t0; t00 2 Time we have1. hB; ti hB; ti2. �hB; ti hB0; t0i ^ hB; ti hB00; t0i�) B0 = B003. �hB; ti (e;a)���! ^ hB; ti hB0; t0i�) hB0; t0i (e;a)���!4. hB; ti hB0; t+(t0+t00)i () �9B00 : hB; ti hB00; t+t0i hB0; t+(t0+t00)i�.Proof. All properties can be proven by induction on the structure of B. We only have to considerthe urgency construct; for the other constructs the inference rules are unchanged and the proof isprovided in Chapter 5. For the sake of brevity we only provide the proof of action persistency (3.).The proofs for the other properties are rather similar. Let B = UU(B1) and assume the theoremholds for B1.hUU (B1); ti (e;a)���! ^ hUU (B1); ti hUU(B01); t0i, f SOS-rules for urgency ghB1; ti (e;a)���! ^ hB1; ti hB01; t0i ^ (8 b 2 U : t0�t 6 dmin(b;B1))) f induction hypothesis ghB01; t0i (e;a)���!, f SOS-rule (�!) for urgency ghUU (B01); t0i (e;a)���! . �6.4 Is urgency captured faithfully?This section proves the correctness of the dmin function, in the sense that urgency is capturedin a way corresponding to our intuition about what urgency should be. Some of the cor-rectness results are essential to provide a timed event trace semantics of PAU which is usedin Section 6.5.3 for proving the consistency between the denotational and the event-basedoperational semantics. We prove the following properties:

130 Chapter 6: The urgency module� the time determined by dmin(a; B) corresponds to the earliest moment at which initialaction a can be performed by B� urgent actions in B can only be performed as soon as they are possible, i.e., once enabled,their execution cannot be postponed� dmin(a; B) =1 corresponds to the fact that B is not able to perform action a initially� actions can only be performed by B provided there is no urgent action in B that couldoccur earlier, and� if B advances t time units then d0min of the resulting behaviour equals dmin 	 t.The proofs of these properties are all by induction on the structure of expressions. As anillustration we provide only proofs for three properties; the proofs of the other properties areconducted in a similar way and are left to the diligent reader.The �rst theorem con�rms that the time determined by the function dmin(a; B) indeed corre-sponds to the minimal time at which initial action a can be performed by B.6.24. Theorem. 8B0 2 PAU ; t0 2 Time; a 2 Act�;� : hB0; t0i (e;a;t)����!�) t > t0 + dmin(a; B0):Proof. By induction on the structure of B0 with base cases 0, p, and action-pre�x.Base: For B0 = 0 the theorem trivially holds as the premise of the theorem does not hold. For B0 = pit is easy to check that the theorem holds as � can be performed at any time and dmin(�;p) = 0. ForB0 = (t0) b ; B1 we derive:h(t0) b ; B1; t0i (e;a;t)����!�, f De�nitions 6.20 and 5.24 g(9B0 : h(t0) b ; B1; t0i hB0; ti (e;a)���!)^ (b = a) dmin(a;B0) = t0 ^ b 6= a) dmin(a;B0) =1)) f SOS-rules for and �! g(9B0 : t > t0 + t0 ^ B0 = (0) b ; B1 ^ a = b)^ (b = a) dmin(a;B0) = t0 ^ b 6= a) dmin(a;B0) =1)) f calculus gt > t0 + dmin(a;B0) .Induction Step: Assume the lemma holds for B1 and B2. We only consider parallel compositionand urgency. The proofs for the other constructs are similar and are omitted.1. For B0 = B1 jjGB2 we derive:hB1 jjGB2; t0i (e;a;t)����!�, f De�nition 5.24 g9B0 : hB1 jjGB2; t0i hB0; ti (e;a)���!, f SOS-rules for g9B01; B02 : hB1 jjGB2; t0i hB01 jjGB02; ti (e;a)���!

Is urgency captured faithfully? 131, f SOS-rules for g9B01; B02 : hB1; t0i hB01; ti ^ hB2; t0i hB02; ti ^ hB01 jjGB02; ti (e;a)���! .At this point in the derivation we distinguish between two cases: a 2 G� and a 62 G�. Forcompleteness we consider both cases.(a) For a 2 G� we deduce starting from the result of the derivation above:, f SOS-rules for �! ; a 2 G� g9B01; B02 : hB01 jjGB02; ti ((e;e0);a)������! ^hB1; t0i hB01; ti (e;a)���! ^ hB2; t0i hB02; ti (e0;a)����!) f calculus ; De�nition 5.24 ghB1; t0i (e;a;t)����!� ^ hB2; t0i (e;a;t)����!�) f induction hypothesis gt > t0 + dmin(a;B1) ^ t > t0 + dmin(a;B2), f calculus gt > t0 +max(dmin(a;B1); dmin(a;B2)), f De�nition 6.20 (a 2 G�) gt > t0 + dmin(a;B1 jjGB2) .(b) For a 62 G� we infer starting from the result of the derivation above:, f SOS-rules for �! ; a 62 G� g9B01; B02 : hB1; t0i hB01; ti ^ hB2; t0i hB02; ti ^(hB01; ti (e;a)���!hB001 ; ti ^ hB01 jjGB02; ti ((e;�);a)�����!)_ (hB02; ti (e;a)���!hB002 ; ti ^ hB01 jjGB02; ti ((�;e);a)�����!)) f calculus ; De�nition 5.24 ghB1; t0i (e;a;t)����!� _ hB2; t0i (e;a;t)����!�) f induction hypothesis gt > t0 + dmin(a;B1) _ t > t0 + dmin(a;B2), f calculus gt > t0 +min(dmin(a;B1); dmin(a;B2)), f De�nition 6.20 (a 62 G�) gt > t0 + dmin(a;B1 jjGB2) .2. For B0 = UU(B1) we derive:hUU (B1); t0i (e;a;t)����!�, f De�nition 5.24 g9B0 : hUU (B1); t0i hB0; ti (e;a)���!) f SOS-rules for and �! ; B0 = UU (B00) g9 e;B00 : hB1; t0i hB00; ti ^ (8 b 2 U : t� t0 6 dmin(b;B1)) ^ hUU (B00); ti (e;a)���!) f SOS-rule for �! g

132 Chapter 6: The urgency module9 e;B00 : hB1; t0i hB00; ti (e;a)���! ^ (8 b 2 U : t� t0 6 dmin(b;B1)), f De�nition 5.24 ghB1; t0i (e;a;t)����!� ^ (8 b 2 U : t� t0 6 dmin(b;B1))) f induction hypothesis gt > t0 + dmin(a;B1) ^ (8 b 2 U : t 6 t0 + dmin(b;B1)), f De�nition 6.20 gt > t0 + dmin(a;UU (B1)) ^ (8 b 2 U : t 6 t0 + dmin(b;UU (B1))) . �It is interesting to note that for a 2 U we obtain from the result just above that t = t0 +dmin(a;UU(B1)). This con�rms that actions in U can only be performed as soon as they arepossible and forms the basis for the following theorem. It says that any urgent action inbehaviour B can only be performed as soon as possible:6.25. Theorem. 8B 2 PAU ; t0 2 Time; a 2 Urgent(B) : hB; t0i (e;a;t)����!�) t = t0+dmin(a; B):Proof. By induction on the structure of B. Straightforward and omitted. �As a next result we prove that dmin(a; B) = 1 indeed corresponds to the fact that B is notable to initially perform action a.6.26. Theorem. 8B 2 PAU ; a 2 Act�;� : dmin(a; B) =1() �8 t; t0 : hB; ti (e;a;t0)�����!= ��.Proof. By induction on the structure of B with base cases 0, p, and action pre�x.Base : For B = 0, dmin(a;B) =1 for all a. The theorem trivially holds as 0 is not able to performany action. For B = p, dmin(a;B) =1 for a 6= � and dmin(�;B) = 0. Since p is only able to perform�, this proves the case. For B = (t) b ; B1 we have that dmin(a;B) = 1 if a 6= b. As B is able toinitially only perform action b, the theorem evidently holds for this case.Induction Step : Assume the theorem holds for B1 and B2. We only consider the proof for choiceand parallel composition. The proofs for the other cases are quite similar and therefore omitted.1. For B = B1 +B2 we derive:dmin(a;B1 +B2) =1, f De�nition 6.20 gmin(dmin(a;B1); dmin(a;B2)) =1, f calculus gdmin(a;B1) =1 ^ dmin(a;B2) =1, f induction hypothesis g(8 t; t0 : hB1; ti (e;a;t0)�����!= �) ^ (8 t; t0 : hB2; ti (e;a;t0)�����!= �), f SOS-rules for and �! g8 t; t0 : hB1 +B2; ti (e;a;t0)�����!= � .

Is urgency captured faithfully? 1332. For B1 jjGB2 we distinguish between a 2 G� and a 62 G�. The proof for a 62 G� is quite similarto the proof for +, so we concentrate on a 2 G�.dmin(a;B1 jjGB2) =1, f De�nition 6.20 (a 2 G�) gmax(dmin(a;B1); dmin(a;B2)) =1, f calculus gdmin(a;B1) =1 _ dmin(a;B2) =1, f induction hypothesis g(8 t; t0 : hB1; ti (e;a;t0)�����!= �) _ (8 t; t0 : hB2; ti (e0;a;t0)������!= �), f SOS-rules for and �! (a 2 G�) g8 t; t0 : hB1 jjGB2; ti ((e;e0);a;t0)��������!= � . �As a next property we have that action a can only be performed by behaviour B providedthere is no urgent event in B with a smaller dmin.6.27. Theorem. 8B 2 PAU : hB; ti (e;a;t0)����!�) t0 6 t+Minf dmin(b; B) j b 2 Urgent(B) g.Proof. Straightforward by induction on B. �We conclude by proving that the intertwining of and dmin is as one would expect. Moreprecisely, if B at time t can perform a then B0 at time t0, obtained from B by the passage oft0�t time units, can perform a at dmin(a; B)	 (t0�t). Let 1�x =1.6.28. Theorem. 8B;B0 2 PAU ; t; t0 2 Time:�hB; ti (e;a;ta)����!� ^ hB; ti hB0; t0i�) dmin(a; B0) = dmin(a; B)	 (t0�t) .Proof. By induction on the structure of B with base cases 0, p, and action-pre�x.Base: For B = 0 the theorem trivially holds as h0; ti cannot perform any action. B = p canonly perform � and under evolve into p. Since dmin(�;p) = 0 the theorem holds for thiscase. Let B = (t00) a ; B1. We have dmin(a;B) = t00 and dmin(b;B) = 1, for b 6= a. AssumehB; ti hB0; t0i. By the inference rules for we have B0 = (t00 	 (t0�t)) a ; B1, and it followsdmin(a;B0) = t00 	 (t0�t) = dmin(a;B)	 (t0�t) and dmin(b;B0) =1 = dmin(b;B)	 (t0�t).Induction Step: Assume the theorem holds for B1 and B2. We only provide the proof for synchro-nization, the proofs for the other cases are similar and omitted. Let B = B1 jjGB2 and assumea 2 G�. We then derivehB1 jjGB2; ti (e;a;ta)�����!� ^ hB1 jjGB2; ti hB0; t0i, f SOS-rules for �! and (a 2 G�); let e = (e1; e2) ghB1; ti (e1;a;ta)�����!� ^ hB1; ti hB01; t0i ^ hB2; ti (e2;a;ta)�����!� ^ hB2; ti hB02; t0i) f induction hypothesis gdmin(a;B01) = dmin(a;B1)	 (t0�t) ^ dmin(a;B02) = dmin(a;B2)	 (t0�t)

134 Chapter 6: The urgency module, f De�nition 6.20 (a 2 G�) gdmin(a;B01 jjGB02) = max(dmin(a;B1)	 (t0�t); dmin(a;B2)	 (t0�t)), f max(x	 z; y 	 z) = max(x; y)	 z; De�nition 6.20 (a 2 G�) gdmin(a;B01 jjGB02) = dmin(a;B1 jjGB2)	 (t0�t) . �6.5 Correspondence with causality-based semanticsThe main aim of this section is to prove the consistency between the denotational semantics ofPAU in terms of urgent event structures and its event-based operational semantics as inducedby the inference rules for and �! . The consistency proof is carried out in two steps, similaras in Chapter 5 where we dealt with PAT . First, an (operational) characterization, denotedT 0U [[B]], is provided of the set of traces of the tuple hB; ti as generated by the event-basedoperational semantics. This is done in Section 6.5.1. Here, the main di�culty is to correctlycharacterize the set of timed event traces of UU(B) without using the dmin function that isused in the inference rules for this construct. In Section 6.5.2 a second, though denotational,characterization (denoted TU [[B]]) is presented of the set of traces as generated by and �! .The main reason for providing a second characterization is to facilitate the consistency proof;it follows that both characterizations denote identical sets of timed event traces, i.e., TU = T 0U .Finally, in Section 6.5.3 it is shown that the set of timed event traces of urgent event structureEU [[B]] coincides with TU [[B]]. This proves the consistency between the causality-based andoperational semantics of PAU .6.5.1 Operational characterization of timed event tracesThe following lemma characterizes the timed traces (under �!�) of hB; ti where B 2 PAU inan operational way. The presence of urgency has an important impact on the characterizationof timed traces for B1+B2 and B1 [> B2; it is not di�cult to check that the characterizationsfor the other operators in PAU are equal to those for PAT (cf. Lemma 5.25). For + and [>states can be reached (under �!�) for which there is an outgoing branch labelled with anurgent action the timing of which avoids the occurrence of a competitive alternative. E.g., for(2) a ; (5) b ; 0+ Uc((7) c ; 0)(a; 8) (b; 13) is not a legal trace since c will prevent a from occurring at any time later than7. In general, a trace � (� 6= ") of B1 is also a trace of B1 + B2 provided B2 cannot initiallyperform an urgent action at any time earlier than the time of the �rst event in �. By symmetry,an analogous reasoning applies to traces of B2.Replacing + by [> in the above behaviour expression yields:(2) a ; (5) b ; 0 [> Uc((7) c ; 0)

Correspondence with causality-based semantics 135Here, c will prevent a from occurring at any time later than 7. In general, a trace � (� 6= ")of B1 is also (part of) a trace of B1 [> B2 provided that for each event ei in � behaviour B2cannot initially perform an urgent action at any time earlier than ti. ForUa((2) a ; (5) b ; 0) [> (7) c ; 0(c; 7) is not a trace since a is forced at time 2 and should precede c. In general, trace �1 �2with �i a trace of Bi is a trace of B1 [> B2 i� �1 does not contain a successful terminationevent, and if for the �rst event e1 in �2 there does not exist an urgent action in B1 after �1that could occur earlier than t1.It is technically convenient to introduce a function that determines the minimal time instantat which behaviour B at time t can perform an urgent event.6.29. Definition. mt(B; t) , Minf ta j 9 a 2 Urgent(B) : hB; ti (ea;a;ta)�����!� g. �The timed event traces generated by �!� can now be characterized as follows. We onlyprovide full characterizations for choice, disrupt, and urgency. For the other constructs thecharacterization of Lemma 5.25 remains to hold.6.30. Lemma. For trace �, behaviours B;B1 and B2 2 PAU , and t; t00 2 Time we have:1. hB1 +B2; ti ��!�hB0; t0i i� either(i) � = " ^ hB1; ti "�!�hB01; t0i ^ hB2; ti "�!�hB02; t0i ^ B0 = B01 +B02, or(ii) hB1; ti ��!�hB01; t0i ^ B0 = B01 ^ � = (ea; a; ta) �00 ^ ta 6 mt(B2; t), or(iii) hB2; ti ��!�hB02; t0i ^ B0 = B02 ^ � = (ea; a; ta) �00 ^ ta 6 mt(B1; t).2. hB1 [> B2; ti ��!�hB0; t0i i� either(i) � = " ^ hB1; ti "�!�hB01; t0i ^ hB2; ti "�!�hB02; t0i ^ B0 = B01 [> B02, or(ii) � = �0 (e; �; t0) ^ hB1; ti ��!�hB01; t0i ^ t0 6 mt(B2; t) ^ B0 = B01, or(iii) � = (e; a; ta) �0 ^ hB2; ti ��!�hB02; t0i ^ ta 6 mt(B1; t) ^ B0 = B02, or(iv) � = �1 (e; a; ta) �2 ^ hB1; ti �1(e;a;ta)������!�hB01; tai ^ a 6= � ^ ta 6 mt(B2; t) ^hB2; tai �2��!�hB02; t0i ^ (�2 = (e; b; tb) �0) tb 6 mt(B01; ta) ^ B0 = B02) ^(�2 = ") B0 = B01)3. hUU(B); ti ��!�hB0; t0i i� hB; ti ��!�hB00; t0i ^ B0 = UU (B00) and8 0 < i 6 j � j : (8 a 2 U; ta < ti : hB; ti �i(e;a;ta)������!= �).Proof. The proof is by induction on the length of �. As an illustration we provide the proof forurgency. The proofs for + and [> are similar and omitted. Consider UU (B).Base: For � = " we derive:hUU (B); ti "�!�hB0; t0i, f de�nition "�!� ghUU (B); ti hB0; t0i

136 Chapter 6: The urgency module, f SOS-rules for ghB; ti hB00; t0i ^ B0 = UU(B00), f de�nition "�!� ghB; ti "�!�hB00; t0i ^ B0 = UU (B00) .Induction Step: `)' : assume the lemma holds for n and suppose � = �0 (en+1; an+1; tn+1) with�0 = (e1; a1; t1) : : : (en; an; tn), n > 0. The proof is by contradiction. That is, assume that for some i,0 < i 6 n+1 we have thathB; ti �i (e;a;ta)������!� , (6.1)for a 2 U and ta < ti. Because �0 is an event trace of hUU (B); ti it follows from the inductionhypothesis that i > n, since for all i 6 n (6.1) does not hold. Thus, i = n+1. We derive startingfrom (6.1):hB; ti �i (e;a;ta)������!�, f de�nition ��!�; i = n+1 g9C : hC; tni (e;a;ta)�����!�) f Theorem 6.24 gta > tn + dmin(a;C)) f ta < tn+1 ; calculus gdmin(a;C) < tn+1 � tn .Thus from the assumption it follows that dmin(a;C) < tn+1 � tn, for a 2 U . We now infer:hUU (B); ti ��!�hB0; t0i, f de�nition ��!� using that � = �0 (en+1; an+1; tn+1) g9B00 : hUU (B); ti �0��!�hB00; tni (en+1;an+1;tn+1)�����������!�hB0; tn+1i, f SOS-rules for and �! g9C;D : hUU (B); ti �0��!�hUU (C); tni (en+1;an+1;tn+1)�����������!�hUU (D); tn+1i, f induction hypothesis; SOS-rules for and �! ghB; ti �0��!�hC; tni (en+1;an+1;tn+1)�����������!�hD; tn+1i ^ (8 a 2 U : tn+1�tn < dmin(a;C)):This, however, contradicts with the fact that for a 2 U we have tn+1 � tn > dmin(a;C) as derivedabove. Contradiction.`(' : assume the lemma holds for n (n > 0) and suppose � = �0 (en+1; an+1; tn+1) with �0 =(e1; a1; t1) : : : (en; an; tn). We then derive:hB; ti ��!�hB0; t0i ^ (8 0 < i 6 j � j : (8 ta < ti; a 2 U : hB; ti �i (e;a;ta)�������!= �)), f de�nition ��!� ; � = �0 (en+1; an+1; tn+1) ; t0 = tn+1 ghB; ti �0��!�hB00; tni (en+1;an+1;tn+1)�����������!�hB0; tn+1i^ (8 0 < i 6 j �0 j : (8 ta < ti; a 2 U : hB; ti �0i (e;a;ta)�������!= �))^ (8 ta < tn+1; a 2 U : hB; ti �0 (e;a;ta)�������!= �)

Correspondence with causality-based semantics 137) f induction hypothesis ghUU (B); ti �0��!�hUU (B00); tni ^ hB00; tni (en+1;an+1;tn+1)�����������!�hB0; tn+1i^ (8 ta < tn+1; a 2 U : hB; ti �0 (e;a;ta)�������!= �), f De�nition 5.24; calculus ghUU (B); ti �0��!�hUU (B00); tni ^ hB00; tni hB000; tn+1i (en+1;an+1)��������!hB0; tn+1i^ : (9 ta < tn+1; a 2 U : hB; ti �0 (e;a;ta)�������!�), f hB; ti �0��!�hB00; tni ghUU (B); ti �0��!�hUU (B00); tni ^ hB00; tni hB000; tn+1i (en+1;an+1)��������!hB0; tn+1i^ : (9 ta < tn+1; a 2 U : hB00; tni (e;a;ta)�����!�)) f Theorem 6.24 ghUU (B); ti �0��!�hUU (B00); tni ^ hB00; tni hB000; tn+1i (en+1;an+1)��������!hB0; tn+1i^ : (9 ta < tn+1; a 2 U : ta > tn + dmin(a;B00))) f calculus ghUU (B); ti �0��!�hUU (B00); tni ^ hB00; tni hB000; tn+1i (en+1;an+1)��������!hB0; tn+1i^ (8 a 2 U : tn+1 � tn 6 dmin(a;B00)), f SOS-rules for ghUU (B); ti �0��!�hUU (B00); tni hUU (B000); tn+1i ^ hB000; tn+1i (en+1;an+1)��������!hB0; tn+1i, f SOS-rule for �! ghUU (B); ti �0��!�hUU (B00); tni hUU (B000); tn+1i (en+1;an+1)��������!hUU (B0); tn+1i, f De�nition 5.24; � = �0 (en+1; an+1; tn+1) ; t0 = tn+1 ghUU (B); ti ��!�hUU (B0); tn+1i . �6.5.2 Denotational characterization of timed event tracesWe now characterize denotationally the set of timed event traces of B obtained from applyingthe inference rules for and �! , and prove that this characterization coincides with theoperational characterization of the previous section. For the purpose of the consistency proofit su�ces to only consider hB; 0i. We use B as an abbreviation of hB; 0i. For technicalconvenience we introduce6.31. Definition. mt0(B) , Minf ta j 9 a 2 Urgent(B) : (ea; a; ta) 2 TU [[B]] g. �The denotational characterization of the set of timed traces of B is de�ned as follows:6.32. Definition. For B 2 PAU the set of timed traces of B, TU [[B]], is de�ned by:1. TU [[0]] , f " g2. TU [[p�]] , f " g [f (�; �; t) j t 2 Time g3. TU [[(t) a� ; B]] , f (�; a; t0) t0[�] j t0 > t ^ � 2 TU [[B]] g [f " g

138 Chapter 6: The urgency module4. TU [[B1 +B2]] , f (�; a; t) � 2 TU [[B1]] j t 6 mt0(B2) g [f (�; a; t) � 2 TU [[B2]] j t 6 mt0(B2) g [f " g5. TU [[B1 >> B2]] , f �1 (e; �; t) t[�2] j �1 (e; �; t) 2 TU [[B1]] ^ �2 2 TU [[B2]] g[f � 2 TU [[B1]] j � 6= �0 (e; �; t) g6. TU [[B1 [> B2]] , f � (e; �; t) 2 TU [[B1]] j t 6 mt0(B2) g [f " g [f (e; a; t) � 2 TU [[B2]] j t 6 mt0(B1) g [f �1 �2 j �1 = �01 (e; a; t) 2 TU [[B1]] ^ a 6= � ^ t 6 mt0(B2) ^�2 2 TU [[B2]] ^ (�2 = (e0; b; t0) �02) t0 > t ^(8 c 2 Urgent(B1); t00 < t0 : �1 (e0; c; t00) 62 TU [[B1]])) g7. TU [[B[H]]] , f � j 9 �0 2 TU [[B]] : � = �0[H] g8. TU [[B nG]] , f � j 9 �0 2 TU [[B]] : � = �0 nG g9. TU [[B1 jjGB2]] , f � 2 (TU [[B1]]onGTU [[B2]])+ j �i(�) 2 TU [[Bi]] for i=1; 2 g10. TU [[UU(B)]] , f � 2 TU [[B]] j 8 i : (8 e; a 2 U; ta<ti : �i (e; a; ta) 62 TU [[B]]) g. �6.33. Lemma. 8B 2 PAU : TU [[B]] = f � j 9B0; t0 : hB; 0i ��!�hB0; t0i g.Proof. Straightforward but tedious by induction on the structure of B. �6.5.3 Consistency between causality-based and operationalsemanticsWe now come to the following consistency result between the causality-based semantics ofPAU and the event-based operational semantics.6.34. Theorem. 8B 2 PAU : TU(EU [[B]]) = TU [[B]].Proof. The proof is by induction on the structure of B.Base: For B = 0 and B = p the theorem trivially holds.Induction Step: Assume the theorem holds for B1 and B2. Let 	 = EU [[B]] and 	i = EU [[Bi]] =h(Ei; i; 7!i; li);Di;Ti;Uii (i=1; 2).1. B = (t) a� ; B1. We have 	 = hET [[B]];U1 [f (�; false) gi. Event � is nonurgent and all urgentevents in 	1 can only occur after the occurrence of �, and thus cannot prevent � from appearingfrom a certain time on. The non-empty timed traces � of 	 are thus of the form (�; a; ta) ta [�0]with �0 2 TU (1) and ta > t (see also proof of Lemma 5.17). By the induction hypothesis wehave TU(1) = TU [[B1]]. This proves the case.2. B = B1 + B2. In 	 mutual conicts are introduced between all initial events of 	1 and 	2.This means that initial urgent events of 	1 are put into conict with (all) initial events of 	2(and vice versa for urgent events in 	2 and initial events in 	1), and as a result may preventthe occurrence of these initial events in 	2 after a certain time. For e1; e2 initial events of 	1and 	2, respectively, such that U1(e1) event e2 becomes excluded in 	 by e1 from time t on,

Correspondence with causality-based semantics 139D1(e1) < t. Thus we derive:TU(EU [[B1 +B2]])= f see discussion above gTU (1) n f (e; a; t)� j 9 e0 2 E2 : U2(e0) ^ e e0 ^ D2(e0) < t g[TU (2) n f (e; a; t)� j 9 e0 2 E1 : U1(e0) ^ e e0 ^ D1(e0) < t g= f calculus gf (e; a; t)� 2 TU(1) j : (9 (e0; b; t0) 2 TU (2) : U2(e0) ^ t0 < t) g[f (e; a; t)� 2 TU(2) j : (9 (e0; b; t0) 2 TU (1) : U1(e0) ^ t0 < t) g [f " g= f induction hypothesis ; U(e)) l(e) 2 Urgent(B) gf (e; a; t)� 2 TU [[B1]] j : (9 (e0; b; t0) 2 TU [[B2]] : b 2 Urgent(B2) ^ t0 < t) g[f (e; a; t)� 2 TU [[B2]] j : (9 (e0; b; t0) 2 TU [[B1]] : b 2 Urgent(B1) ^ t0 < t) g [f " g= f De�nition 6.31 gf (e; a; t)� 2 TU [[B1]] j t 6 mt0(B2) g [f (e; a; t)� 2 TU [[B2]] j t 6 mt0(B1) g [f " g= f De�nition 6.32 gTU [[B1 +B2]] .3. B = B1 >> B2. Similar to the nonurgent case, timed traces of 	 are either (i) traces of 	1 thatdo not end with a successful termination event � (this is equal to saying that no � should occurin this trace), or (ii) traces of the form �1 (e; �; t) t[�2] for �2 2 TU (2) and �1 (e; �; t) 2 TU (1).The fact that events in 	2 can only occur after the successful termination of 	1 guaranteesthat urgent events in 	2 do not a�ect the occurrence of events in 	1 (and vice versa). Thus,TU () equalsf� 2 TU (1) j � 6= �0 (e; �; t) g[f�1 (e; �; t) t[�2] j �1(e; �; t) 2 TU (1) ^ �2 2 TU (2) g .By the induction hypothesis it now directly follows that this equalsf� 2 TU [[B1]] j � 6= �0 (e; �; t) g[f�1 (e; �; t) t[�2] j �1 (e; �; t) 2 TU [[B1]] ^ �2 2 TU [[B2]] g .By De�nition 6.32 this equals TU [[B1 >> B2]].4. B = B1 [> B2. From the timed case without urgency (see Chapter 5) we know that traces of 	are either (i) traces of 	1 that end with a successful termination event �, or (ii) concatenationsof (possibly empty) traces �1 2 TU (1) and �2 2 TU (2) where �1 does not contain a �-eventand where the timing of each event in �2 should exceed the maximal timing in �1. In the urgentcase the asymmetric conicts between the events in 	1 and init(2) do a�ect the occurrenceof events. That is, an event in 	1 can happen only provided there is no (initial) urgent eventin 	2 that could occur earlier, and an (initial) event in 	2 can happen provided there is nourgent event in 	1 after �1 that could occur earlier. We now characterize set (i) and derive forthis set:f� (e; �; t) 2 TU (1) j : (9 i; e0 2 init(2) : U2(e0) ^ D2(e0) < ti) g= f all traces in TU (1) are time-consistent g

140 Chapter 6: The urgency modulef� (e; �; t) 2 TU (1) j : (9 e0 2 init(2) : U2(e0) ^ D2(e0) < t) g= f calculus gf� (e; �; t) 2 TU (1) j : (9 (e0; l2(e0); t0) 2 TU (2) : U2(e0) ^ t0 < t) g= f induction hypothesis; U2(e0)) l2(e0) 2 Urgent(B2) gf� (e; �; t) 2 TU [[B1]] j : (9 (e0; a; t0) 2 TU [[B2]] : a 2 Urgent(B2) ^ t0 < t) g= f De�nition 6.31 gf� (e; �; t) 2 TU [[B1]] j t 6 mt0(B2) g .A similar derivation can be carried out for set (ii). By De�nition 6.32 the union of the thusobtained sets is equal to TU [[B1 [> B2]].5. B = B1 n G. Similar to the nonurgent case, the timed traces of 	 are the timed traces in	1 where all action labels in G are renamed into � . So, TU () = f� j 9�0 2 TU (1) : � =�0 nG g. By the induction hypothesis this equals f� j 9�0 2 TU [[B1]] : � = �0 nG g, which|byDe�nition 6.32|equals TU [[B1 nG]].The proof for relabelling is similar and omitted here.6. B = B1 jjGB2. Since, according to De�nition 4.26, G \ Urgent(Bi) = ?, for i=1; 2, it iseasy to check that no new (asymmetric) conicts are introduced between urgent events in 	1and events in 	2 (or vice versa). This means that, similar to the timed case, � 2 TU () i��i(�) 2 TU (i), for i=1; 2, and � is time-consistent. So, TU () equalsf� 2 (TU (1) onG TU (2))+ j �1(�) 2 TU(1) ^ �2(�) 2 TU(2) g:By the induction hypothesis this equalsf� 2 (TU [[B1]]onGTU [[B2]])+ j �1(�) 2 TU [[B1]] ^ �2(�) 2 TU [[B2]] g:By De�nition 6.32 this equals TU [[B1 jjGB2]].7. B = UU(B1). All events in 	1 labelled with an action in U become urgent in 	. No additionalconicts and/or bundles are introduced. This means that a trace � of 	1 is also a trace of 	 i�(i) each event ei in � with l1(ei) 2 U cannot be performed any earlier, and (ii) for each eventei in � there is not an enabled urgent event that could be performed earlier (cf. the constraintsin De�nition 6.3). We now deriveTU(EU [[UU (B1)]])= f discussion above gf� 2 TU(1) j (8 (ei; ai; ti) 2 � : ai 2 U) ti = time(�i; ei)) ^(8 0 < i 6 j � j : e 2 en([�i]) ^ l1(e) 2 U) ti 6 time(�i; e)) g= f calculus gf� 2 TU(1) j (8 (ei; ai; ti) 2 �; t < ti : ai 2 U) �i (ei; ai; t) 62 TU (1)) ^(8 0 < i 6 j � j; t < ti : l1(e) 2 U) �i (e; l1(e); t) 62 TU(1)) g= f calculus gf� 2 TU(1) j 8 i : (8 e; t < ti; a 2 U : �i (e; a; t) 62 TU(1)) g= f induction hypothesis g

Related work 141f� 2 TU [[B1]] j 8 i : (8 e; t < ti; a 2 U : �i (e; a; t) 62 TU [[B1]]) g= f De�nition 6.32 gTU [[UU (B1)]] . �Let TSU(B) be the timed event transition system obtained by applying the inference rules toB. For EU [[B]] a transition system ETSU is constructed in the following way. States of thetransition system for EU [[B]] are reachable urgent event structures (or, derivatives) of EU [[B]]with EU [[B]] being the initial state. There is a transition from 	 to 	0 if 	0 = 	[�] for timedtrace � with j � j = 1. (See Section 5.3 for a formalization of these issues.)The previous theorem implies that TSU(B) and ETSU(EU [[B]]) are (timed) event trace equiv-alent. It is easy to check that for each transition B (e;a;t)����!�B0 there is a unique way in whichthis transition is derived from the SOS-rules for and �! . Since|in addition|both (timed)event transition systems are deterministic it follows that:6.35. Theorem. 8B 2 PAU : TSU(B) � ETSU(EU [[B]]).Proof. Similar to the proof of Theorem 2.46. �6.6 Related workThis section discusses some related work in the literature that deals with the incorporationof a notion of urgency in a timed process algebra. We deliberately state `notion of' since itappears that there are several closely related concepts around.The basic timing ingredient in PAU is the delay function, (t) a ; B. It speci�es that from ttime units on since the occurrence of the causal predecessor of a (if any) the behaviour is ableto engage in a. This type of time constraint is sometimes referred to as unbounded idling [112]or loose time pre�x [105], since the time between the expiration of the speci�ed delay andthe occurrence of a is determined by the environment, and in principle may be unbounded.Opposed to this principle the notion of time-stamped actions has been proposed by, amongstothers, Baeten & Bergstra [7]. For example, [t] a ; B speci�es that a must occur at time t. Infact, this construct speci�es a delay t, and in addition, that a must occur at t|local urgency,so to say.Urgent and nonurgent actions are incorporated by Bolognesi & Lucidi [18] within a (discrete)timed variant of LOTOS. In their proposal each action is nonurgent by default, but canbe made urgent|like in our case. Opposed to the proposal of this chapter they do allowsynchronization of urgent actions. Such synchronizations only succeed if all participants areready to engage in the interaction at the same time instant. If this is not the case then aso-called timelock appears, a situation in which the progress of time is blocked as a result ofwhich the entire system may halt execution.Bolognesi et al. [19] generalize the notion of urgency (in a continuous time setting) by intro-ducing the time operator. time a(t1; t2) in B denotes behaviour B in which a must occur

142 Chapter 6: The urgency modulein interval [t1; t2] once it is enabled. Ua(B) is akin to (time a(0; 0) in B) na. In order toconstrain the passage of time in the inference rules for time a(t1; t2) in B, Bolognesi et al.use a function age(a; B) which determines the maximal (rather than the minimal) time atwhich B can perform initial action a. (It was pointed out by Bolognesi that the operationalsemantics of PAU strongly resembles an (unpublished) proposal by Bolognesi & Schneider [20]to integrate timed LOTOS [18] and timed CSP [133].)Klusener [86] introduces a real-time variant of ACP, called ACPur, and provides an operationalsemantics using separate time and action transitions. Rather than using a function like dminto block the passage of time in presence of urgent actions, he uses negative premises. Klusenerde�nes several notions of bisimulation for ACPur and presents an axiomatization for it.In other approaches (for instance, Hansson & Jonsson [65], Hennessy & Regan [67] and Schnei-der [133]) a weaker notion of urgency, often referred to as maximal progress, is present. Thenotion of maximal progress (or eagerness) is weaker than urgency as it `ignores urgency in thecontext of choice'. That is, if actions happen they happen as soon as possible, but they cannotprevent the occurrence of other actions after a certain amount of time (like urgent actions do).In most formalisms maximal progress is coupled with hiding (n). In these formalisms internal-ized events become eager, and eager events are internal. The rational for this is that when anevent is internalized (i.e., hidden from the environment), no further interaction on this eventcan take place, no further delays will be imposed by the environment, and thus there is noreason to delay its execution any further. On the one hand, the maximal progress assumptionapplied to internal events alone is not su�ciently expressive (why can't non-internal eventsbe eager?), and on the other hand, it is a bit restrictive|when specifying an unreliable com-munication service that may lose messages, the loss of a message is usually modelled by aninternal event, but we are not interested in specifying when this message is physically lost!6.7 ConclusionThe notion of urgency was introduced by Bolognesi & Lucidi [18] in the context of (discrete)timed LOTOS and later by Bolognesi et al. [19] in a dense timed setting. In this chapter wehave investigated the incorporation of urgency in the setting of event structures by distin-guishing between urgent and nonurgent events. The resulting model has been used to providea denotational semantics to a timed process algebra that includes an urgency operator akinto the one proposed for timed LOTOS. The corresponding event-based operational semanticsturned out to strongly resemble the inference rules in [19]. The main di�erence is that wedo not allow synchronization on urgent actions, while in [19] this is possible at the prize ofpossible timelocks.

7 The real-time module
In this chapter we generalize timed event structures by equipping eventsand bundles with sets of time instants and use urgent events for the solepurpose of modelling timeout mechanisms (thus restricting urgent eventstructures). An event e with set T of time instants denotes that e canonly occur at some t 2 T since the start of the system. T associated withbundle X 7! e denotes that the time between the occurrence of an event inX and the appearance of e should equal t, for some t 2 T . The result is acausality-based model allowing the speci�cation of minimal, maximal and,for instance, periodic time constraints. This chapter generalizes the theoryof Chapter 4 and uses urgent events in a controlled way. It investigates howthe more expressive model, baptized real-time event structures, can be usedas a vehicle to provide a semantics to a real-time process algebra includingtimeout and watchdog operators.7.1 IntroductionIn Chapter 4 we introduced a simple timed variant of event structures by associating a singletime instant to events and bundles. These time instants specify only lower bounds of occur-rence and do not allow for constraining the latest point in time at which an event may occur.In addition, this model does not allow to specify timeout mechanisms, a necessary ingredi-ent for describing real-time systems. Therefore, in this chapter we propose a model, calledreal-time event structures, which allows to specify upper bounds of occurrence (in addition tolower bounds) and allows to specify timeouts.Let us �rst reconsider the timed event structure model. An event e with delay t denotes thate can happen from t time units on since the start of the system. This is, in fact, a shorthandnotation for event e equipped with a set T of time instants, T = f t0 j t0 > t g, with theinterpretation that e can happen at any time instant in T . Of course, a similar observationcan be made for bundle delays. In this chapter we generalize this point of view by allowingarbitrary sets of time instants to be assigned to events and bundles. In this way, it is not onlypossible to specify the minimal time at which an event can occur, but also the latest time atwhich it can occur.In order to specify timeouts we use urgent events, like we introduced in Chapter 6. Opposedto PAU , the process algebra of Chapter 6, that allows to enforce an arbitrary action in anexpression to be urgent we restrict the introduction of urgency to timeout mechanisms only.In this way, the model of Chapter 6 can be simpli�ed signi�cantly, while suiting our purposes.143

144 Chapter 7: The real-time moduleWe will also show how timed interrupts (or watchdogs [112]) can be modelled without usingurgent events.This chapter is organized as follows. In Section 7.2 the notion of real-time event structures isintroduced and it is investigated to what extent the results and de�nitions related to timedevent structures still apply. Section 7.3 extends PAT by generalizing the delay function andincorporating timeout and watchdog operators; it presents a causality-based and event-basedoperational semantics for the resulting formalism and shows the correspondence between them.Section 7.4 discusses related work in the �eld of extending partial-order models with time.Finally, Section 7.5 presents the conclusions of this chapter.7.2 Real-time event structures7.1. Notation. For x; y 2 Time let [x; y] abbreviate f t j x 6 t 6 y g and (x; y] abbreviatef t j x < t 6 y g. For x 2 Time and y 2 Time1 let (x; y) be a shorthand for f t j x < t < y gand [x; y) a shorthand for f t j x 6 t < y g. [x;1) is often abbreviated as x. �In order to facilitate the speci�cation of other than minimal time constraints we replace eventand bundle delays by arbitrary, and possibly in�nite, sets of time instants. The interpretationof f ea g T7! eb, where T is a set of time instants, is that if ea happens at ta, then eb is possibleat ta + t, for any t 2 T . Notice that for T = [t;1) the interpretation of f ea g T7! eb is equalto f ea g t7! eb in the model of Chapter 4.For events that have more than one bundle pointing to them we take the following interpre-tation. Consider f ea g T7! ec and f eb g T 07! ec. Then, if ea happens at time ta and eb at timetb, then ec is enabled at any t 2 (ta+T) \ (tb+T 0), where t+T denotes f t+t0 j t0 2 T g. (IfT = [t;1) and T 0 = [t0;1) then (ta+T) \ (tb+T 0) = [max(ta+t; tb+t0);1); so the synchro-nization principle of Chapter 4 is retained.) When the intersection of two (or more) sets oftime instants is empty this means that the event at hand cannot occur at any time and willbe permanently disabled.The interpretation of an event with delay T is that e can happen at some time t 2 T sincethe start of the system. As before we use D and T to associate delays (which are now sets oftime instants) to events and bundles, respectively.In order to be able to model timeouts we equip the model with urgent events (like in Chapter6). In Chapter 6 we introduced urgent event structures and did not constrain the introductionof urgent events in the model. As we have shown, urgent events may have a global impactwhich alleviates one of the interesting characteristics of event structures, viz. the localityaspect. This resulted in a rather complex characterization of timed event trace: in order todecide whether an event can happen the `global' state of the entire system is used (cf. thethird and fourth constraint of De�nition 6.3). In this chapter we restrict the introduction ofurgent events thus yielding a simpler model. Later on in this chapter we will show that this`weakened' variant of urgency su�ces to model timeouts and watchdogs.Let X e0 abbreviate (8 e00 2 X : e00 e0). Note that ? e0 for all e0.

Real-time event structures 1457.2. Definition. (Real-time event structure)A real-time event structure is a quadruple hE ;D; T ;Ui with� E , an (extended bundle) event structure (E; ; 7!; l)� D : E �! P(Time1), the event delay function� T : 7! �! P(Time1), the bundle delay function� U : E �! Bool, the urgency predicatesuch that for all e 2 E with U(e):1. 8 e0 2 E;X � E : ((e0 e _ e e0) ^ X 7! e)) (X 7! e0 _ X e0)2. 9 t 2 Time : D(e) � [t; t] _ (9X � E : X T7! e ^ T � [t; t]) . �The �rst constraint requires that the enablings of an urgent event e are either contained inthe enablings of an event e0 that it disables, i.e., e0 e, or that an enabling of e is disabled bye0 (the case e e0 is identical). This constraint enforces that as soon as e0 is enabled either eis also enabled (provided e is not disabled in another way), or is permanently disabled, sincesome enabling of e is disabled (by e0). As a result the global impact of urgent events is limited;see also the discussion in Section 6.2.1. Thus, in order to decide whether e0 can occur|onceit is enabled|it su�ces to consider the local (and urgent) disablings of e0.The second constraint ensures that urgent events are enabled at at most a single time instant.The motivation for this constraint is that urgent events are used for the sole purpose ofmodelling timeouts, and timeouts typically can appear at a single time instant only.Note that event and bundle delays may be in�nite sets of time instants, but also empty setsof time instants. We usually will use intervals and combinations (unions and intersections) ofthem. For depicting real-time event structures we use the same conventions as for timed eventstructures. We use � to denote a real-time event structure and EBESR to denote the class ofreal-time event structures. We use T to range over P(Time1).7.2.1 Timed event tracesGiven a sequence � of timed events and an enabled event e, that is e 2 en([�]), let time(�; e)denote the set of time instants at which e can occur.7.3. Definition. For � a sequence of timed events (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time,for all 0 < i 6 n, and e 2 en([�]), lettime(�; e) , T (fD(e) g [H1 [H2) whereH1 = f tj + T j 9X � E : X T7! e ^ X \ [�] = f ej g gH2 = f [tj;1) j 9 ej 2 [�] : ej e g . �

146 Chapter 7: The real-time moduleFor P a set of sets of time instants let TP , f t j 8T 2 P : t 2 T g.7.4. Lemma. For all sequences � of timed events and e 2 E we have:e 2 en([�]) ^ U(e)) j time(�; e) j 6 1 .Proof. This follows directly from the second constraint of De�nition 7.2 and the de�nition oftime. �In the sequel we will use for urgent event e time(�; e) as a value, rather than as a set of timeinstants, whenever appropriate. We use 1 as the value of ?.7.5. Definition. (Timed event trace (revisited))A timed event trace of real-time event structure � = hE ;D; T ;Ui is a sequence � oftimed events (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time, for all 0 < i 6 n, satisfying1. e1 : : : en 2 T (E)2. 8 i : ti 2 time(�i; ei)3. 8 i; e : (e 2 en([�i]) ^ U(e) ^ (ei e _ e ei))) ti 6 time(�i; e). �The �rst two constraints are self-explanatory. The third constraint is justi�ed as follows. First,consider ei e, for urgent e. Then the third constraint takes care of the fact that urgentevent e prevents the events that it disables (such as ei) to occur after a certain time. That is,event ei can occur at time ti provided there is no enabled urgent event e that disables ei andthat must occur before ti. In the case that e ei and both e and ei are enabled, the thirdconstraint ensures that ei can only occur if urgent e cannot occur earlier. If e could occurearlier it should precede (and cause) ei.7.6. Example. For the following sequences of timed events the conditions are given under
[3,7] {2,4,6,}

[5,12]

a b

c d

(a)

a b

c

[30,30]

1

3

(b)Figure 7.1: Two example real-time event structures.which they are timed event traces of Figure 7.1(a):(ea; ta) (eb; tb) (ed; td) if td 2 f tb+2; tb+4; : : : g; and(ea; ta) (eb; tb) (ec; tc) if max(ta+3; tb+5) 6 tc 6 min(ta+7; tb+12):

Real-time event structures 147For Figure 7.1(b) we obtain:(ea; ta) (ec; tc) if ta > 1 ^ ta + 3 6 tc 6 ta + 30; and(ea; ta) (eb; tb) (ec; tc) if ta > 1 ^ tb = ta + 30 ^ tc > max(ta + 3; tb): �Like for the simple timed case, timed event traces do respect causality, but not necessarilytime. Ill-timed traces only appear as a result of the interleaving of causally independent events.Let TR(�) denote the set of timed event traces of �.7.7. Theorem. Ill-timed theorem (revisited)For t0 < t: � (e; t)(e0; t0) �0 2 TR(�)) � (e0; t0)(e; t) �0 2 TR(�).Proof. Let �1 = � (e; t)(e0; t0) �0 and �2 = � (e0; t0)(e; t) �0. Let t0 < t and �1 2 TR(�). The proofis by contradiction. Suppose �2 62 TR(�). This can only be because one of the following reasons:1. [�2] 62 T (E). Identically to the proof of Theorem 4.9 this leads to a contradiction.2. 9 j : tj 62 time(�2j ; ej). In a similar way as in the proof of Theorem 4.9 it can be proven thatthis leads to a contradiction.3. 9 j; e00 : e00 2 en([�2j]) with U(e00) such that ej e00 (or e00 ej) and tj > time(�2j ; e00). Forevent ej in � or �0 this leads to a contradiction; otherwise �1 62 TR(�). It remains to checkej = e and ej = e0:(a) ej e00 ^ ej = e. Then e00 = e0 is the interesting case; if e00 6= e0 we would have�1 62 TR(�), which is a contradiction. If e00 = e0 then e0 2 en([�2j]) which is impossiblesince e0 is an event in the pre�x of �2 of e. Contradiction.(b) ej e00 ^ ej = e0. Then e00 = e is the interesting case; if e00 6= e we would have�1 62 TR(�), which is a contradiction. If e00 = e then e0 e and e could not precede e0 in�1, so �1 62 TR(�). Contradiction.(c) e00 ej ^ ej = e. For e00 in � or e00 in �0 this would contradict �1 2 TR(�). So, lete00 = e0. Then e0 e which means that e could not precede e0 in �1. Contradiction.(d) e00 ej ^ ej = e0. Again, the interesting case is e00 = e; the other cases contradict�1 2 TR(�). Then e 62 en([�2j]) since e0 disables e. Contradiction. �7.2.2 Families of lposetsAs an underlying semantical model for real-time event structures we use lposets. The lposetsof �, denoted LR(�), are generated in the same way as for timed event structures, cf. De�ni-tion 4.18.7.8. Definition. (Lposets of a real-time event structure)For � 2 EBESR : LR(�) , f h�;T�02[�]�T <��0 ; l � �i j � 2 TR(�) g. �

148 Chapter 7: The real-time moduleWe sometimes use LR(�) to denote h�;T�02[�]�T <��0 ; l � �i.For real-time event structures we have that having the same families of lposets is equivalentto having the same sets of timed event traces.7.9. Theorem. 8�;�0 2 EBESR : LR(�) = LR(�0)() TR(�) = TR(�0).Proof. Straightforward and omitted. �In the real-time setting the untimed lposets of � are not necessarily equal to the lposets ofthe corresponding untimed event structure '(�) (i.e., E). The reason for this is that events|though causally enabled|may not appear since there is no time instant at which they canoccur (or because an urgent event prevents them from occurring). E.g., if � consists of a singleevent e withD(e) = ? then LR(�) only consists of the empty lposet whereas the correspondinguntimed event structure also has lposet e .7.10. Lemma. 8� 2 EBESR : L(�) � L('(�)).Proof. Straightforward from the fact that 8� 2 TR(�) : [�] 2 T ('(�)). �7.2.3 Real-time remainderThe remainder of a real-time event structure is de�ned as a straightforward generalization ofDe�nition 4.22.7.11. Definition. (Real-time remainder)The remainder of real-time event structure � = hE ;D; T ;Ui after timed event trace �,is �[�] = hE 0;D0; T 0;U 0i where� E 0 = E [[�]] = (E 0; 0; 7!0; l0)� 8 e 2 E 0 : D0(e) = T (fD(e) g [H1 [H2) withH1 = f tj + T j 9X � E : X T7! e ^ X \ [�] = f ej g g andH2 = f [tj;1) j 9 ej 2 [�] : ej e g� T 0 = (T � 7!0) [f ((?; e); T) j ? 7!0 e g for some T 2 P(Time1)� U 0 = U � E 0. �The fact that �[�] is a real-time event structure follows from:7.12. Lemma. 8� 2 EBESR; � 2 TR(�) : �[�] 2 EBESR.Proof. Let � = hE ;D;T ;Ui with E = (E; ; 7!; l), and �0 = �[�]. It follows directly thatE 0 2 EBES, since E [[�]] 2 EBES for all E 2 EBES and [�] 2 T (E). For each e 2 E0, functions D0and U 0 are de�ned, and T 0 is a total function on the bundles of �0. It remains to verify that theconstraints of De�nition 7.2 are satis�ed. Let e 2 E0 with U 0(e).

Real-time event structures 1491. 8 e0 2 E0;X � E0 : ((e0 0 e _ e 0 e0) ^ X 7!0 e)) (X 7!0 e0 _ X 0 e0). Distinguishbetween e0 0 e and e 0 e0.(a) e0 0 e. Then, by De�nition 2.28, we have e0 e. Since U 0(e) we have U(e). Now letX 7!0 e. If X 7! e then we also have that X 7! e0, since � 2 EBESR. In addition, sinceX 7! e and X 7!0 e it follows that X \ [�] = ?, and so X 7!0 e0. In case X 7!0 e, butX 7! e does not exist, then X 7!0 e is a new bundle, and it follows from De�nition 2.28that X = ?. But then X 0 e0 since ? 0 e0 for all e0.(b) e 0 e0. Similar to the case e0 0 e.2. 9 t : D0(e) � [t; t] _ (9X � E0 : X T7! 0e ^ T � [t; t]). Since U 0(e) we have U(e). SupposeD(e) � [t; t]. By the de�nition of remainder it follows directly that D0(e) � [t; t]. SupposeX T7! e with T � [t; t]. If X 7!0 e then the bundle delay is una�ected and the constraint issatis�ed. In case (X; e) 627!0 it follows from De�nition 2.28 thatX\[�] 6= ?, sayX\[�] = f ej g.But then D(e) will be intersected by tj+T , and since T � [t; t] then it follows that D0(e) � [t0; t0]for t0 = tj+t. This proves the case. �The following correctness result concerning real-time remainders is analogous to the correctnessresults for timed and urgent remainders.7.13. Theorem. Correctness of real-time remainderFor � 2 TR(�) and �0 a sequence of timed events:1. �0 2 TR(�[�])() � �0 2 TR(�)2. �0 2 TR(�[�])) LR(�) is a pre�x of LR(� �0).Proof. Let � = hE ;D;T ;Ui and �0 = �[�] = hE 0;D0;T 0;U 0i for � 2 TR(�) whereE = (E; ; 7!; l) and E 0 = (E0; 0; 7!0; l0).1. `)': Assume �0 2 TR(�0). We prove that � �0 2 TR(�) by systematically checking the con-straints of being a timed event trace (cf. De�nition 7.5).(a) [� �0] 2 T (E). Given that [�] 2 T (E) and [�0] 2 T (E 0) this follows directly from Theo-rem 2.30.(b) 8 i : ti 2 time((� �0)i; ei). This is proven in a similar way as in the proof of Theorem 6.13.(c) For the third constraint of De�nition 7.5 we derive for all e:8 i : e 2 en([(� �0)i]) ^ U(e) ^ (ei e _ e ei)) ti 6 time((� �0)i; e), f domain split g(8 0 < i 6 j � j : e 2 en([(� �0)i]) ^ U(e) ^ (ei e _ e ei))ti 6 time((� �0)i; e)) ^(8 j � j < i 6 j � �0 j : e 2 en([(� �0)i]) ^ U(e) ^ (ei e _ e ei))ti 6 time((� �0)i; e)), f calculus g(8 i : e 2 en([�i]) ^ U(e) ^ (ei e _ e ei)) ti 6 time(�i; e))

150 Chapter 7: The real-time module^ (8 j : e 2 en([� �0j]) ^ U(e) ^ (ej e _ e ej)) tj 6 time(� �0j ; e)), f Lemma 6.12; Lemma 6.11 g(8 i : e 2 en([�i]) ^ U(e) ^ (ei e _ e ei)) ti 6 time(�i; e))^ (8 j : e 2 en0([�0j]) ^ U(e) ^ (ej e _ e ej)) tj 6 time0(�0j ; e)), f U 0(e) = U(e) for e 2 E0; 0= \ (E0 �E0) g(8 i : e 2 en([�i]) ^ U(e) ^ (ei e _ e ei)) ti 6 time(�i; e))^ (8 j : e 2 en0([�0j]) ^ U 0(e) ^ (ej 0 e _ e 0 ej)) tj 6 time0(�0j ; e))(f De�nition 7.5 g� 2 TR(�) ^ �0 2 TR(�0) .`(': the proof for this case goes along similar lines as the proof for `)'.2. The proof of this theorem is analogous to the proof of Theorem 4.24. �7.2.4 Transformation rulesThe �rst rule allows for the transformation of (particular) events that are impossible due totiming constraints into events that can never occur due to causal conditions that can never bemet (? denotes an arbitrary element of P(time1)). Since we can always safely remove eventswith an empty bundle pointing to them, this rule is considered to be useful. The second rulefacilitates the removal of sub-bundles and is a generalization of a similar rule for the simpletimed case. The third rule allows for the recalculation of event delays. T associated to bundleset X means that Se2X D(e) equals T . T+T 0 equals St2T (t+T 0), where St2T (t+T 0) equals ?if T = ?. Note that these rules do not depend on the fact whether e is urgent or not (exceptthat in the �rst rule ? should equal ? or [t; t], for some t 2 Time, if e is urgent; otherwise theresult is not necessarily a real-time event structure).

X e
T’

T T’’
= X e

T’
T (T+T’) ∩ T’’

Adjusting event delays

X

Y e

e

Sub-bundle removal
T

T’ T ∩ T’

X\Y

Y

=

e
∅

= e
*

Isolating impossible events

Figure 7.2: Some transformation rules for real-time event structures.

A real-time process algebra 1517.14. Theorem. Real-time event structure hE ;D; T ;Ui is lposet-equivalent with1. h(E; ; 7! [f (?; e) g; l); (D n f (e;?) g) [f (e; ?) g; T [f ((?; e); ?) g;Ui,if D(e) = ?.2. h(E; ; 7! nf (X; e) g; l);D; (T n f ((Y; e); T); ((X; e); T 0) g) [f ((Y; e); T \ T 0) g;Uiif Y � X ^ Y T7! e ^ X T 07! e.3. h(E; ; 7!; l); (D n f (e; T 00) g) [f (e; (Se02X D(e0)+T 0) \ T 00) g; T ;Uiif X T 07! e ^ D(e) = T 00.Proof. Similar to the proof of Theorem 4.25. �The next transformation rule is a consequence of the third and �rst rules of Theorem 7.14 andthe rule for untimed event structures which allows to eliminate bundles pointing to impossibleevents:
X e = X e

∅This rule can be proven by �rst transforming the event delay of e into ? according to theadjusting event delays rule, then introducing an empty bundle pointing to e according to the�rst rule and subsequently eliminating the impossible event e according to the rule superuousbundles for untimed event structures (see Chapter 2).7.15. Example. The application of the transformation rules of Figure 7.2 is shown by thefollowing example:
[0,1]

[6,12]

a

b

d

c

{1,3}

[3,5]

[18,29]

[4,9]

(a)

[0,1]

[6,8]

a

b

d

c

{1,3}

[3,5]

[18,29]

[4,9]

(b)

[18,32]

[0,1]

[6,8]

a

b

d

c

{1,3}

[3,5]

[18,29]

[4,9]

(c)

∅

[0,1]

[6,8]

a

b

d

c

{1,3}

[3,5]

(d)Suppose we initially have real-time event structure (a). In the �rst step we consider thebundles originating from f ea; eb g and adjust the event delays of ec and ed according to thethird transformation rule. This yields (b). Then we apply the same rule to f ec g 7! ed,resulting in (c). Finally, we can remove all bundles pointing to ed according to the abovederived transformation rule, and obtain (d). �7.3 A real-time process algebraThis section introduces an extension of PAT by generalizing the delay function and introducinga timeout and watchdog operator. In the �rst section we introduce the syntax; a causality-

152 Chapter 7: The real-time modulebased semantics is provided in the second section. Subsequently, an event-based operationalsemantics is presented in the same spirit as in Chapter 5 using timed actions (and usingseparate time and action transitions), and the consistency of this semantics with respect tothe denotational semantics is proven.7.3.1 SyntaxLet t 2 Time and T 2 P(Time1). The syntax of the real-time process algebra PAR is de�nedas follows.7.16. Definition. (Real-time process algebra PAR)B ::= 0 j p j (T) a ; B j B +B j B jjGB j B[H] j B nG j B >> B jB [> B j B tB B j B tI B: �The precedences of the composition operators are, in decreasing binding order: ; , + and B,jj , [> and I, >>, n and []. Parentheses are omitted if this does not introduce ambiguities.The delay function that expresses the relative delay of an action associates to an action a setT of time instants. Behaviour a ; (T) b ; 0 is able to engage in b at t time units since theoccurrence of a, for t 2 T . That is, if a happens at ta then b can happen at ta+t for somet 2 T . Like for PAT we allow arithmetic expressions on sets of time instants. We abbreviate([t;1)) a by (t) a, and (0) a simply by a.B1 tB B2 is a timeout operator; initially the behaviour behaves like B1, but if B1 does notperform any action before or at t (since the enabling of this behaviour) then the control ispassed to B2. B1 tB B2 can be considered as a timed generalization of B1 + B2: if during[0; t) behaviour B1 performs an action then the choice is resolved in favour of B1, if it doesnot perform any action in [0; t] then the choice is resolved in favour of B2. At time t anondeterministic choice appears between B1 and B2.B1 tI B2 is a watchdog operator; initially the behaviour behaves like B1 but at time t control ispassed to B2 provided B1 is not yet successfully terminated. B1 tI B2 is a timed generalizationof B1 [> B2: B1 is aborted at time t by B2 provided that B1 has not successfully terminated.Note that in B1 tB B2 control is passed to B2 only if B1 does not perform any action|eitherinternal or not|before (or at) t, whereas in B1 tI B2 control is passed to B2 at time t,regardless of the activities of B1 until time t (with the exception of termination).The synchronization principle for PAR is identical to that in PAT and PAU : an action can onlyoccur when all participants are ready to engage in it. Thus, in behavioura ; (T1) b ; 0 jjf a;b g a ; (T2) b ; 0b is enabled at any time in ta+T1 \ ta+T2 = ta + (T1 \ T2).

A real-time process algebra 153Notice that by means of synchronization actions may become impossible due to incompatibletiming constraints in the participating behaviours. For instance, if T1\T2 = ? in the examplejust above, b can never occur.7.3.2 Causality-based semanticsIn this section we show how a causality-based semantics can be given to PAR using real-timeevent structures. We de�ne a mapping ER[[]] : PAR �! EBESR. For convenience we use thedenotational semantics E 0[[]] for the untimed case which is de�ned in Chapter 2. In additionwe use:7.17. Definition. �R : PAR �! PA is de�ned as follows:�R(0) , 0�R(p) , p�R((T) a ; B) , a ; �R(B)�R(B1 opB2) , �R(B1) op �R(B2) for op 2 f+; jjG ; >>; [> g�R(opB) , op �R(B) for op 2 f n; [] g�R(B1 tB B2) , �R(B1) + � ; �R(B2)�R(B1 tI B2) , �R(B1) [> �R(B2): �So, �R associates to a real-time behaviour B its corresponding untimed behaviour �R(B) bysimply omitting all time annotations in B and converting B and I into + and [>, respectively.The purpose of the internal event introduced by the timeout operator will be explained lateron.In the rest of this section let ER[[Bi]] = �i = hEi;Di; Ti;Uii, for i=1; 2, with Ei = (Ei; i; 7!i; li)and E1 \ E2 = ?. The functions init and exit which denote the set of initial and terminationevents, respectively, are de�ned for event structures in Chapter 2 and are used for real-timeevent structures in the same way. Let EU denote the universe of events.7.18. Definition. (Real-time semantics of 0, p, and (T) a ;)ER[[0]] , hE 0[[�R(0)]];?;?;?iER[[p]] , hE 0[[�R(p)]]; f (e�;Time1) g;?; f (e�; false) giER[[(T) a ; B1]] , h(E; 1; 7!; l1 [f (ea; a) g);D; T ;Ui whereE = E1 [f ea g for some ea 2 EU n E17! = 7!1 [(f f ea g g � E1)D = f (ea; T) g [(E1 � fTime1 g)T = T1 [f ((f ea g; e);D1(e)) j e 2 E1 gU = U1 [f (ea; false) g: �

154 Chapter 7: The real-time moduleThe semantics of 0 and p is self-explanatory. For timed action-pre�x the semantics closelyresembles that for the simple timed case, i.e., PAT , except that now bundles are introducedbetween the new event ea and all events in ER[[B1]]. In this way it is guaranteed that theresulting structure is indeed a real-time event structure: it satis�es the �rst constraint onurgent events of De�nition 7.2. A similar approach is taken for >>, see just below. For theother operators the semantics is a straightforward generalization of the denotational semanticsfor the simple timed case.7.19. Definition. (Real-time semantics of n, [], +, >> and [>)ER[[B1 +B2]] , hE 0[[�R(B1 +B2)]];D1 [D2; T1 [T2;U1 [U2iER[[B1 [> B2]] , hE 0[[�R(B1 [> B2)]];D1 [D2; T1 [T2;U1 [U2iER[[opB1]] , hE 0[[�R(opB1)]];D1; T1;U1i for op 2 f n; [] gER[[B1 >> B2]] , h(E1 [E2; ; 7!; l);D; T ;U1 [U2i where = 1 [2 [f (e; e0) j e; e0 2 exit(�1) ^ e 6= e0 g7! = 7!1 [7!2 [(f exit(�1) g � E2)l = ((l1 [l2) n (exit(�1)� f � g)) [(exit(�1)� f � g)D = D1 [(E2 � fTime1 g)T = T1 [T2 [f ((exit(�1); e);D2(e)) j e 2 E2 g: �For parallel composition the set of time instants associated to a bundle equals the intersectionof the delays associated to the bundles we get by projecting on the i-th components (i=1; 2)of the events in the bundle, if this projection yields a bundle in ER[[Bi]]. The delay of an eventis the intersection of the delays of its components that are di�erent from �. Finally, an eventis urgent once one of its components is urgent (where � is treated as nonurgent).7.20. Definition. (Real-time semantics of jjG)ER[[B1 jjGB2]] , hE 0[[�R(B1 jjGB2)]];D; T ;Ui whereD((e1; e2)) = D1(e1) \ D2(e2) with Di(�) = Time1T ((X; (e1; e2))) = T1((pr1(X); e1)) \ T2((pr2(X); e2))with Ti((?; ei)) = Time1; for i=1; 2U((e1; e2)) = U1(e1) _ U2(e2) with Ui(�) = false; for i=1; 2: �Now we consider the denotational semantics for the two new operators B and I. We startwith the timeout operator.In ER[[B1 tB B2]] a new internal, urgent event e� is introduced that models the expiration ofthe timer (i.e., e� models a timeout). Since either the timer expires or B1 performs an initialaction before (or at) t, event e� is put in mutual conict with all initial events of ER[[B1]].The events of ER[[B2]] can only occur after the timeout; this is modelled in the same way as

A real-time process algebra 155for action-pre�x: a bundle f e� g 7! e is introduced for all e 2 ER[[B2]]. (Again bundles areintroduced to all events in ER[[B2]] in order to guarantee that this yields a real-time eventstructure.) The delay of these bundles is determined as in the action-pre�x case. The eventdelay of e� becomes [t; t] such that it can only occur at t time units since the enabling ofER[[B1 tB B2]]. So, ER[[B1 tB B2]] equals ER[[B1 + ([t; t])� ; B2]] where � is urgent.7.21. Definition. (Real-time semantics of B)ER[[B1 tB B2]] , h(E; ; 7!; l);D; T ;Ui whereE = E1 [E2 [f e� g for some e� 2 EU n (E1 [E2) = 1 [2 [(init(�1)� f e� g) [(f e� g � init(�1))7! = 7!1 [7!2 [(f f e� g g � E2)l = l1 [l2 [f (e� ; �) gD = D1 [f (e� ; [t; t]) g [(E2 � fTime1 g)T = T1 [T2 [f ((f e� g; e);D2(e)) j e 2 E2 gU = U1 [U2 [f (e� ; true) g: �7.22. Example. Figure 7.3 shows how �1 12B �2 is constructed from �1 and �2.
ba

2

5

[27,41]

dc

3

2
=

2

12

ba
2

5

τ
[12,12]

c3

[27,41]

d

Figure 7.3: Example of timed semantics for timeout operator (I).As a second example consider B1 = ([3; 7]) a ; (2) b ; 0 jjj (6) c ; 0 and B2 = ([4; 32)) d ; 0.Figure 7.4 illustrates how ER[[B1 6B B2]] is constructed from ER[[B1]] and ER[[B2]]. �
=

τ

ba

[3,7]

2

c

6

6

[4,32)

d ba 2
[3,7]

[6,6]
d[4,32)

c 6

Figure 7.4: Example of timed semantics for timeout operator (II).A similar approach could be taken for the watchdog operator: for ER[[B1 tI B2]] introduce anew urgent event e with delay [t; t], let this event precede all events in ER[[B2]], and introduce

156 Chapter 7: The real-time modulea conict e0 e for all events e in ER[[B1]] such that at time t it is guaranteed that B1 isinterrupted; for the other attributes do the same as for B1 [> �e ; B2.This recipe would, for example, result for B1 6I B2, where B1 and B2 are taken from Exam-ple 7.22, in:
=

τ

ba

[3,7]

2

c

6

6

[4,32)

d ba 2
[3,7]

[6,6]
d[4,32)

c 6There is, however, also a possibility to model B1 tI B2 in a simpler way without using urgentevents. Consider ER[[B1 [> B2]], i.e., the real-time event structure of B1 [> B2, and (i) restrictall event delays in ER[[B1]] by [0; t] ensuring that these events can only occur at time t at thelatest, and (ii) postpone all events in ER[[B2]] by time t such that these events can only occurfrom t on.7.23. Definition. (Real-time semantics of I)ER[[B1 tI B2]] , E 0[[�R(B1 tI B2)]];D; T1 [T2;U1 [U2i whereD = f (e;D1(e) \ [0; t]) j e 2 E1 g [f (e; t+D2(e)) j e 2 E2 g: �7.24. Example. Figure 7.5 shows how �1 6I �2 is constructed from �1 and �2. The readeris invited to compare this �gure with Figure 7.4. �
=

ba

[3,7]

2

c

6

6

[4,32)

d ba 2
[3,6]

[6,6]

d
[10,38)

c

[0,6]

Figure 7.5: Example of timed semantics for watchdog operator.7.3.3 PropertiesThe results in this section are all relative to � = ER[[B]] = h(E; ; 7!; l);D; T ;Ui for B 2 PAR.7.25. Lemma. 8 e 2 E : U(e)) l(e) = � .Proof. Straightforward, since urgent events are only introduced for B, and the urgency of eventsis una�ected by ER[[]] for all other syntactical constructs in PAR. �

A real-time process algebra 1577.26. Lemma. 8 e; e0 2 E;X � E : (U(e) ^ e0 e ^ X 7! e)) X 7! e0.Proof. By induction on the structure of B. Let B 2 PAR and �i = ER[[Bi]] = hEi;Di;Ti;Uiiwhere Ei = (Ei; i; 7!i; li) for i=1; 2.Base: For B = 0 and B = p the lemma holds, since � does not contain any urgent event.Induction Step: Assume the theorem holds for B1 and B2.1. B = (T) a ; B1. The new event ea is not urgent and is not put in conict with some urgentevent, so it su�ces to consider urgent events in �1. Let e 2 E1 with U(e) (i.e., U1(e)), ande0 2 E1 such that e0 e (i.e., e0 1 e). Let X 7! e. If X 7!1 e then|by the inductionhypothesis|we have X 7!1 e0, and so X 7! e0. In case X 7! e is a new bundle, then X = f ea gand it follows from ER[[]] that also f ea g 7! e0, since a bundle is introduced from ea to all eventsin E1.2. B = B1+B2. For non-initial events in �1 and �2 the lemma follows directly from the inductionhypothesis, since these events are una�ected in �. init(�1) and init(�2) are put in mutualconict, but since there is no bundle pointing to these events, the lemma follows directly.3. B = B1 >> B2. The events in exit(�1) are put in mutual conict, but since these events arenonurgent (cf. Lemma 7.25) this does not violate the lemma. In addition, new bundles fromexit(�1) to all events in E2 are introduced. It follows in the same way as for action-pre�x thatthese bundles do not harm the lemma: if a bundle is introduced to an urgent event e in E2then the same bundle is introduced to all events that are disabled by e in E2.4. B = B1 [> B2. The new conicts between init(�2) and exit(�1) do not a�ect the lemma sinceall events in exit(�1) are nonurgent (cf. Lemma 7.25). The other new conicts are betweenE1 and init(�2). Suppose there is some e 2 init(�2) with U2(e). Since e is an initial event, nobundles are pointing to e and the lemma holds immediately. Since all other events in � areuna�ected this proves the case.5. B = B1 nG. For this case the lemma directly follows from the induction hypothesis. The sameapplies to relabelling.6. B = B1 jjGB2. Suppose e = (e1; e2) 2 E such that U(e), and e0 = (e01; e02) 2 E with e0 e.Since urgent events are internal (cf. Lemma 7.25), no synchronization of urgent events takesplace; i.e., e1 = � and e2 6= �, or the reverse. By symmetry it su�ces to consider e1 = �and e2 6= �. But then e0 e implies e02 2 e2. Suppose X 7! e. Since e = (�; e2) it followsthat X = f (e; e0) 2 E j e0 2 X2 g where X2 7!2 e2. By induction hypothesis it follows thatX2 7!2 e02, and so, X 7! e0.7. B = B1 tB B2. Similar to the proof for + since the untimed event structure corresponding toB equals E 0[[B1 + �� ; B2]], where � is an urgent (timeout) event.8. B = B1 tI B2. Similar to the proof for B1 [> B2 since the untimed event structure correspond-ing to B equals E 0[[B1 [> B2]]. �

158 Chapter 7: The real-time module7.27. Lemma. 8 e; e0 2 E;X � E : (U(e) ^ e e0 ^ X 7! e)) (X 7! e0 _X e0).Proof. By induction on the structure of B. Let B 2 PAR and �i = ER[[Bi]] = hEi;Di;Ti;Uiiwhere Ei = (Ei; i; 7!i; li) for i=1; 2.Base: For B = 0 and B = p the lemma holds, since � does not contain any urgent event.Induction Step: Assume the theorem holds for B1 and B2. We only consider the proofs for disrupt andparallel composition. For all other constructs the proof is very similar to the proof of Lemma 7.26.1. B = B1 [> B2. We have E = E1 [E2 and U = U1 [U2. Let e 2 E.(a) Let e 2 E1 and suppose U1(e). For e e0 with e0 2 E1 we have e 1 e0 and the lemmafollows from the induction hypothesis (and the fact that bundles and conicts in �1 areretained in �). Let e e0 but not e 1 e0. Then we have e0 2 init(�2). Suppose X 7! e.It follows from the de�nition of E 0[[]] that then X 7!1 e, so X � E1. Since new conictsare introduced between E1 and init(�2) we have (8 e00 2 X : e00 e0), i.e., X e0.(b) Let e 2 E2 and suppose U2(e). If e 62 init(�2) neither new conicts nor new bundlesare introduced; for this case the lemma follows directly from the induction hypothesis.Assume e 2 init(�2). Since there are no bundles pointing to e the lemma holds trivially.2. B = B1 jjGB2. Suppose e = (e1; e2) 2 E and e0 = (e01; e02) 2 E such that U(e) and e e0.Assume e1 = � and e2 6= �. Then we have e2 2 e02. Suppose X 7! e. Since e = (�; e2) wehave pr1(X) = ? and pr2(X) = X2 such that X2 7!2 e2. By induction hypothesis it followsX2 7!2 e02 _ X2 2 e02. But then we have, according to the de�nition of E 0[[]], that X 7! e0or X e0. The proof for the case that e1 6= � and e2 = � is obtained by exchanging thesubscripts in the above proof. �7.28. Lemma. For all e 2 E such that U(e) we have:9 t 2 Time : D(e) � [t; t] _ (9X � E : X T7! e ^ T � [t; t]) .Proof. By induction on the structure of B.Base: For B = 0 and B = p the lemma holds since � contains no urgent events.Induction Step: Assume the lemma holds for B1 and B2. We provide the proof for action-pre�x,choice, parallel composition, timeout, and watchdog. For the other operators the proof is conductedin a similar way.1. B = (T) a ; B1. Suppose that e 2 E such that U(e). Then e 2 E1 and U1(e), since ea isnonurgent. If X T 07!1 e with T 0 � [t; t] then this bundle remains in � with the same timing andso for this case the lemma holds. Now suppose D1(e) � [t; t]. The new bundle f ea g 7! e willbecome delay D1(e), and so also in this case the lemma holds.2. B = B1 +B2. For this case the lemma directly follows from the induction hypothesis.3. B = B1 jjGB2. Let e = (e1; e2) 2 E such that U(e). Since no synchronizations on urgentevents takes place we have e1 = � ^ e2 6= �, or the reverse. By symmetry, it su�ces toconsider e1 = � ^ e2 6= �. By the induction hypothesis we have that D2(e2) � [t; t] or thatX2 T7!2 e2 with T � [t; t], for some t.

A real-time process algebra 159(a) SupposeD2(e2) � [t; t]. From the de�nition of ER[[]] it follows that D(e) = D1(e1)\D2(e2)which equals D2(e2), since e1 = � and D1(�) = Time1. So, then D(e) � [t; t].(b) Suppose X2 T7!2 e2 with T � [t; t]. Since e1 = � this means that X 7! e with pr1(X) = ?and pr2(X) = X2. According to the de�nition of ER[[]] we have that T ((X; e)) equalsT1((pr1(X); e1))\T2((pr2(X); e2)) which equals (since T1((?; e1)) = Time1) T2((X2; e2)) =T . So, X T7! e with T � [t; t].4. B = B1 tB B2. Let e 2 E and suppose U(e). There are three di�erent cases to be considered.(a) e 2 E1 and U1(e). Since the delay of e and the bundle delays of bundles in �1 areuna�ected the lemma holds for this case by the induction hypothesis.(b) e 2 E2 and U2(e). Here, the same arguments as for action-pre�x apply; if X T7!2 e withT � [t0; t0] for some t0 then this bundle remains in � and so for this case the lemma holds,and in case D2(e) � [t0; t0] a new bundle f e� g 7! e is introduced and becomes delayD2(e). So, the lemma also holds for this case.(c) e = e� . For the new urgent event e� we have D(e�) = [t; t].5. B = B1 tI B2. Let e 2 E with U(e). Event and bundle delays in �2 are una�ected, so fore 2 E2 the lemma follows from the induction hypothesis. Let e 2 E1. If e 62 init(�1) wehave D(e) = D1(e) which, together with the fact that bundle delays in �1 are una�ected,proves the case. If e 2 init(�1) then D1(e) � [t0; t0] by the induction hypothesis. But, sinceD(e) = D1(e) \ [0; t], it also follows D(e) � [t0; t0]. �7.29. Theorem. 8B 2 PAR : ER[[B]] 2 EBESR.Proof. Let B 2 PAR and � = ER[[B]] = hE ;D;T ;Ui. It follows directly from the de�nition ofER[[]] that E 2 EBES and that D, T , and U are total functions. From Lemma 7.26, Lemma 7.27, andLemma 7.28 it follows that ER[[B]] satis�es the constraints of being a real-time event structure (cf.De�nition 7.2). �Notice that we do not have a (strong) backward compatibility result like Theorem 4.36, for tworeasons: due to empty sets of time instants (e.g., due to synchronization) and the presence ofurgent events, events may be permanently disabled in the timed sense, but not from a causalitypoint of view. For example, B = (?) a ; 0 has only an empty lposet, whereas �R(B) = a ; 0has an lposet in which an event labelled a occurs.7.3.4 Event-based operational semantics for PARThis section de�nes a timed event transition system for PAR. This is performed along thesame lines as in Chapter 5. The di�erences with PAT are (i) that a set of time instants isassociated to an action in a timed action-pre�x; (ii) the inclusion of a timeout and (iii) awatchdog operator. Besides the fact that|as in Chapter 5|all occurrences of action-pre�xand successful termination are uniquely identi�ed (by a Greek letter) we do the same for all

160 Chapter 7: The real-time moduleoccurrences of B. E.g., � in B1 B� B2 represents the event identi�er of the urgent event thatmodels the timeout.As a subsidiary notion let ut(B) denote the set of time instants at which B can initiallyperform an urgent event. Let PA+R equal PAR including the auxiliary t[] and tf g operators.7.30. Definition. ut : PA+R �! P(Time) is de�ned by:ut(t[B]) , f t0+t j t0 2 ut(B) gut(B1 opB2) , ut(B1) [ut(B2) for op 2 f+; [>; jjG gut(tfB g) , f t0 2 ut(B) j t0 > t gut(B1 >> B2) , ut(B1)ut(opB) , ut(B) for op 2 f n; [] gut(B1 tB B2) , ut(B1) [f t gut(B1 tI B2) , ut(B1) [ut(t[B2]):For all other syntactical constructs let ut(B) , ?. �Let mt(B) abbreviate Min(ut(B)), where Min of the empty set equals 0. We will later onprove the correctness of mt.Table 7.1 presents the event-based inference rules for PAR. For various operators the inferencerules are identical to the rules for PAT , see Table 5.1. We only discuss the inference rules thathave been modi�ed or introduced.(T) a� ; B can perform � at any time t 2 T , while evolving into t[B].The rules for B1 + B2 are somewhat adapted since (initial) urgent events in B1 or B2 candecide the choice. E.g., in(12) a� ; 0+ ((18) b ; 0 5B� 0)the event � will occur at time 5, and resolve the choice in favour of B2. In general, if B1performs an event at time t then B1 + B2 can perform the same provided that B2 cannotperform an urgent event at any time earlier, i.e., if t 6 mt(B2). By symmetry, a similarcondition is obtained for B2 performing an event. The inference rules for [> are adjustedanalogously.If B1 performs an event at time t0, with t0 6 t, and evolves into B01 then B1 tB B2 can dothe same; in this case the possibility that B2 happens is dropped since B1 has performed anaction before (or at) time t. At time t the timeout event can happen and the resultingbehaviour is t[B2], B2 shifted t time units in advance. This can only be done if t 6 mt(B1).This condition ensures that is not performed if B1 can perform an urgent event before t.E.g., in (a ; 0 7B� 0) 21B 0 it prevents from happening (at time 21) without � being executed(at time 7).

A real-time process algebra 161If B1 performs an event (which is not a successful termination event) at time t0, with t0 6 t, andevolves into B01 then B1 tI B2 can do the same while evolving into B01 tI B2; the possibility fordisruption (at time t) by B2 remains. If B1 terminates successfully at time t0, t0 6 t, disruptionby B2 becomes impossible (like for B1 [> B2). If B2 performs an event at time t0 and evolvesinto B02 then B1 tI B2 can perform the same (provided B1 cannot perform an urgent eventearlier) and evolves into t[B02], B02 shifted t time units in time.7.31. Example. ConsiderB := �(([3; 7]) a� ; p jjj (14) b� ; p�) >> ([1; 12)) c� ; 0� 17I ((1) d� ; 0 jjj ([3; �)) f� ; 0):Using the inference rules of Table 7.1 we derive�(([3; 7]) a� ; p jjj (14) b� ; p�) >> ([1; 12)) c� ; 0� 17I ((1) d� ; 0 jjj ([3; �)) f� ; 0)((�;�);b;17)�������!!f (timed action-pre�x), (par-right), (enabling-left), (watchdog-left) g�(([3; 7]) a� ; p jjj 17[p�]) >> ([1; 12)) c� ; 0� 17I ((1) d� ; 0 jjj ([3; �)) f� ; 0)((�;�);a;5)������!! f (timed action-pre�x), (par-left), (enabling-left), (watchdog-left) g�(5[p] jjj 17[p�]) >> ([1; 12)) c� ; 0� 17I ((1) d� ; 0 jjj ([3; �)) f� ; 0)(�;f;20)�����!! f (timed action-pre�x), (par-right), (watchdog-right) g17[((1) d� ; 0 jjj 3[0]] . �In order to de�ne and prove the correctness of the mt function we let UE(B) denote the set ofurgent events in B.7.32. Definition. Function UE : PA+R �! P(Ev) is de�ned asUE(B) , ? for B 2 f 0;p� gUE(opB) , UE(B) for op 2 f (T) a� ; ; n; []; t[]; tf g gUE(B1 opB2) , UE(B1) [UE(B2) for op 2 f+; >>; [>;I gUE(B1 jjGB2) , f (e; �) j e 2 UE(B1) g [f (�; e) j e 2 UE(B2) gUE(B1 tB� B2) , UE(B1) [UE(B2) [f � g: �It is quite straightforward to prove by induction on the structure of B that UE(B) concurs withour intuition, i.e., if ER[[B]] = h(E; ; 7!; l);D; T ;Ui then we have UE(B) = f e 2 E j U(e) g.The proof of this fact is left to the diligent reader.The following lemma shows that mt(B) indeed corresponds to the minimal time at which Bcan perform an urgent event initially.

162 Chapter 7: The real-time module
p� (�;�;t)����!! 0(T) a� ; B (�;a;t)����!! t[B] (t 2 T) B (�;a;t)����!! B0t0 [B] (�;a;t+t0)������!! t0 [B0]B1 (�;a;t)����!! B01B1 +B2 (�;a;t)����!! B01 (t 6 mt(B2)) B2 (�;a;t)����!! B02B1 +B2 (�;a;t)����!! B02 (t 6 mt(B1))B1 (�;a;t)����!! B01B1 >> B2 (�;a;t)����!! B01 >> B2 (a 6= �) B1 (�;�;t)����!! B01B1 >> B2 (�;�;t)����!! t[B2]B2 (�;a;t)����!! B02B1 [> B2 (�;a;t)����!! B02 (t 6 mt(B1)) B1 (�;�;t)����!! B01B1 [> B2 (�;�;t)����!! B01 (t 6 mt(B2))B1 (�;a;t)����!! B01B1 [> B2 (�;a;t)����!! B01 [> tfB2 g (a 6= � ^ t 6 mt(B2))B1 (�;a;t)����!! B01B1 jjGB2 ((�;�);a;t)�����!! B01 jjGB2 (a 62 G�) B2 (�;a;t)����!! B02B1 jjGB2 ((�;�);a;t)�����!! B1 jjGB02 (a 62 G�)B1 (�;a;t)����!! B01 ^ B2 (;a;t)����!! B02B1 jjGB2 ((�;);a;t)������!! B01 jjGB02 (a 2 G�)B (�;a;t)����!! B0B nG (�;a;t)����!! B0 nG (a 62 G) B (�;a;t)����!! B0B nG (�;�;t)����!! B0 nG (a 2 G)B (�;a;t)����!! B0B[H] (�;H(a);t)������!! B0[H] B (�;a;t)����!! B0t0fB g (�;a;t)����!! t0fB0 g (t > t0)B1 (�;a;t0)����!! B01B1 tB B2 (�;a;t0)����!! B01 (t0 6 t) B1 tB B2 (;�;t)����!! t[B2] (t 6 mt(B1))B1 (�;�;t0)����!! B01B1 tI B2 (�;�;t0)����!! B01 (t0 6 t) B2 (�;a;t0)����!! B02B1 tI B2 (�;�;t+t0)������!! t[B02] (t 6 mt(B1))B1 (�;a;t0)����!! B01B1 tI B2 (�;a;t0)����!! B01 tI B2 (a 6= � ^ t0 6 t)Table 7.1: Event-based operational semantics for PAR.

A real-time process algebra 1637.33. Lemma. 8B 2 PA+R : (t 6 mt(B)) () (8 e 2 UE(B); t0 < t : B (e;�;t0)�����!=!).Proof. By induction on the structure of B, with base cases 0, p, and action-pre�x.Base: For B = 0, B = p and B = (T) a ; B1 the lemma trivially holds, since B cannot perform anurgent event initially and mt(B) equals Min(?) =1.Induction Step: Assume the lemma holds for B1 and B2. We consider the proof for timeout andparallel composition; the proofs for the other operators are conducted in a similar way.1. B = B1 t00B B2. For this case we derive:t 6 mt(B1 t00B B2), f de�nition mt gt 6 Min(ut(B1 t00B B2)), f De�nition 7.30 gt 6 Min(ut(B1); t00), f calculus; de�nition mt gt 6 t00 ^ t 6 mt(B1), f SOS-rules for B; induction hypothesis g(B1 t00B B2 (;�;t00)�����!!) ^ t 6 t00 ^ (8 e 2 UE(B1); t0 < t : B1 (e;�;t0)�����!=!), f SOS-rules for B g(8 t0 < t : B1 t00B B2 (;�;t0)�����!=!) ^ (8 e 2 UE(B1); t0 < t : B1 t00B B2 (e;�;t0)�����!=!), f SOS-rules for B; De�nition 7.32 g(8 e 2 UE(B); t0 < t : B1 t00B B2 (e;�;t0)�����!=!) .2. B = B1 jjGB2. For this case we derive:t 6 mt(B1 jjGB2), f De�nition 7.30; de�nition mt; calculus gt 6 mt(B1) ^ t 6 mt(B2), f induction hypothesis g(8 e 2 UE(B1); t0 < t : B1 (e;�;t0)�����!=!) ^ (8 e0 2 UE(B2); t0 < t : B2 (e0;�;t0)������!=!), f SOS-rule for jjG (� 62 G�) g(8 e 2 (UE(B1)� f� g) [(f � g � UE(B2)); t0 < t : B1 jjGB2 (e;�;t0)�����!=!), f De�nition 7.32 g(8 e 2 UE(B1 jjGB2); t0 < t : B1 jjGB2 (e;�;t0)�����!=!) . �For PAT we had the nice property that when we take the transition system for B induced by�!! and abstract from the timing aspects and event identi�ers then we obtain the standardtransition system for �T (B), the untimed variant of B (cf. Theorem 5.10). A similar resultdoes not hold in the setting of PAR. A counterexample is provided, for example, by the

164 Chapter 7: The real-time moduleexpression ([1; 2]) a ; 0 jja (12) a ; 0 which in the timed case leads to a transition system onlyconsisting of an initial state (since there is no time instant at which the interaction a succeeds),whereas if we omit the time annotations, yielding a ; 0 jja a ; 0, we obtain a possible transitionlabelled a from the initial state to state 0 jja 0.7.3.5 Consistency between causality-based and operationalsemanticsIn order to prove the consistency between the denotational and event-based operational seman-tics for PAR we follow the same approach as in Chapters 5 and 6. We present a denotationalcharacterization of the timed event traces of B that are generated by �!! and prove that thischaracterization coincides with the event traces of ER[[B]].The following predicate is true i� all events in � have a timing of at most t.7.34. Definition. For trace � and t 2 Time let res(t; �) , (8 ei 2 [�] : ti 6 t). �The set of timed event traces of B is de�ned in a denotational way as follows.7.35. Definition. For B 2 PAR the set of timed traces of B, TR[[B]], is de�ned by:1. TR[[0]] , f " g2. TR[[p�]] , f " g [f (�; �; t) j t 2 Time g3. TR[[(T) a� ; B]] , f (�; a; t) t[�] j t 2 T ^ � 2 TR[[B]] g [f " g4. TR[[B1 +B2]] , f (�; a; t) � 2 TR[[B1]] j t 6 mt(B2) g [f (�; a; t) � 2 TR[[B2]] j t 6 mt(B1) g [f " g5. TR[[B1 >> B2]] , f �1 (e; �; t) t[�2] j �1 (e; �; t) 2 TR[[B1]] ^ �2 2 TR[[B2]] g[f � 2 TR[[B1]] j � 6= �0 (e; �; t) g6. TR[[B1 [> B2]] , f � 2 TR[[B1]] j � = �0 (e; �; t) ^ res(mt(B2); �) g [f �1 �2 j �1 2 TR[[B1]] ^ �2 2 TR[[B2]] ^ res(mt(B2); �1) ^ �1 6= �01(e; �; t) ^(8 ei 2 �2 : ti > mx(�1) ^ (8 e 2 UE(B1); t0 < ti : �1 (e; �; t0) 62 TR[[B1]])) g7. TR[[B[H]]] , f � j 9 �0 2 TR[[B]] : � = �0[H] g8. TR[[B nG]] , f � j 9 �0 2 TR[[B]] : � = �0 nG g9. TR[[B1 jjGB2]] , f � 2 (TR[[B1]]onGTR[[B2]])� j �i(�) 2 TR[[Bi]] for i=1; 2 g10. TR[[B1 tB� B2]] , f (e; a; t0) � 2 TR[[B1]] j t0 6 t g[f (�; �; t) t[�] j t 6 mt(B1) ^ � 2 TR[[B2]] g [f " g11. TR[[B1 tI B2]] , f � 2 TR[[B1]] j � = �0 (e; �; t0) ^ res(t; �) g [f �1 t[�2] j �1 2 TR[[B1]] ^ �2 2 TR[[B2]] ^ �1 6= �01 (e; �; t0) ^ res(t; �1)^ (8 e 2 UE(B1); ei 2 �2; t0 < ti : �1 (e; �; t0) 62 TR[[B1]])) g. �

A real-time process algebra 165It can be proven in a similar way as in Chapter 5 that TR[[B]] equals the set of timed eventtraces of B generated by the inference rules for �!!. Let ��!! be the extension of �!! fortraces in the usual way.7.36. Lemma. 8B 2 PAR : TR[[B]] = f � j 9B0 : B ��!! B0 g.Proof. Straightforward, but elaborative. �In order to relate the operationally characterized timed event traces and the traces obtainedfrom the causality-based semantics ER[[]] we slightly adapt the de�nition of ER[[]] for p, (t) a ;,and B. In the current de�nition of ER[[]] a unique but arbitrary event is introduced for theseconstructs modelling the appearance of �, a, or a timeout, respectively. Here we take theunique event identi�cation for this operators in the de�nition of ER[[]]. E.g., for p� a newevent � is introduced (and labelled �).The following theorem states that the set of timed event traces of a behaviour expression Bof PAR is identical to the set of timed event traces of the corresponding timed event structureER[[B]].7.37. Theorem. 8B 2 PAR : TR(ER[[B]]) = TR[[B]].Proof. The proof is by induction on the structure of B.Base: For B = 0 we simply have TR(ER[[0]]) = f " g = TR[[0]], and for B = p� we have TR(ER[[p�]]) =f " g [f (�; �; t) j t 2 Time g = TR[[p�]].Induction Step: Assume the theorem holds for B1 and B2. We only provide proofs for timed ac-tion pre�x, choice, disrupt, parallel composition, timeout and watchdog. The proofs for the otheroperators are conducted in a similar way and are omitted. Let � = ER[[B]] and �i = ER[[Bi]] =hEi;Di;Ti;Uii with Ei = (Ei; i; 7!i; li) for i=1; 2.1. B = (T) a� ; B1. For � bundles f f (�; a) g g � E1 have been added to h(f � g;?;?; f (�; a) g),f (�; T) g;?; f (�; false) gi. The non-empty timed event traces of � are therefore those inter-leavings of (�; a; t) and t[�], with � 2 TR(�1), that satisfy the following constraints: (i) the�rst element of t[�] is preceded by (�; a; t), and (ii) t 2 D(�) = T . Thus we derive:TR(ER[[(T) a� ; B1]])= f see above gf (�; a; t) t[�] j t 2 T ^ � 2 TR(�1) g [f " g= f induction hypothesis gf (�; a; t) t[�] j t 2 T ^ � 2 TR[[B1]] g [f " g= f De�nition 7.35 gTR[[(T) a� ; B1]] .2. B = B1 +B2. The proof for this construct is analogous to the proof of Theorem 6.34.3. B = B1 [> B2. From the untimed case we know that traces of � are either (i) traces �1 of�1 that end with a �, or (ii) concatenations of traces �1 2 TR(�1) and �2 2 TR(�2) where �1does not contain a �. Like for the urgent case (cf. Theorem 6.34) we have to take into accountthat due to the added asymmetric conicts in � initial urgent events of �2 may prevent the

166 Chapter 7: The real-time moduleoccurrence of events in �1. More speci�cally, �1 is part of a trace of � provided that there isno initial urgent event in �2 that can occur earlier than some event in �1. We now characterizeset (i) and derive for this set:f� 2 TR(�1) j � = �0 (e; �; t) ^ (8 ei 2 [�]; e0 2 init(�2) : U2(e0)) ti 6 D2(e0)) g= f calculus gf� 2 TR(�1) j � = �0 (e; �; t) ^(8 ei 2 [�] : ti 6MinfD2(e0) j e0 2 init(�2) ^ U2(e0) g) g= f Lemma 7.33 gf� 2 TR(�1) j � = �0 (e; �; t) ^ (8 ei 2 [�] : ti 6 mt(B2)) g= f De�nition 7.34 gf� 2 TR(�1) j � = �0 (e; �; t) ^ res(mt(B2); �) g= f induction hypothesis gf� 2 TR[[B1]] j � = �0 (e; �; t) ^ res(mt(B2); �) g .A similar derivation can be carried out for set (ii), taking into account the asymmetric conictsbetween E1 and init(�2). By De�nition 7.35 the union of the thus obtained sets equals TR[[B1 [>B2]].4. B = B1 jjGB2. Since synchronizations of urgent events cannot appear (cf. Lemma 7.25) nonew (asymmetric) conicts are introduced between urgent events in �1 and events in �2 (orvice versa). This means that � 2 TR(�) i� �i(�) 2 TR(�i), for i=1; 2. So, TR(�) equalsf� 2 (TR(�1) onG TR(�2))� j �1(�) 2 TR(�1) ^ �2(�) 2 TR(�2) g:By the induction hypothesis this equalsf� 2 (TR[[B1]]onGTR[[B2]])� j �1(�) 2 TR[[B1]] ^ �2(�) 2 TR[[B2]] g:By De�nition 7.35 this equals TR[[B1 jjGB2]].5. B = B1 tB� B2. The plain event structure corresponding to � equals E 0[[B1 + �� ; B2]]. Thismeans that untimed traces are either traces of E1 or traces of E2 preceded by �. Since in �event � is urgent and has delay D(�) = [t; t], it follows that the timed event traces of � areeither (i) traces of �1 that start before (or at) t|since otherwise � will appear and disableall initial events of �1|or (ii) traces of the form (�; �; t) t[�] where � is a trace of �2, or (iii)empty traces. Since for urgent e 2 init(�1) we have e � it follows (according to the thirdconstraint of De�nition 7.5) that � can only occur if t 6 D1(e); otherwise e should precede �.Thus, TR(ER[[B1 tB� B2]])= f see discussion above gf (e; a; t0)� 2 TR(�1) j t0 < t g [f " g[f (�; �; t) t[�] j � 2 TR(�2) ^ (8 e 2 init(�1) : U1(e)) t 6 D1(e)) g= f calculus gf (e; a; t0)� 2 TR(�1) j t0 < t g [f " g[f (�; �; t) t[�] j � 2 TR(�2) ^ t 6 MinfD1(e) j e 2 init(�1) ^ U1(e) g g

A real-time process algebra 167= f Lemma 7.33 gf (e; a; t0)� 2 TR(�1) j t0 < t g [f (�; �; t) t[�] j � 2 TR(�2) ^ t 6 mt(B1) g [f " g= f induction hypothesis gf (e; a; t0)� 2 TR[[B1]] j t0 < t g [f (�; �; t) t[�] j � 2 TR[[B2]]^ t 6 mt(B1) g [f " g= f De�nition 7.35 gTR[[B1 tB� B2]] .6. B = B1 tI B2. The untimed event structure of � is equal to that of B1 [> B2. From theuntimed case we know that event traces of this expression are either (i) traces of E1 that endwith a �, or (ii) concatenations of traces �1 of E1 and �2 of E2 such that no � occurs in �1. Inthe real-time case the delay of all events in E1 is restricted by [0; t]. This means that all eventsin the traces characterized under (i) should appear at time t at the latest; for the same reasonthis also holds for all events in �1 under (ii). The proof for (i) is similar to the one presentedfor [>. Consider traces characterized by (ii). The delay of all events in E2 is postponed by ttime units. This means that all events in the traces (ii) are of the form �1 t[�2]. Since E1 efor all e 2 init(�2), e can only appear in �2 i� there is no urgent event enabled in �1 after theexecution of �1 that can occur earlier (according to the third constraint of De�nition 7.5). �7.38. Corollary. 8B;B1; B2 2 PAR; t; t0 2 Time :�B (e;a;t)����!! B1 (e0;a0;t0)�����!! B2 ^ t0 < t�) (9B0 : B (e0;a0;t0)�����!! B0 (e;a;t)����!! B2):Proof. Directly from Theorems 7.37 and 7.7. �Let TSR(B) be the timed event transition system obtained by �!! and ETSR(ER[[B]]) thetransition system obtained by considering ER[[B]] as initial state and having transitions from� to �0 i� �0 = �[�] for some � 2 TR(�) with length 1. Then it follows that:7.39. Theorem. 8B 2 PAR : TSR(B) � ETSR(ER[[B]]).Proof. Similar to the proof of Theorem 2.46. �7.3.6 An alternative approach for PARThis section considers an alternative event-based operational semantics for PAR in the samespirit as in Section 5.4 (and Chapter 6). We only consider timed action-pre�x, timeout, andwatchdog. For the other operators the inference rules are identical to those for PAT ; the reasonthat the inference rules of + and [> from Section 5.4 do not have to be changed is due to thefact that we consider a time-consistent setting now.

168 Chapter 7: The real-time moduleTimed action-pre�x(T) a� ; B at time t can perform (�; a) if 0 2 T and behaves subsequently like B (at t). Timecan always be passed by (T) a� ; B. Let T 	 t , f t0�t j t0 2 T ^ t0 > t g.h(T) a� ; B; ti h(T 	 (t0�t)) a� ; B; t0i (t0 > t)h(T) a� ; B; ti (�;a)���!hB; ti (0 2 T)TimeoutIf the �rst component B1 permits the passage of time with at most t time units while evolvinginto B01 then B1 tB B2 allows the same, evolving into B01 dB B2 where d equals t minus thenumber of time units that have been passed. B1 0B B2 at time t can perform the timeoutevent while evolving into B2 (at t). If B1 performs an event and evolves into B01 thenB1 tB B2 allows the same, also evolving into B01.hB1; t0i hB01; t00ihB1 tB B2; t0i hB01 t�(t00�t0)B B2; t00i (t00�t0 6 t)hB1 0B B2; ti (;�)���!hB2; ti hB1; t0i (�;a)���!hB01; t0ihB1 tB B2; t0i (�;a)���!hB01; t0iWatchdogB1 tI B2 allows the passage of time in the same way as tB, and in addition, if B2 permits thepassage of time then B1 0I B2 can do the same, also evolving into B02. If B1 performs event(�; a) and evolves into B01 then B1 tI B2 can do the same and evolves into either B01 tI B2 ifa 6= �, or B01 if a = �. Finally, if B1 0I B2 can perform an event and evolves into B02 if B2 cando so. hB1; t0i hB01; t00ihB1 tI B2; t0i hB01 t�(t00�t0)I B2; t00i (t00�t0 6 t)hB1; t0i (�;a)���!hB01; t0ihB1 tI B2; t0i (�;a)���!hB01 tI B2; t0i (a 6= �) hB1; t0i (�;�)���!hB01; t0ihB1 tI B2; t0i (�;�)���!hB01; t0ihB2; ti hB02; t0ihB1 0I B2; ti hB02; t0i (t0�t > 0) hB2; t0i (�;a)���!hB02; t0ihB1 tI B2i (�;a)���!hB02; t0i

Time in causality-based models 169We conclude this section by considering the model properties time determinism, action persis-tency and time additivity. Since the passage of time is always uniquely determined it followsthat time determinism is respected. This can easily be checked by structural induction onB. The alternative event-based operational semantics for PAR, however, violates action per-sistency. This entails that the passage of time may suppress the possibility to perform anaction. This is not surprising, since in PAR we have the possibility to specify upper bounds ofoccurrence of actions, and as soon as time passes beyond this upper bound the possibility toperform this action is lost. For example, transitionh([0; 3]) a ; 0; 0i h(?) a ; 0; �imakes it impossible to perform a in the resulting state, whereas a is possible in the startingstate.The alternative event-based operational semantics for PAR also violates time additivity, asshown byh(2) a ; 0 7I (3) b ; 0; 0i h(0) a ; 0 0I (3) b ; 0; 7i h(0) b ; 0; 23i .There is no single transition that mimics this two-step transition. The reason that thetimeout operator does respect time additivity is that at time t an internal (timeout) event isforced to occur, such that time can never pass beyond t without performing this event. Timeadditivity is obtained if we add the following rule for I:hB1; t1i hB01; t2i ^ hB2; t2i hB02; t3ihB1 tI B2; t0i hB02; t3i (t2�t1 = t ^ t3�t2 > 0)A similar construction is used in ATPD of Nicollin et al. [113] to establish time additivity.Let T �R [[B]] t denote the set of timed event traces of hB; ti under and �!!. We then have:7.40. Lemma. 8B 2 PAR; t 2 Time : T �R [[B]] t = f t[�] j � 2 TR[[B]] ^ tc(�) g.Proof. By induction on the structure of B; similar to Lemma 5.27. �7.41. Corollary. 8B 2 PAR : T �R [[B]] t = f t[�] j � 2 TR(ER[[B]]) ^ tc(�) g.Proof. Straightforward from the previous lemma and Theorem 7.37. �7.4 Time in causality-based modelsIn the literature numerous timed models are proposed based on an interleaving semantics,usually being de�ned using a kind of timed transition system. Only a few timed modelsare known (to us) based on a causality-based model. In this section we briey discuss someexisting timed causality-based models.

170 Chapter 7: The real-time moduleThe only timed model that allows sets of time instants to be associated with events (or causaldependencies) is introduced by Fidge [47]. Fidge proposes a real-time extension of causaltrees, a causality-based model introduced in Darondeau & Degano [36], and uses this modelto provide a semantics to a timed variant of CCS. Each event e in a causal tree has a set ofbackward pointers to each event on which e causally depends. Time constraints are expressedby associating a set of relative times to events. The relative delays T state that an event canonly occur at t time units (for some t 2 T) after the time at which all its causally precedingevents occurred (if any). Synchronization can only occur if both participants are willing toengage in the interaction at the same time instant; if not, the synchronization will not takeplace. Because in the causal tree model di�erent occurrences of the same action cannot beidenti�ed as such, Fidge's model must be considered as a timed pomset model whereas ourmodel is a timed lposet model (see Chapter 1 for a discussion about pomsets versus lposets).The real-time semantics of CCS is de�ned operationally. Due to the adjustments of backwardpointers the inference rules are somewhat complicated and the relation with the standard rulesfor CCS is not so clear.An extension of Pratt's pomset model [121] with delays is studied in Casley et al. [32, 31]. Thedelays in the model specify the minimal relative delay between two causally dependent actions.Casley et al. use a kind of metric space for their model and de�ne several operations on thesestructures that are generalizations of operations on Pratt's pomset model like concatenationand concurrency. E.g., P ;d Q speci�es that there is a delay of at least d time units betweeneach event in P and each event in Q. They also de�ne some operators that rely on thelocation where an action occurs. E.g., P ;dQ di�ers from concatenation in that additionaltiming constraints are introduced only between colocated actions in P and Q rather thanbetween all of them.Maggiolo-Schettini & Winkowski [99] consider timed con�gurations. They distinguish betweenthe time at which an event is enabled (the enabling time) and the time at which an eventactually happens (its completion time). Synchronization structures describe how actions ofcomposed behaviours are combined into actions of the resulting behaviour and which actionsare considered to be internal. Two (or more) events can synchronize if they are equally labelledand have identical completion times. Similar to our model of Chapter 4, the enabling timeof the resulting event is the maximum of the enabling times of its components. The authorsde�ne several operations on their structures (such as sequential and parallel composition,abstraction, choice, and a �xed point operator). An equivalence relation is introduced whichis a congruence w.r.t. the operations introduced. The main limitation of this model is that allevents are required to happen as soon as possible in some sense. (Recall that a semantics ofextended bundle event structures at con�guration level is not su�cient due to the presence ofasymmetric conict; see Chapter 2.)The most extensive treatment of time in a causality-based context is due to Murphy. Aninteresting timed variant of event structures, called interval event structures, is proposed in[106, 108]. In this model, each event has a duration modelled as the time between the start ofan event and its �nish. An event with duration d could be modelled in our model by explicitlyrepresenting the start and �nish of an event by two distinct events, the start causing the �nish,and the interval [d; d] associated to this bundle. A �ctitious silent event is introduced the start

Conclusions 171of which causes every event, and all events cause its �nish. The model incorporates symmetricconict, generalizes Winskel's prime event structures, and allows to express Lamport's modelof distributed systems [88].The behaviour of timed systems with both conjunctive and disjunctive causality is studiedby Gunawardena in [61, 62]. Like in our model conjunctive causality, corresponding to syn-chronization, results in a maximum timing constraint. All events are required to happen atexactly the minimal time at which they are enabled. For disjunctive causality an event has towait for the �rst event in the set of its enabling events. This boils down to a minimum timingconstraint. This implies that in this model an event always is enabled by the �rst event thatoccurs in case of disjunctive causality. Gunawardena studies the relationship of his model,timed fAND;OR g automata, and the theory of min-max functions. Notions like periodicitycan be characterized and cycle times of periodic behaviours can be determined. Since themodel does not (yet) include disablings no conicts between events are incorporated.Janssen et al. [78] introduce a real-time process language consisting of simple sequentialprocesses that are composed by means of layering (�) and independent parallelism (jjj). P �Qexecutes P and Q in parallel, except when some action in Q is dependent on some action inP ; in that case the action in P is guaranteed to happen �rst. The denotational semantics ofa real-time expression is a set of partially ordered runs where a run consists of a set of events(each event having a duration) and a partial order on these events. This order is determinedby a causal order and a temporal order, the latter being induced by real-time constraints.7.5 ConclusionsIn this chapter we have presented a real-time extension of extended bundle event structuresthat allows for the decoration of events and bundles by arbitrary sets of time instants. Themodel incorporates urgent events and is shown to be su�ciently expressive to support impor-tant real-time notions such as timeouts and watchdogs (or timed interrupts). Since urgentevents are used in a somewhat restricted way (as opposed to Chapter 6) most of the theory oftimed event structures is generalized to the more liberal timed setting in a rather straightfor-ward way. An important consequence of the possibility to prevent an event to occur after acertain time instant (by specifying an upper bound in time or by a conicting urgent event)is that the model is no longer a conservative extension of the untimed model. That is, theuntimed lposets of a real-time event structure are a subset of the lposets of its correspondinguntimed (extended bundle) event structure, but equality does not necessarily hold.An interaction can take place if all participants can engage in it at the same time instant. Theinteraction cannot appear if such common time instant does not exist. Since in our modelwe do not have an explicit notion of the passage of time, such an impossible interaction doesnot result in behaviours which do block the passage of time (so-called timelocks) in the entiresystem|even in causally independent parts!|but simply in the local impossibility to executethe event at hand.We have considered timeout (B) and watchdog (I) operators in a process algebraic context.B1 tB B2 is modelled by B1+ ([t; t]) � ; B2 where � is required to be urgent and is intended to

172 Chapter 7: The real-time modulerepresent the expiration of a timer. I could be modelled without the introduction of auxiliaryurgent events. Although we used urgent events only for modelling timeout mechanisms, theyhave an impact on the evolvements of other subprocesses in the context of +, [>, I, andB. This made the event-based operational semantics of PAR using timed-actions somewhatmore complex. These problems do not appear when separating the passage of time and theoccurrence of events: the inference rules for + and [> remain una�ected. We need, however,9 inference rules to incorporate I and B. Since upper bounds on the occurrence of actionscan be speci�ed action persistency is lost.Compared to the urgent event structures of Chapter 6 the incorporation of urgent events inreal-time event structures is restricted. This resulted in a characterization of timed event traceswithout being forced to time-consistency (as in Chapter 6). Like for the simple timed modelof Chapter 4 we have that for each ill-timed trace there exists a corresponding time-consistenttrace with the same timed events.

8 The stochastic timing module
This chapter proposes stochastic variants of extended bundle event struc-tures. As a result causality-based models are obtained that allow the speci�-cation of stochastic timing constraints. Events are supposed to happen aftera delay that is determined by a stochastic variable with a certain distribu-tion function. First, a simple model is discussed restricting the distributionfunctions to be exponential. Then the generalization of deterministic timestowards more general types of distributions is investigated and a stochasticvariant of event structures is proposed with (the more practical) phase-type distributions. This class of distributions includes exponential, Erlang,Coxian and mixtures of exponential distributions. It is shown how bothstochastic models can be used to provide a compositional causality-basedsemantics to a stochastic extension of PA, and for the exponential case acorresponding event-based operational semantics is provided that is provento coincide with various existing interleaving proposals.8.1 IntroductionIn Chapter 4, 6 and 7 we extended event structures with time and urgency. This facilitatesthe speci�cation and analysis of deterministic time constraints. In early stages of the designthere is often no exact timing information available and in, for instance, multi-media systemsphenomena like jitter and response times are not deterministically determined but much moreof a stochastic nature. In these cases the use of deterministic timed extensions is not alwaysappropriate. Therefore, it seems to be useful to let the time of occurrence of actions bedetermined by stochastic (or random) variables rather than by constants. In this way a modelwould be obtained that enables the description of more dynamic stochastic behaviour. Seealso the discussion in Chapter 1.This chapter investigates the incorporation of stochastic timing into extended bundle eventstructures. In our timed causality-based model time is associated to causal relations (termedbundles in our model) and to events. Bundle delays specify the relative delay between causallydependent events while event delays enable the speci�cation of timing constraints on eventsthat have no incoming bundle. In this timed model components may synchronize on a commonaction as soon as all participants are ready to engage, that is, when all individual timingconstraints are met. The material presented in this chapter is based on the generalization ofdeterministic times in our timed model towards distribution functions (note that a distributionfunction uniquely determines a stochastic variable, and vice versa).173

174 Chapter 8: The stochastic timing moduleWe start by investigating a generalization of our timed model of Chapter 4 in which, forsimplicity, we restrict to exponential distributions. This results in a simple stochastic eventstructure model where rates are associated with events only (and not to bundles). The prin-ciple that a synchronization takes place as soon as all participants are ready for it means ina stochastic setting that the delay of such action will be distributed as the product of theindividual distributions (or, equivalently, as the maximum of the corresponding individualstochastic variables, under the assumption of statistical independence). Since the class ofexponential distributions is not closed under product, we abandon our synchronization prin-ciple of the timed model and take (just for this model) a pragmatic approach by computingthe rate of a synchronization simply as a function of the individual rates|similar to severalexisting stochastic extensions of process algebras. The resulting model is used to provide acompositional causality-based semantics of a simple stochastic process algebra. A correspond-ing event-based operational semantics is provided (in the same spirit as is done in Chapter 5for the timed model) which shows that our simple stochastic model closely resembles existinginterleaved proposals of stochastic process algebras.Current stochastic process algebras all use (extensions of) labelled transition systems as anunderlying semantical model. This results in a semantics based on the interleaving of causallyindependent actions. The structure of transition systems closely resembles that of standardMarkov chains, which is an advantage when trying to obtain a performance model directlyfrom the formal model. In addition, the elegant|memoryless|properties of exponential dis-tributions enables a smooth incorporation of such distributions into transition systems. Theinterleaving of causally independent actions, however, complicates the use of more general(nonmemoryless) distributions in transition systems considerably [59].This aspect is illustrated in Figure 8.1 where the depicted transition system intuitively corre-sponds to (F) a ; 0 jjj (G) b ; 0 with F;G distribution functions. In case F and G are mem-oryless (i.e., exponential distributions) then the time until the occurrence of b (a) after theoccurrence of a (b) is still distributed by G (F) irrespective of how much time has elapsed untila (b) occurred. However, in case the memoryless property is not satis�ed the residual lifetimeof the stochastic variable determined by G since the occurrence of a must be computed inorder to correctly deduce the time until b's occurrence. Here, the global state assumption
a b

F G

a

F

b
GFigure 8.1: Independent actions in a stochastic transition system.complicates the incorporation of nonmemoryless distributions considerably (despite attemptsto circumvent this problem by G�otz et al. [59]). We hope to show in this chapter that acausality-based model avoids these problems.

Simple stochastic event structures 175When carefully investigating the replacement of deterministic times in our timed model bygeneral distributions it turns out that it is possible to support a class of distributions whichis closed under product (corresponding to the maximum of stochastic variables under theassumption of statistical independence), and which contains an identity element for prod-uct. These properties will be justi�ed in this chapter. As an interesting class of distributionfunctions that satis�es these criteria we propose the use of phase-type (PH-) distributions. PH-distributions can be considered as matrix generalizations of exponential distributions and arewell-suited for numerical computation. They are used in many probabilistic models that havematrix-geometric solutions, have a richly developed theory due to Neuts [109, 110], and includefrequently used distributions in performance analysis such as hyper- and hypo-exponential,Erlang, and Cox distributions.This chapter is organized as follows. Section 8.2 reports on the study of exponential distribu-tions in our model, introduces a simple stochastic process algebra including a causality-basedsemantics, and relates this semantics to existing interleaved proposals. Section 8.3 investigatesthe use of more general distribution functions in extended bundle event structures and justi�eswhy we are interested in a class of distribution functions which is closed under product andwhich contains an identity element for product. It introduces PH-distributions and providessome important results that are relevant in the context of this chapter. Finally, Section 8.4contains conclusions and pointers for future work. Appendix A contains a brief introductioninto stochastic notions such as distribution functions and Markov chains.8.2 Simple stochastic event structuresAs a prerequisite we consider exponential distributions. Exponential distributions are de�nedas follows.8.1. Definition. A distribution function F , de�ned by F (x) = 1 � e��x, for x > 0, andF (x) = 0, for x < 0, is an exponential distribution with rate � (� 2 IR+). �Evidently, a rate uniquely characterizes an exponential distribution. A well-known propertyof exponential distributions is the memoryless property.8.2. Lemma. For U an exponentially distributed stochastic variable and x; y > 0 we havePrfU 6 x + y j U > y g = PrfU 6 x g. This property is known as the memoryless (orMarkovian) property.Proof. Standard, see for instance Kobayashi [87]. �Informally, it states that the probability of U being at most x+y given that it is larger thany is independent of y and equal to the probability of U being at most x.8.2.1 The modelIn this section we develop a simple stochastic variant of extended bundle event structures byassociating rates to events. The motivation for only associating rates to events, and not to

176 Chapter 8: The stochastic timing modulebundles too, is that when choosing to remain in the domain of exponential distributions itturns out to be su�cient to attach rates to events only. Consider, for example, the followingevent structure in which rates are associated to bundles:
a

c
λ

b µThe interpretation is that a rate associated to bundle X pointing to e determines the timeof e's enabling relative to the time of occurrence of its causal predecessor in X. The abovestructure speci�es that the time period between the enabling of ec and the occurrence of ea(eb) is exponentially distributed with rate � (�). Given that we want to stay in the domain ofexponential distributions this is equivalent to saying that the time between the last occurrenceof an event preceding ec and the enabling of ec is exponentially distributed with rate � where� is determined by � and �. Due to the memoryless property this is statistically equivalent tosaying that the period between the start of the system and the enabling of ec is exponentiallydistributed with rate �:
a

c
ν

bTherefore we choose to associate rates to events only. In this way we also keep close to thestochastic transition systems that underly stochastic process algebra based on interleaving(see also Section 8.2.3). Thus,8.3. Definition. (Simple stochastic event structure)A simple stochastic event structure is a tuple hE ;Ri with E an extended bundle eventstructure (E; ; 7!; l) and R : E �! IR+, the rate function. �As a generalization of the notion of event trace we de�ne the notion of stochastic event trace.We use �, possibly subscripted and/or primed, to denote stochastic event structures.8.4. Definition. (Stochastic event trace)A stochastic event trace of stochastic event structure � = hE ;Ri is a sequence � of ratedevents (e1; �1) : : : (en; �n) with ei 2 E, �i 2 IR+, for 0 < i 6 n satisfying1. e1 : : : en 2 T (E)2. 8 i : �i = R(ei). �

Simple stochastic event structures 177The set of stochastic event traces of simple stochastic event structure � is denoted TS(�). Ina similar way as for the deterministic timed case (cf. Chapter 4) lposets can be de�ned fromstochastic con�gurations. This is not considered further here.8.2.2 A simple stochastic process algebraLet the syntax of the language PAS of simple �nite stochastic behaviours be de�ned as follows:18.5. Definition. (Simple stochastic process algebra PAS)B ::= 0 j (�) a ;B j B +B j B jjGB j B[H] j B nG: �Like in the timed process algebra PAT actions are considered to be atomic and to occurinstantaneously. (�) a ; B denotes a behaviour which may engage in a from a time periodrelative to the beginning of the system with an exponential distributed length (of rate �) andafter the occurrence of a behaves like B. � speci�es the rate of the exponential distributionof a relative delay of an action.In the deterministic timing case a set of behaviours may synchronize on a common action assoon as all participants are ready to engage in this action. For example, in an expression like(t) a ; 0 jja (t0) a ; 0 the resulting action a is enabled from time max(t; t0). In case the delayof actions (in fact, events) is determined by a stochastic variable, it seems natural|and astraightforward generalization of the deterministic time case|to let the enabling time of asynchronization being determined by the maximum of the stochastic variables that determinethe local delay of this action. From basic probability theory [87] we know that the distributionof the maximum of two (or more) independent stochastic variables corresponds to the productof their distribution functions.8.6. Theorem. Let U1; : : : ; Un (n > 1) be independent stochastic variables where Ui hasdistribution FUi, andW = MaxfU1; : : : ; Un g. Then the probability distribution functionof W equalsFW (x) = nYi=1FUi(x) ,and its probability density functionF 0W (x) = nXi=10@F 0Ui(x) � nYj=1;j 6=iFUj(x)1A .Proof. Straightforward by induction on n. We only provide the proof for n=2.FW (x)1For simplicity we do not consider the syntactical constructsp, >>, and [> here. Since we mainly introducethis algebra to compare with existing approaches which do not contain these constructs either, this restrictionis convenient for our purposes.

178 Chapter 8: The stochastic timing module= f De�nition A.1 gPrfW 6 x g= f de�nition of W gPrfmax(U1; U2) 6 x g= f calculus gPrfU1 6 x;U2 6 x g= f U1 and U2 are statistically independent gPrfU1 6 x g � PrfU2 6 x g= f De�nition A.1 gFU1(x) � FU2(x) .Obviously, F 0W (x) equals F 0U1(x) � FU2(x) + FU1(x) � F 0U2(x). �Unfortunately, the product of two exponential distributions is not an exponential distribution(see also Example 8.21). Therefore, we take in this section a pragmatic approach by combiningindividual distributions in such a way that the resulting distribution of a synchronization actionis again exponential. This is achieved by computing the rate of the resulting action from theindividual rates of the components according to ~ : IR+ � IR+ �! IR+. E.g., action a inthe composite behaviour (�) a ; 0 jja (�) a ; 0 will have rate �~ �. Di�erent choices for ~ arepossible. For an extensive discussion on these possibilities, their (stochastic) interpretation,and desired algebraic properties of ~ we refer to G�otz [57] and Hillston [73].We now provide a semantics of PAS by de�ning a mapping X [[B]] which associates a simplestochastic bundle event structure with each expression B of PAS. X is an orthogonal extensionof the mapping of PA to extended bundle event structures (cf. Chapter 2). Let �S be a functionassociating to a stochastic behaviour B its corresponding non-stochastic behaviour �S(B) bysimple omitting the rates in B. In the rest of this section let X [[Bi]] = h(Ei; i; 7!i; li);Rii,for i = 1; 2, with E1 \ E2 = ?. We assume ~ to be commutative, associative and have anidentity element, denoted u. That is, for all � 2 IR+ we have �~ u = u~ � = �.8.7. Definition. (Causality-based semantics of PAS)X [[]] is de�ned recursively as follows:X [[0]] , hE [[�S(0)]];?iX [[(�) a ; B1]] , hE [[�S((�) a ; B1)]];R1 [f (ea; �) giX [[B1 +B2]] , hE [[�S(B1 +B2)]];R1 [R2iX [[B1 nG]] , hE [[�S(B1 nG)]];R1iX [[B1[H]]] , hE [[�S(B1[H])]];R1iX [[B1 jjGB2]] , hE [[�S(B1 jjGB2)]];Ri whereR((e1; e2)) = R1(e1)~R2(e2) such that Ri(�) = u: �

Simple stochastic event structures 1798.8. Example. The de�nition of X is exempli�ed by providing the semantics of thefollowing stochastic behaviours (cf. Figure 8.2):(a)B1 = (�1) a ; (�2) b ; 0 jjb (�3) c ; (�4) b ; 0 ,(b)B2 = (�1) a ; (�2) b ; 0 jjb ((u) b ; 0+ (�3) d ; 0) , and(c)B1 jjfa;b gB2 .
a

(a) (b)

µ1
ba

c

λ1

b

λ2

λ3

λ4

a

c

b
µ2

µ3
d d

(c)

λ1 µ1 λ2 λ4)(µ2

µ3λ3

❋ ❋ ❋ ❋

Figure 8.2: Examples of simple stochastic event structure semantics. �Actions with rate u, the identity of ~, do not contribute to the resulting rate of a synchro-nization. That is, (u) a ; 0 jja (�) a ; 0 results in action a with rate u~� = �. Such actions arereferred to as passive and often occur in performance modelling to model service-like activities.For passive actions only one process determines the rate of synchronization while the otherparticipating processes do not impose additional timing constraints.We conclude this section by discussing immediate actions. In performance modelling actionsthat are irrelevant from a performance evaluation point of view are often considered to takeplace immediately thus not imposing any additional delay on the system's execution. Thishas led to the notion of immediate transitions in stochastic Petri nets [4], and similarly to thenotion of immediate actions (i.e., actions with rate 1) in stochastic process algebras (e.g.,Bernardo et al. [14] and G�otz [57]). In our model such actions can easily be incorporated byextending the de�nition of ~ such that � ~1 = 1~ � = 1 for all � 2 IR+ [f1g. Thatis, 1 is a zero element of ~.8.2.3 Event-based operational semantics for PASVarious stochastic extensions of process algebras are known from the literature [58, 68, 14, 71,72, 30]. These formalisms have in common that they are based on an interleaving semantics(i.e., a stochastic extension of labelled transition systems) and that distribution functions arerestricted to be exponential. The main di�erence among these stochastic process algebras isthe way in which the rate of a synchronized action is computed (see also later on).In order to compare our simple stochastic event structure model to these existing approachesand to investigate the `compatibility' of our proposal with the standard semantics of PA

180 Chapter 8: The stochastic timing module(provided in Chapter 1) we de�ne an operational semantics for PAS that corresponds to thenoninterleaving semantics. The approach we follow is similar to the approach taken for thedeterministic timing case (Chapter 5 of this thesis). Thus, we de�ne a transition system inwhich we keep track of the occurrence of actions in an expression of PAS. This results in astochastic event transition system.In order to de�ne an event transition system each occurrence of an action-pre�x is subscriptedwith an arbitrary but unique event occurrence identi�er, denoted by a Greek letter. Thetransition relation �!! is de�ned as the smallest relation closed under all inference rulesde�ned in Table 8.1. B (e;a;�)����!! B0 denotes that behaviour B can perform event e, labelled awith rate � and evolve into B0. (�) a� ; B (�;a;�)����!! BB1 (�;a;�)����!! B01B1 +B2 (�;a;�)����!! B01 B2 (�;a;�)����!! B02B1 +B2 (�;a;�)����!! B02B1 (�;a;�)����!! B01B1 jjGB2 ((�;�);a;�)������!! B01 jjGB2 (a 62 G) B2 (�;a;�)����!! B02B1 jjGB2 ((�;�);a;�)������!! B1 jjGB02 (a 62 G)B1 (�;a;�)����!! B01 ^ B2 (;a;�)����!! B02B1 jjGB2 ((�;);a;�~�)��������!! B01 jjGB02 (a 2 G)B (�;a;�)����!! B0B nG (�;a;�)����!! B0 nG (a 62 G) B (�;a;�)����!! B0B nG (�;�;�)����!! B0 nG (a 2 G)B (�;a;�)����!! B0B[H] (�;H(a);�)������!! B0[H]Table 8.1: Event-based operational semantics for PAS.Using the transition relation �!! the notion of (stochastic) event trace can be de�ned in theusual way. As the transition system induced by �!! is deterministic, the transition system forB can be represented by its set of stochastic event traces TS[[B]]. This set can be characterizedin a denotational way, and subsequently proven to coincide with the set of stochastic eventtraces of the corresponding event structure X [[B]]. This proves the consistency between theoperational semantics and denotational semantics in terms of event structures.8.9. Theorem. 8B 2 PAS : TS(X [[B]]) = TS[[B]].Proof. In a similar way as for the deterministic timing case (see Chapter 5). �

Generalized stochastic event structures 1818.2.4 Related approachesFrom the event transition system de�ned by �!! we can easily obtain the standard inferencerules for PA by omitting the rates and event identi�ers. In addition, the transition rulesstrongly resemble the operational semantics of existing stochastic process algebras, and forvarious algebras we obtain identical rules when substituting the appropriate operator for ~.This provides adequacy for our simple stochastic causality-based model.In one of the �rst stochastic process algebras, MTIPP (Markovian Timed Processes for Per-formance Evaluation) by Herzog et al. [58, 68], the rate of a synchronized action is simply theproduct of the rates of the components, thus �~ � = � � �. For Bologna's variant (B-MPA)of Bernardo et al. [14] the resulting rate is the maximum of the individual rates under thecondition that at least one of the participating behaviours must be passive with respect to theinteraction, thus, �~ � = max(�; �) given that � = u or � = u. In D-MPA of Buchholz [30]a somewhat di�erent approach is taken|each action label a is assigned a �xed transition rate�a, and (r) a ; B (r 2 IR+) denotes a behaviour that may engage in a where the time before ais performed is exponentially distributed with rate r � �a. When (r1) a and (r2) a synchronizethe time before interaction a happens is distributed with rate r1 � r2 � �a. Using ~ as producton ri (rather than on rates) and assuming that �a is given, the same scheme can be obtainedwith the rules of Table 8.1.Another prominent stochastic process algebra is PEPA (Performance Enhanced Process Alge-bra) developed by Hillston. In the initial proposal for PEPA [71] the expected delay (i.e., thereciprocal of the rate) of the interaction is assumed to be the sum of the expected duration ofthe action in each of the participants, i.e., � ~ � = (� � �)=(� + �). In the �nal proposal forPEPA [72] the rate of an interaction is computed by taking into account the total capacity ofa behaviour to participate in actions with a certain label (the so-called apparent rate). Sinceapparent rates are based on the entire behaviour of a participant rather than solely on the(local) rate of an event this synchronization policy cannot be modelled using ~.As noted before, desired algebraic properties of ~ are associativity, commutativity and theexistence of an identity element. (Algebraically speaking, this means that hIR+;~i is a com-mutative, or Abelian, monoid.) For modelling immediate actions ~ should also have a zeroelement. Besides these properties [57, 73] require ~ to be distributive over the addition ofrates in order to consider (�) a + (�) a and (�+�) a to be equivalent, also in the context ofparallel composition (which leads to the distributivity). It is interesting to note that in ourmodel rates are associated to events rather than to actions, and the two a actions in the choiceexpression above are modelled by distinct events. So, it seems that distributivity of ~ over+ is not a necessary requirement in our model unless distinct events are identi�ed by somecongruence relation.8.3 Generalized stochastic event structuresThe main bene�t of the model of the previous section is that it is a rather simple extension ofbundle event structures which corresponds quite closely to existing stochastic process algebras

182 Chapter 8: The stochastic timing modulesuch as MTIPP [58], a preliminary version of PEPA [71], D-MPA [30], and B-MPA [14](depending on the choice for ~). Unfortunately, for keeping the model within the domain ofexponential distributions we were unable to let the stochastic variable that determines thedelay of an interaction be the maximum of the individual stochastic variables, whilst thisseems quite reasonable and would be a straightforward generalization of our deterministictiming model.In addition, exponential distributions are a bit restrictive in performance modelling and thereis a considerable need for more realistic (i.e., nonmemoryless) distributions. Especially in theanalysis of high-speed communication systems or multi-media applications where the corre-lation between successive packet arrivals is no longer negligible and packets tend to have aconstant length the usual Poisson arrivals and exponential packet lengths are no longer validassumptions.In this section we replace the deterministic times associated to bundles and events in our de-terministic timing model (cf. Chapter 4) by stochastic variables having arbitrary distributions,and investigate what the required (algebraic) properties of such distributions are given thatthe treatment of synchronization is similar to the deterministic case.8.3.1 The modelDistribution functions are added to bundle event structures in two ways. A distributionfunction associated with event e determines the time between the start of the system andthe enabling of e, while a distribution function associated to bundle X 7! e determines therelative time between the enabling of e and its causal predecessor in X.The interpretation of bundle f ea g 7! eb decorated with distribution F is that if ea hashappened at a certain time ta then the time at which eb is enabled is determined by ta+Uwhere U is a stochastic variable with distribution F .If more than one bundle points to an event the following interpretation is chosen. For instance,suppose f ea g 7! ec and f eb g 7! ec with distribution F and G, respectively. Now, if ea (eb)happens at ta (tb) then the time of enabling of ec is determined by the stochastic variablemax(ta+U; tb+V), where U (V) has distribution F (G).As a �nal example, consider f ea g 7! eb decorated with distribution F and eb having distribu-tion G. Using a similar reasoning as above, we infer that the stochastic variable max(U; ta+V)determines the time of enabling of eb given that ea happens at time ta.Let DF denote an arbitrary class of distribution functions.8.10. Definition. (Stochastic event structure)A stochastic bundle event structure � is a triple hE ;F ;Gi with E an extended bundleevent structure (E; ; 7!; l), and F : E �! DF and G : 7! �! DF, associating adistribution function of class DF to events and bundles, respectively. �We denote a bundle (X; e) with G((X; e)) = F by X F7! e. Event traces are considered assequences of events where each event ei is associated with a stochastic variable Ui that uniquely

Generalized stochastic event structures 183determines the minimal enabling time of event ei. The stochastic variable Ui is determined bythe distribution function associated with ei (i.e., F(ei)), the distributions linked to all bundlespointing to ei and the stochastic variables Uj of the causal predecessors of ei in the trace (asthese determine the time of occurrence of ej).8.11. Definition. (Random event trace)A random event trace of stochastic event structure � = hE ;F ;Gi is a sequence � ofevents (e1; U1) : : : (en; Un) with ei 2 E, and Ui, for all 0 < i 6 n, a stochastic variablewith distribution function in class DF i�1. e1 : : : en 2 T (E), and2. 8 i : Ui = Max(fUF(ei) g [Vi [Wi) whereVi = fUG + Uj j 9X : X G7! ei ^ X \ [�i] = f ej g g andWi = fUj j 9 ej 2 [�i] : ej ei g. �Notice the resemblance of this de�nition of with the de�nition of timed event trace in Chapter4 (De�nition 4.5). For distribution function F , UF denotes the corresponding stochasticvariable. In general it is not straightforward to obtain a closed formula for Ui since statisticalindependence of its constituents cannot always be guaranteed. The stochastic variable U =(U1; : : : ; Un) spans an n-dimensional hyperspace and has joint distribution functionFU(x) = Z x1�1 : : : Z xn�1 F 0U (y1; : : : ; yn) dyn : : : dy1:8.12. Example. Consider the stochastic event structures in Figure 8.3. The event dis-tribution of event ea is denoted Fa and is omitted in the �gure for simplicity. For (a) legaltraces are (ea; Ua)(eb; Ub) and (eb; Ub)(ea; Ua) with Ua = UFa and Ub = UFb . Note that thestochastic variables are equal for both traces. For (b) (ea; Ua)(eb; Ub) is a trace with Ua = UFaand Ub = max(UFb ; UG+Ua). Finally, for (c) (ea; Ua)(eb; Ub)(ec; Uc) is a trace with Ua = UFa,Ub = UFb and Uc = MaxfUFc; UG+Ua; UH+Ub g. �
c

a

(a) (b) (c)

a b

a

b

b

G G H

Figure 8.3: Some stochastic bundle event structures.

184 Chapter 8: The stochastic timing module8.3.2 A generalized stochastic process algebraIn this section we use the model of the previous section as a semantical model for a generalizedstochastic process algebra. The aim of this exercise is to investigate what the desired algebraicproperties of distribution functions are. Let F be a distribution function in DF. The syntaxof behaviours in PAGS is now de�ned as follows:8.13. Definition. (Generalized stochastic process algebra PAGS)B ::= 0 j p j (F) a ;B j B +B j B >> B j B [> B j B jjGB j B[H] j B nG. �This syntax is identical to the syntax of PAT , the timed process algebra of Chapter 4, exceptthat time annotations are replaced by distribution functions from DF.
b

ba ba
|| a,b =

ba

a || a
a

=
a

a
; =

ba

GF F.G

F G F.G

F G F

G

uFigure 8.4: Examples of composing stochastic event structures.In a similar way as for the exponential distribution case we de�ne a mapping ES[[B]] whichassociates a stochastic bundle event structure to expression B. This provides us a causality-based semantics of PAGS. Let us start by considering some examples (cf. Figure 8.4). Inthe upper picture we are faced with the question what the resulting distribution of a in(F) a ; 0 jja (G) a ; 0 will be. When we adopt the synchronization paradigm of the deterministictimed model max(UF ; UG) would determine the timing of a. This results in distribution F �G.A similar reasoning applies to the next picture (where, for simplicity, irrelevant distributionsare omitted). Finally, in the lower picture the main issue is what the resulting distribution, Hsay, of b will be. In the deterministic timed case b would be associated time 0, the unit elementof max. Hence, in the stochastic case H = u, the unit element of �. This motivates that werequire the class DF of distribution functions to be closed under product (�) and to have anidentity element u for this operation. Recall that the product of distributions corresponds tothe maximum of their stochastic variables under the assumption of statistical independence.In the following de�nition let ES[[Bi]] = �i = h(Ei; i; 7!i; li);Fi;Gii, for i = 1; 2, withE1 \ E2 = ?. We assume that the stochastic variables corresponding to the bundle and eventdistributions in �1 and �2 are statistically independent. The positive events of � are thoseevents that have a distribution function di�erent from u, i.e., pos(�) = f e 2 E j F(e) 6= u g.Let pin(�) = pos(�) [init(�). Let EU denote the universe of events.

Generalized stochastic event structures 1858.14. Definition. (Semantics of 0, p, and (F) a ;)ES[[0]] , hE 0[[�S(0)]];?;?iES[[p]] , hE 0[[�S(p)]]; f (e�;u) g;?iES[[(F) a ; B1]] , h(E; 1; 7!; l1 [f (ea; a) g);F ;Gi whereE = E1 [f ea g for some ea 2 EU n E17! = 7!1 [(f f ea g g � pin(�1))F = f (ea; F) g [(E1 � fu g)G = G1 [f ((f ea g; e);F1(e)) j e 2 pin(�1) g: �The semantics of 0 and p is self-explanatory. In ES[[(F) a ; B1]] a bundle is introduced froma new event ea (labelled a) to all initial events of �1 and, in addition, to all events in �1 thathave a distribution function di�erent from u. The distribution of these events is now relativeto ea, so each bundle f ea g 7! e is associated with a distribution F1(e), and the distributionF(e) is made u. The distribution F(ea) becomes F . In the untimed and exponential case (cf.Chapter 2 and De�nition 8.7) it su�ces to only introduce bundles from ea to the initial eventsof �1. Introducing bundles from ea to all events in pin(�1) is, however, semantically equivalent(as shown in Chapter 2) and is used here only to make distributions of events relative to ea.To exemplify this, Figure 8.5 depicts (a) ES[[B1]], and (b) ES[[(F) a ; B1]].
K

K

G

a

b c

d

e
G

F

H

b c

d

e

J J

I I

H

(a):B1 (b): (F) a ; B1

u u

u

uuFigure 8.5: Example of stochastic action pre�x.8.15. Definition. (Semantics of n, [], +, >> and [>)ES[[B1 opB2]] , hE 0[[�S(B1 opB2)]];F1 [F2;G1 [G2i; op 2 f+; [> gES[[opB1]] , hE 0[[�S(opB1)]];F1;G1i for op 2 f n; [] gES[[B1 >> B2]] , h(E1 [E2; ; 7!; l);F ;Gi where = 1 [2 [f (e; e0) j e; e0 2 exit(�1) ^ e 6= e0 g7! = 7!1 [7!2 [(f exit(�1) g � pin(�2))l = ((l1 [l2) n (exit(�1)� f � g)) [(exit(�1)� f � g)F = F1 [(E2 � fu g)G = G1 [G2 [f ((exit(�1); e);F2(e)) j e 2 pin(�2) g: �

186 Chapter 8: The stochastic timing moduleFinally, we explain the semantics of the parallel composition operator. Events of ES[[B1 jjGB2]]are constructed in the same way as in De�nition 8.7. The distribution associated with a bundleis equal to the product of the distribution functions associated with the bundles we get byprojecting on the i-th components (i=1; 2) of the events in the bundle, if this projection yieldsa bundle in ES[[Bi]]. The distribution of an event is the product of the distributions of itscomponents that are di�erent from �.8.16. Definition. (Semantics of jjG)ES[[B1 jjGB2]] , hE 0[[�S(B1 jjGB2)]];F ;Gi whereF((e1; e2)) = F1(e1) � F2(e2) with Fi(�) = u:G((X; (e1; e2))) = G1((pr1(X); e1)) � G2((pr2(X); e2))with Gi((?; ei)) = u; for i=1; 2: �8.3.3 PH-distributionsWe conclude that the desired properties of the class of distribution functions that is of in-terest to us are that it should be closed under product and have an identity element forproduct. An interesting class of distribution functions that satisfy these constraints are thephase-type (PH-) distributions. PH-distributions can be considered as matrix generalizationsof exponential distributions and are well-suited for numerical computation. They are usedin many probabilistic models that have matrix-geometric solutions, have a richly developedtheory due to Neuts [109, 110], and include frequently used distributions such as hyper- andhypo-exponential, Erlang, and Cox distributions.Intuitively, a PH-distribution is characterized by the time until absorption in a �nite-statecontinuous-time Markov process with a single absorbing state2. Consider a continuous-timeMarkov chain (cf. Figure 8.6) with transient states f 1; : : : ; m g and absorbing state m+1,initial probability vector [�; �m+1] with �1 + �m+1 = 1, and (in�nitesimal) generator matrixQ = " T T 00 0 # ,where T is a square matrix of order m such that T(i; i) < 0 and T(i; j) > 0 (i 6= j). The rowsums of Q equal zero, i.e., T1 + T 0 = 0.T(i; j) (i 6= j) can be interpreted as the rate at which the current state changes from transientstate i to transient state j. Stated otherwise, starting from state i it takes an exponentiallydistributed time with mean 1=T(i; j) to reach state j. T 0(i) is the rate at which the systemcan move from transient state i to the absorbing state, state m+1. �T(i; i) is the totalrate of departure from state i, or, equivalently, the residence time in state i is exponentiallydistributed with rate �1=T(i; i). In general, the transition rates may depend on the time at2Requiring a single absorbing state is not a severe restriction as Markov processes with more than one suchstate can easily be converted into a Markov process with a single absorbing state.

Generalized stochastic event structures 187'
&

$
%transient states1; � � � ; m "!# ����m+16�1 6�2 � � � 6�m 6�m+1
PPPPPq-�����1

Figure 8.6: Schematic view of a PH-distribution.which a system is considered. In this dissertation we con�ne ourselves to Markov chains whosebehaviour is invariant to time-shifts. That is, at any time the rate to go from one state toanother is the same. Such processes are often referred to as time-homogeneousMarkov chains.The probability distribution F (x) of the time until absorption in state m+1 is now given by 3F (x) = 1� � � eTx � 1 ,for x > 0, and F (x) = 0, for x < 0. The pair (�;T) is called a representation of F . Thecorresponding probability density function equalsF 0(x) = � � eTx � T 0 ,for x > 0, and F 0(x) = 0, for x < 0. The moments �i of F (x) are �nite and given by�i = (�1)i � i! � (� �T�i � 1) for i = 1; 2; : : : .The �rst moment of a stochastic variable corresponds to its expectation, and the di�erencebetween the second moment and the square of the �rst moment corresponds to its variance.Note the resemblance of the expressions for F (x), F 0(x) and �i to the corresponding ex-pressions for exponential distributions. In fact, for m=1 we obtain the results for regularexponential distribution. PH-distributions can thus be considered as matrix generalizationsof the exponential distributions, which makes them suitable for numeric computations.8.17. Definition. (Phase-type distribution)A continuous distribution function F on [0;1) is called of phase-type (PH-distribution)i� it is the distribution of time to absorption in a continuous-time Markov chain asde�ned above. �8.18. Example. Example PH-distributions are the exponential, Erlang, hyper- and hypo-exponential, and Coxian distributions. Important to note is that these well-known (PH-type)3For square matrix T of order m, eTx is de�ned by eTx = Im+Tx+T2 x22! +T3 x33! + : : :, where Im denotesthe identity matrix of order m and Tk xkk! is matrix Tk with each element multiplied by xkk! .

188 Chapter 8: The stochastic timing module
n kn-�(a) nnn kn-����>ZZZZ~p3p2

p1 �3�2�1(b) n n nk�1 �2- -(c)n n nnk- -? ? ?-
�1p1�1(1�p1) �2p2�2(1�p2) �3(d)Figure 8.7: Some example PH-distributions.distributions are acyclic while the de�nition of PH-type distributions also allows for cyclicMarkov chains. Figure 8.7 illustrates an (a) exponential distribution with rate �, (b) a 3-stage hyper-exponential distribution with rates �i, for i=1; 2; 3 (c) a 2-stage hypo-exponentialdistribution with rates �i, for i=1; 2, and (d) a 3-phase Coxian distribution. Representationsof (b) and (d) are �(b) = [p1; p2; p3] with p1+p2+p3 = 1, �(d) = [1; 0; 0], andT(b) = 264 ��1 0 00 ��2 00 0 ��3 375 ; T(d) = 264 ��1 �1 � p1 00 ��2 �2 � p20 0 ��3 375 : �If U and V are statistically independent stochastic variables with PH-distributions G and Hrespectively, then the distribution F of W = max(U; V) is equal to the product of G and Hand is again a PH-distribution. The product of two PH-distributions is calculated as follows.8.19. Theorem. Let PH-distributions G;H have representations (�;T) and (�;S) of ordersm and n, respectively. Then F (x) = G(x)�H(x) is a PH-distribution with representation(;L) of order m � n+m+ n given by = [�
 �; �n+1�; �m+1�] andL = 264 T
 In + Im
 S Im
 S0 T 0
 In0 T 00 0 S 375 :Proof. See Neuts [109, Chapter 2]. �
 denotes the tensor (or Kronecker) product and is de�ned below. Note that T
 In+ Im
Sis sometimes also referred to as the tensor sum of T and S, denoted T� S. T� S represents

Generalized stochastic event structures 189the generator matrix of a Markov process which is the Cartesian product of the Markovprocesses represented by T and S. Tensor algebra is extensively discussed in Davio [38]. ThePH-distribution consisting only of the absorbing state is the identity under product.8.20. Definition. (Tensor product)The tensor (or Kronecker) product of two matrices A and B of orders r1�c1 and r2�c2,respectively, is de�ned as C = A
B with C of order r1r2 � c1c2 andC((i1�1)r2 + i2; (j1�1)c2 + j2) = A(i1; j1) �B(i2; j2) ,where 0 < ik 6 rk, 0 < jk 6 ck for k=1; 2. �The resulting matrix C can be considered to consist of r1c1 blocks each having dimensionr2 � c2, that is, the dimension of B:C = 26664 A(1; 1) �B A(1; 2) �B : : : A(1; c1) �B� � �� � �A(r1; 1) �B A(r1; 2) �B : : : A(r1; c1) �B 37775 .The maximum of two PH-distributions is exempli�ed in the following example.8.21. Example. Exponential distributions G and H with rates � and � have represen-tations ([1]; [��]) and ([1]; [��]), respectively. The maximum F of these distributions hasrepresentation (;L) with = [1; 0; 0] andL = 264 �(� + �) � �0 �� 00 0 �� 375 .
n kn-�(a)

nn nkp1p2 HHHj���*�1�2(b)
nn nnn nkp1p2 HHHj���*HHHj���*�1�2�

� -����>ZZZZ~�1��2(c)Figure 8.8: Maximum of a 1- and 2-stage hyper-exponential distribution.As a second example let G be an exponential distribution with rate � and H a 2-stage hyper-exponential distribution with rates �1 and �2, and initial probabilities p1; p2 with p1+p2 = 1

190 Chapter 8: The stochastic timing module(cf. Figure 8.8(a) and (b)). The maximum F has representation (;L) with = [p1; p2; 0; 0; 0]and L = 26666664 �(� + �1) 0 �1 � 00 �(�+ �2) �2 0 �0 0 �� 0 00 0 0 ��1 00 0 0 0 ��2
37777775 .The corresponding Markov process is depicted in Figure 8.8(c). �We conclude the exposition on PH-distributions by an observation. When considering Markovchains as ordinary �nite state automata where transitions are labeled with rates, computingthe product of two PH-distributions boils down to computing the product automaton of theconstituent automata (cf. Figure 8.8). From the work of Plateau & Fourneau [119] it is knownthat the product chain of two continuous-time Markov chains with generator matrices Q andR has generator matrix Q�R. This means that the product of two PH-distributions G andH with generator matrices Q and R, respectively, is equal to F with generator matrix Q�R.This is a much simpler characterization than given in Theorem 8.19.8.4 Concluding remarksIn this chapter we have made an investigation of stochastic extensions of a process algebra in acausality-based setting. We presented a simple event structure model restricted to exponentialdistributions and a more general one involving PH-distributions. The simple semantic model isshown to be compatible with the standard operational semantics of (ordinary) process algebraslike LOTOS and CSP and to closely resemble existing stochastic extensions of interleavedmodels like MTIPP, B-MPA, D-MPA and a preliminary version of PEPA.The model involving PH-distributions evolved from a rather straightforward generalization ofthe deterministic timed model of Chapter 4. This results in associating distributions to eventsand bundles. Similar to the timed case it can be proven that a model with bundle distributionsonly su�ces in case all initial actions of a speci�cation have distribution u, and all occurringparallel compositions satisfy the constraint that argument behaviours are able to participatein initial synchronization actions.Another interesting class of distribution functions that satis�es our constraints is introduced bySahner & Trivedi [131]. Here, the product of distribution functions of `exponential polynomialform'F (x) =Xi ai � xki � ebix for x > 0:for ki a natural and ai; bi real or complex numbers, is used to model the concurrent executionof groups of tasks. Cox, exponential, Erlang, and mixtures of exponential distributions alsofall into this class of distributions. The applicability of such distributions in the context ofour work is for further study.

Concluding remarks 191To our knowledge only a few process algebras exist supporting a wider class of distributionfunctions than exponential ones. Ajmone Marsan et al. [3] de�ne a stochastic extension ofLOTOS in which random variables with arbitrary distribution functions specify the timelapse between actions. Once an action becomes enabled an experiment is carried out, theoutcome of which represents the actual delay of the action. The main limitation of thisproposal is that all stochastic timing constraints must be speci�ed at `top level', thus reducingcompositionality and avoiding the issue of how to combine local distribution functions incase of synchronization. G�otz et al. [59] discuss a generalization of MTIPP which supportsarbitrary distribution functions. In order to associate the appropriate distribution function toactions in the interleaved semantic model, they introduce the notion of `start references'. Suchreferences are used to keep track of residual lifetimes of stochastic variables. In our model asimilar notion is not needed, and general distributions could be incorporated in a more naturalway. In the thesis of Rettelbach [128] a variant of MTIPP is discussed that allows for Erlangdistributions. Here a special invisible action is used in the operational semantics to let theErlang distribution move from one phase to another.Though this chapter provides the �rst basic ingredients to study the (semi-) automated devel-opment of performance models out of system speci�cations in a causality-based setting, thereare a number of issues to be settled. To mention a few, we did not yet address the issue ofhow to obtain a performance model from an event structure representation while exploitingthe explicit parallelism present in the semantics. Some examples of how this could be donestarting from an event structure with deterministic times and probabilistic choices can befound in Chapter 9. It has to be investigated how this approach carries over to the stochasticcase.A comparison with Petri nets is also considered to be useful. The relationship of bundleevent structures with Petri nets has been studied by Boudol & Castellani [25] and it would beinteresting to extend this study to (nonexponential) stochastic Petri nets. A problem here isthat there is currently a lot of research going on in the �eld of nonexponential stochastic Petrinets and there is no consensus yet on the incorporation of general distributions into nets (see,for instance, Trivedi et al. [143]).

192 Chapter 8: The stochastic timing module

9 The probability module
This chapter presents a probabilistic variant of extended bundle event struc-tures, in which internal events (i.e., events labeled �) can be assigned a �xedprobability. In this way, a causality-based model is obtained that allowsfor the speci�cation of (internal) probabilistic behaviour. For probabilisticevent structures the notion of cluster, a set of mutually conicting internalevents such that the sum of the probabilities associated to these events is1, is de�ned. A cluster corresponds to an independent stochastic exper-iment. A probabilistic process algebra PAP is introduced and assigned acausality-based and corresponding event-based operational semantics. Theintegration of the probabilistic model with the deterministic timed model(of Chapters 4 and 7) is briey discussed. By means of example it is shownhow to obtain a performance model (i.e., a discrete-time semi-Markov chain)from a timed probabilistic event structure.9.1 IntroductionIt is widely recognized that the behaviour of systems cannot be modelled adequately by onlyproviding a means for describing the possible orderings of the execution of actions; issues liketime and probability play an important rôle as well. In this chapter we equip extended bundleevent structures with a notion of probability. In this way we facilitate the speci�cation of reli-ability issues; quanti�cation of concerns like the possibility that an unreliable communicationmedium loses or garbles a message, or the possibility that a system component exhibits somefaulty behaviour now becomes possible.The aim of this chapter is to investigate how probabilities can be introduced in a causality-based framework in a simple though practically useful way. The basic idea is to use probabil-ities to model (discrete) stochastic experiments that are (statistically) independent from thecontext in which they are considered. In order to facilitate this, some events are equipped withprobabilities|we will call such events probabilistic events|and these events are required to beinternal, i.e., labelled � . A probabilistic event models an outcome of a stochastic experiment.Since a realization of an experiment usually has a single outcome, we require all probabilisticevents that constitute the range of outcomes to be mutually in conict. Such a group of eventswill be called a cluster.Since all probabilistic events are internal, their probability of appearance can be determinedwithout the need for conditioning probabilities on the possible behaviour of the environment.This is a simplifying assumption. We believe that still an interesting model remains, be-cause there are lots of applications for which the description of internal probabilistic behaviour193

194 Chapter 9: The probability modulesu�ces. Typically the environment has no control over probabilistic phenomena one oftenencounters in practice: for instance, the fact that a system component spontaneously fails(like garbling a message) is usually due to some internal misbehaviour completely out of theenvironment's control [122]. There exist various probabilistic variants of formal models thatdo allow the resolution of experiments to be determined by the environment. This leads tomore complicated models since probabilities must be adjusted depending on the environmentin which they are considered. In addition, it seems not clear (yet) how the environment willinuence the probabilistic behaviour of systems; di�erent perspectives can be taken which re-sult in di�erent probabilistic models. An overview and classi�cation of such models is providedby Van Glabbeek et al. [53].The process algebra PA of Chapter 1 is enriched with a probabilistic choice operator, denoted+p , where B1 +p B2 denotes a behaviour that nondeterministically behaves like B1 (withprobability p), or like B2 (with probability 1�p), under the condition that this choice can bemade autonomously, i.e., without interference of the environment. The fact that this choicecan be made without participation of the environment is met by imposing some appropriatesyntactical constraints. We investigate the use of the probabilistic causality-based model forproviding a denotational semantics for this process algebra, called PAP . Like for the timed,urgent, and (simple) stochastic case a consistent event-based operational semantics for PAP ispresented.To our knowledge this constitutes the �rst attempt towards enhancing a partial-order modelwith probabilistic information. Current probabilistic (asynchronous) process algebras all useprobabilistic extensions of labelled transition systems as an underlying semantical model. Itis quite common to distinguish between probabilistic and nonprobabilistic transitions in thesemodels. The main problem with this approach is the intertwining of these types of transitions.That is to say, it is not clear what the intended meaning is of a probability attached to atransition in the presence of a competitive nonprobabilistic transition. Typical behavioursthat cause such situations are combinations of parallel composition and probabilistic choice,as in (� ; B1 +p � ; B2) jjj a ; B3 .The fact that there is one global state in which either a or one of the two probabilisticalternatives can happen makes it di�cult to interpret p as the probability that B1 will bechosen. There have been several solutions proposed for this problem, some of which we willdiscuss later on in this chapter, but most of them loose the property of backwards compatibilitywith the nonprobabilistic semantics. We hope to show in this chapter that a causality-basedmodel, which has no direct notion of global state, does not has these problems.This chapter is further organized as follows. Section 9.2 introduces the notion of cluster andprobabilistic event structure and carries notions like event trace, remainder and con�gurationover to a probabilistic setting. Section 9.3 presents the probabilistic process algebra PAP ;the syntactical constraints of the formalism are introduced and justi�ed, and a causality-based denotational semantics and event-based operational semantics for this formalism arepresented. Section 9.4 discusses a possible way in which the probabilistic and (simple) timed,urgent models of Chapters 4 and 6 can be integrated. This integration is used in Section 9.5 to

Probabilistic event structures 195show by means of example how performance models, in particular discrete-time semi-Markovchains, can be obtained from timed probabilistic event structures. Section 9.6 puts our workand results in the context of several other proposals for probabilistic process algebras andaddresses options for further work. Finally, Section 9.7 summarizes the technical results ofthis chapter.9.2 Probabilistic event structuresThis section deals with probabilistic event structures. Section 9.2.1 introduces the basic ideasand the notion of probabilistic event structure. The status of such event structure after theexecution of a sequence of events is presented in Section 9.2.2. Section 9.2.3 shows howprobabilities can be calculated for sets of executions of probabilistic event structures.9.2.1 What are probabilistic event structures?The basic idea is to incorporate �xed probabilities in event structures by associating proba-bilities with events. Suppose we have an event e and we decorate this event with probabilityp, p 2 (0; 1), that is 0 < p < 1. The intuitive interpretation is that e happens with likelihoodp provided that it is enabled. Thus, p is a conditional probability.A group of events, each event having a �xed probability, intends to model an independentstochastic experiment, that is, the probability assigned to an event is independent from itscontext. An experiment consists of a set of possible outcomes. Each outcome has associated areal number which represents the probability of its occurrence when the experiment is carriedout. Each realization of the experiment has precisely one outcome.In order to model stochastic experiments, events are grouped into clusters of mutually con-icting events.9.1. Definition. (Cluster)For event structure E = (E; ; 7!; l), set Q � E is a cluster of E , i�1. j Q j > 12. 8 e 2 Q : l(e) = �3. 8 e; e0 2 Q : e 6= e0) e# e04. 8 e 2 Q; e0 2 E : e e0) e0 2 Q5. 8 e; e0 2 Q;X � E : X 7! e) X 7! e0. �The �rst constraint requires a cluster to consist of at least two events; this is convenient fortechnical reasons and poses no real practical constraint. In order to guarantee that stochasticexperiments represented by clusters are indeed independent from their context we require allevents in a cluster to be internal (i.e., labelled �). In this way we are sure that such events

196 Chapter 9: The probability moduleare not subject of interaction anymore, which would make their probability dependent on thecontext in which they will be embedded. According to the third constraint events in a clustermutually exclude each other such that only one event (i.e., the outcome of the experiment) canhappen. In addition we require that events in a cluster are not in conict with events outsidethe cluster; allowing such conicts would destroy the interpretation that an event probabilityrepresents the likelihood that this event happens (once enabled). This is stated by the fourthconstraint. Finally, all events in a cluster must be pointed to by the same set of bundles.Together with the fourth constraint this guarantees that if an event in a cluster is enabled allevents in this cluster are enabled.A probabilistic event structure is an event structure in which some events are assigned aprobability. We assume a (partial) mapping � that decorates an event with a probability in(0; 1). The interpretation is that an event e with �(e) = p happens with probability p once itis enabled.9.2. Definition. (Probabilistic event structure)A probabilistic event structure is a tuple hE ; �i with� E , an extended bundle event structure (E; ; 7!; l)� � : E �!p (0; 1), the probability functionsuch that for all e 2 dom(�)9Q � dom(�) : e 2 Q ^ Q is a cluster ^ Xe02Q�(e0) = 1: ��!p indicates a partial function. The constraint requires the domain of � to consist completelyof clusters such that the sum of the probabilities assigned to all events in a cluster equals one.In this way, cluster Q in hE ; �i can be considered to represent a stochastic experiment forwhich the probability of outcome e 2 Q equals �(e).For depicting probabilistic event structures we use the following conventions. The probabilityof an event is depicted near to the event. For convenience, we often omit the event labelfor e 2 dom(�) and indicate the mutual conicts between events in a cluster by a greyshaded surface. We use �, possibly subscripted and/or primed, to denote a probabilisticevent structure and EBESP to denote the class of probabilistic event structures. cl(�) denotesthe set of clusters of � that are assigned a probability. (Note that it is not required for eachcluster of � to be contained in the domain of �.)9.3. Example. Some example probabilistic event structures are depicted in Figure 9.1.Figure 9.1(b) contains a single cluster of 4 events with �(e1) = 14 , �(e2) = 112 , �(e3) = 16and �(e4) = 12 . Figure 9.1(c), referred to as �, contains two clusters. That is, cl(�) =f f e1; e2 g; f e3; e4; e5 g g.The structures in Figure 9.2 are not probabilistic event structures. Figure 9.2(a) violates therequirement that the domain of � consists of clusters only|e1; e3 2 dom(�), but : (e1# e3).

Probabilistic event structures 197
d

(a) (b) (c)

b

a c

τ

a

τ

b

c

1/3 2/3
1/4

1/12 1/2

1/6

e1

e2
e3

e4

2/3

1/3

1/2

1/4

1/4

a

e1 e2

e1

e2

e4

e3

e5

b

Figure 9.1: Some example probabilistic event structures.
(a) (b)

τ

a

τ

b

c

1/3 2/3

e1 e2 e3

τ

a

τ

b

1/3 1/6
τ

c

1/2

e1 e2

Figure 9.2: Some example event structures that are not probabilistic.Since e1; e2 2 dom(�) but have di�erent enablings, Figure 9.2(b) violates the constraints ofbeing a probabilistic event structure. �The set of event traces of � is simply the set of event traces of E ; the probabilities do not a�ectthe possibility of events to happen, they only quantify the probability of happening. This alsomeans that the set of con�gurations of �, CP (�), is simply equal to C(E), and lposets of �can be generated according to the recipe for plain event structures (cf. Chapter 2).9.2.2 Probabilistic remainderThe de�nitions and results in this section are all relative to � = h(E; ; 7!; l); �i. The statusof a probabilistic event structure after the execution of a sequence of events is de�ned asfollows:9.4. Definition. (Probabilistic remainder)The probabilistic remainder �[�] = hE 0; �0i of � = hE ; �i after event trace � is� E 0 = E [�] = (E 0; 0; 7!; l0), and� �0 = � � (E 0 n f e0 2 E 0 j 9 e 2 � : e# e0 g). �The �rst component is equal to the remainder of E , see De�nition 2.28. All events in � areremoved from the domain of � (i.e., � � E 0, where E 0 = E n �). In addition, the probabilities

198 Chapter 9: The probability moduleof events in conict with some event e in � are removed, because the stochastic experiment(= cluster) of which e is part of has happened. Notice that the remaining events of thisexperiment cannot happen anymore as they were in mutual conict with e. This is establishedby introducing an empty bundle pointing to those events in the remainder; see De�nition 2.28.9.5. Example. The notion of probabilistic remainder is exempli�ed in Figure 9.3. Afterthe execution of ea the (only) cluster is enabled, and after the execution of e3 (labelled �) thecluster is `broken' and events e1 and e2 are removed from dom(�). �
a b

c

d

1/2

1/4

1/4 τ

τ

b

c

d

b

c

d

1/2

1/4

1/4

e1

e2

e3ea e3

f f f

Figure 9.3: Example remainder of a probabilistic event structure.As a next step we prove that the probabilistic remainder of a probabilistic event structureis again a probabilistic event structure. We �rst need some results concerning clusters inremainders. The �rst lemma states that a cluster is una�ected if no event in it is executed.9.6. Lemma. 8 � 2 TP (�); Q 2 cl(�) : Q \ � = ?) Q 2 cl(�[�]).Proof. Let � 2 TP (�) and assume Q is a cluster in � such that Q \ � = ?. Let �[�] = h(E0; 0; 7!0; l0); �0i. We systematically check all requirements for Q being a cluster in �[�].1. Given that Q \ � = ? we have Q � E , Q � E n � , Q � E0.2. j Q j > 1 follows immediately from Q \ � = ? and Q 2 cl(�).3. For all e 2 Q : l0(e) = (l � E0)(e) = l(e) = � .4. For all e; e0 2 Q : e 6= e0) e#0e0 follows immediately from the fact that 0= \ (E0 � E0)and Q is a cluster of �.5. For all e 2 Q; e0 2 E0 : e 0 e0) e0 2 Q. Follows immediately from the fact that 0= \ (E0 �E0) and Q is a cluster of �.6. For all e; e0 2 Q;X � E0 : X 7!0 e) X 7!0 e0. From De�nition 2.28 we know that theinteresting cases are when either (a) an existing bundle X 7! e is removed or (b) a new one? 7!0 e is introduced.(a) If a bundle X pointing to some event in Q is removed (since X \ � = f ej g), then allbundles originating from ej are removed in �[�]. Since all events in Q have the samebundles pointing to them in � this means that all bundlesX 7! e with e 2 Q are removed.

Probabilistic event structures 199(b) If a new bundle X = ? pointing to some event e 2 Q is added, this can only be becausethere exists e0 such that e e0. Since Q 2 cl(�), e00 e0 for all e00 2 Q, so bundle? 7!0 e00 is present in �[�] for all e00 2 Q.This proves that all events in Q have the same bundles pointing to them in �[�].7. Sum of the probabilities inQ equals 1. SinceQ\� = ? we have Q\dom(�0) = Q\dom(�) = Q,and �0(e) = �(e) for all e 2 Q. �The following lemma says that once an event in a cluster is executed the entire cluster is`broken'. Let �[�] = hE 0; �0i.9.7. Lemma. 8 � 2 TP (�); Q 2 cl(�) : Q \ � 6= ?) Q \ dom(�0) = ?.Proof. Let � 2 TP (�), Q 2 cl(�) such that Q \ � = f e1; : : : ; ek g, for k > 1. Since Q is a clusterof � we have for all e 2 Q that e# ej for 0 < j 6 k. From De�nition 9.4 it follows that all theseevents are removed from dom(�), and so Q \ dom(�0) = ? . �9.8. Theorem. 8� 2 EBESP and � 2 TP (�) : �[�] 2 EBESP .Proof. Let �0 = �[�] = hE 0; �0i. It is quite evident that E 0 = E [�] satis�es the requirements forbeing an extended bundle event structure. Besides, �0 satis�es the constraints of De�nition 9.2 sincecl(�) � cl(�0)|if some event in a cluster Q in � appears in �, then all events in Q are removedfrom the domain of � (cf. Lemma 9.7), and if no event in Q appears in �, then Q is una�ected (cf.Lemma 9.6). So, dom(�0) consists only of clusters Q with Pe2Q �0(e) = 1. �9.2.3 Probability measure on con�gurationsIn this section we provide a means to calculate probabilities for the dynamic representationsof an event structure, namely con�gurations.As a �rst observation we remark that in general, � being a partial function, the set CP (�)of all con�gurations of � does not generate a random space|there are con�gurations forwhich it does not make sense to speak about probabilities. For instance, what is the proba-bility of con�guration f ec g of Figure 9.1(a)? There are also sets of con�gurations that areindistinguishable from the probabilistic point of view. For instance, again with reference toFigure 9.1(a), the following con�gurations are probabilistically indistinguishable:c1 = f e1 g; c2 = f e1; ec g; c3 = f e1; ea g; c4 = f e1; ea; ec g .In other words, whenever it is known that some con�guration in V = f c1; c2; c3; c4 g has hap-pened (i.e., its events have happened) it does not make sense to reason about the probabilitythat a particular element of V has happened. All con�gurations in V share a common feature,viz. the fact that e1 has happened; moreover, the probability of appearance of e1 is 13 . So, theonly question which makes sense in this example is `What is the probability of having anycon�guration that contains e1?'. Below we associate probabilities to sets of con�gurations.We �rst capture the notion of being probabilistic indistinguishable. For C 2 CP (�) letC \ dom(�), the stochastic choice of C, denoted by sc(C).

200 Chapter 9: The probability moduleEquivalence class [C]
 sc(C) Prf [C]
 g?; f eb g ? unde�nedf e1 g; f e1; eb g; f e1; ea g; f e1; ea; eb g f e1 g 2/3f e2 g; f e2; eb g f e2 g 1/3f e2; e3 g; f e2; e3; eb g f e2; e3 g 1/6f e2; e4 g; f e2; e4; eb g f e2; e4 g 1/12f e2; e5 g; f e2; e5; eb g f e2; e5 g 1/12Table 9.1: Equivalence classes, stochastic choices and probabilities for Figure 9.1(c).9.9. Definition. For C1; C2 2 CP (�) let
 be de�ned as C1
 C2 , sc(C1) = sc(C2): �It is easy to verify that
 is an equivalence relation. Let [C]
 denote the equivalence classof C under
. That is, [C]
 = fC 0 2 CP (�) j C
 C 0 g.The probability of a set of con�gurations is de�ned for equivalence classes of con�gurations(under
) that contain a nonempty set of probabilistic events sc(C) = f e1; : : : ; ek g. Theprobability of such set of con�gurations is then equal to �(e1) � : : : � �(ek).9.10. Definition. (Probability measure on sets of con�gurations)For C 2 CP (�) such that sc(C) 6= ?, let Prf [C]
 g , Qe2sc(C) �(e). �9.11. Example. Consider the probabilistic event structure of Figure 9.1(c). The equiv-alence classes under
, stochastic choices, and probabilities Prf [C]
 g of this structure aresummarized in Table 9.1. �9.3 A probabilistic process algebraThis section introduces a probabilistic process algebra PAP and provides a causality-basedsemantics using probabilistic event structures. Section 9.3.1 introduces the syntax of PAPincluding the syntactical constraints for probabilistic processes. Section 9.3.2 presents thecausality-based semantics. Some properties of this semantics are proven in Section 9.3.3.Finally, Section 9.3.4 presents an event-based operational semantics for PAP and investigatesthe relationship of this semantics with the causality-based interpretation.9.3.1 SyntaxIn order to express probabilities PA is extended with a probabilistic choice operator, denoted+p , for p 2 (0; 1). Under the assumption that the choice between B1 and B2 cannot beinuenced by the environment, behaviour B1 +p B2 nondeterministically behaves like B1(with probability p) or like B2 (with probability 1�p).

A probabilistic process algebra 2019.12. Definition. (Probabilistic formalism L)B ::= 0 j p j a ; B j B +B j B +p B j B jjGB j B[H] j B nG j B >> B j B [> B. �+p and + bind equally strong. Throughout this chapter p; q and r denote elements in (0; 1).In PAP we distinguish between a standard and a probabilistic choice. We believe that thisdistinction is important|from a design perspective it is necessary to express choices for whichthe probability of an alternative is left unspeci�ed. Such quantitative knowledge may eitherbe absent at the current stage of design or it may be deliberately left unspeci�ed. Therefore,one should not be forced to associate such quantity with an alternative. When going from anabstract speci�cation to a more concrete speci�cation it seems useful to consider the re�nementof + by +p . (This is not to say that in the �nal stage of the design trajectory all standardchoices are replaced by probabilistic ones.) For these reasons we have decided to extend PAwith a probabilistic choice rather than to replace the standard choice by a probabilistic one.The assumption that the probabilistic choice between B1 and B2 cannot be inuenced by theenvironment is forced by syntactical constraints on B1 and B2. These constraints guaranteethat B1 +p B2 induces an independent stochastic experiment. Below we de�ne the syntacticalconstraints. Besides the syntactical constraints for +p we must be careful with the mixtureof + (or [>) and +p . For instance, constructs likea ; 0+ (� ; b ; 0 +0:4 � ; c ; 0)are abandoned, since the probability of the appearance of, for example, � ; b ; 0 cannot bedetermined. Alsoa ; p [> (� ; b ; 0 +0:99 � ; c ; 0)is not an allowed expression, since the probability of � ; b depends on whether a ; p terminatessuccessfully or not.Before characterizing the expressions belonging to PAP we introduce two subsidiary predicatespc and ppc. ppc(B) is true i� B is a (pure) probabilistic choice at `top' level.9.13. Definition. Let ppc : L �! Bool be de�ned as follows:ppc(B1 +p B2) , (ppc(B1) _ B1 = � ; B01) ^ (ppc(B2) _ B2 = � ; B02)ppc(B1 >> B2) , ppc(B1)ppc(opB) , ppc(B) for op 2 f n; [] g:ppc is false for all other syntactical constructs. �pc(B) is true i� B has a probabilistic choice at the `component' level.

202 Chapter 9: The probability module9.14. Definition. Let pc : L �! Bool be de�ned as follows:pc(B1 +p B2) , truepc(B1 >> B2) , pc(B1)pc(B1 jjGB2) , pc(B1) _ pc(B2)pc(opB) , pc(B) for op 2 f n; [] g:pc is false for all other syntactical constructs. �9.15. Definition. (Probabilistic process algebra PAP)PAP , fB 2 L j ppa(B) g where ppa : L �! Bool is de�ned as:ppa(0) , trueppa(p) , trueppa(opB) , ppa(B) for op 2 f a ; ; n; [] gppa(B1 opB2) , ppa(B1) ^ ppa(B2) for op 2 f jjG ; >> gppa(B1 +B2) , : pc(B1) ^ : pc(B2) ^ ppa(B1) ^ ppa(B2)ppa(B1 +p B2) , ppc(B1 +p B2) ^ ppa(B1) ^ ppa(B2)ppa(B1 [> B2) , : pc(B1) ^ : pc(B2) ^ ppa(B1) ^ ppa(B2): �B is a legitimate expression of PAP if its components are legitimate expressions. The compo-nents of a probabilistic choice should start with an internal action � , or should be probabilisticchoices. In a standard choice or disrupt both argument behaviours may not contain a proba-bilistic choice at the `component' level.Examples of expressions that belong to PAP are(� ; a ; 0 +0:3 � ; b ; 0) jjb c ; b ; 0a ; 0+ b ; (� ; a ; 0 +0:99 � ; c ; 0)� ; a ; 0 +0:3 (� ; b ; 0 +0:4 � ; c ; 0) .Notice that probabilistic choices can be used in the context of parallel compositions.Probabilistic choices are restricted to be performed between behaviours the �rst actions ofwhich are required to be unobservable actions. For instance, a ; B1 +p a ; B2 and a ; B1 +p� ; B2 are not taken into consideration here, although their nonprobabilistic counterpartsexpress instances of nondeterminism. The reason for this choice is to keep our model as simpleas possible. On the other hand, we also have the following equations, where �te denotes testingequivalence ([111], see also Chapter 1),a ; B1 + a ; B2 �te � ; a ; B1 + � ; a ; B2a ; B1 + � ; B2 �te � ; ((a ; B1) +B2) + � ; B2 .Thus all forms of nondeterminism can be rewritten in the required format of our formalism,while preserving the notion of testing equivalence. As a consequence the proposed model isexpressive enough as long as reasoning modulo testing equivalence is acceptable.

A probabilistic process algebra 2039.3.2 Causality-based semanticsIn this section we give a causality-based semantics to PAP . We do so by de�ning a mappingEP [[]] : PAP �! EBESP .9.16. Definition. Let �P : PAP �! PA be de�ned as follows�P (0) , 0�P (p) , p�P (opB) , op �P (B) for op 2 f a ; ; n; [] g�P (B1 +p B2) , �P (B1) + �P (B2)�P (B1 opB2) , �P (B1) op �P (B2) for op 2 f+; jjG ; >>; [> g: �So, �P associates to a probabilistic behaviour B in PAP its corresponding nonprobabilisticbehaviour �P (B) in PA by simply transforming all occurrence of +p in B into +.In the following de�nition let EP [[Bi]] = �i = hEi; �ii, for i=1; 2. The de�nition of E [[]] isprovided in Chapter 2. The function init which is de�ned for event structures in Chapter 2 isused for probabilistic event structures in the same way.9.17. Definition. (Causality-based semantics of PAP)Let EP [[]] : PAP ! EBESP be de�ned as follows:EP [[0]] , hE [[�P (0)]];?iEP [[p]] , hE [[�P (p)]];?iEP [[opB1]] , hE [[�P (opB1)]]; �1i for op 2 f a ; ; n; [] gEP [[B1 opB2]] , hE [[�P (B1 opB2)]]; �1 [�2i for op 2 f+; >>; [> gEP [[B1 +p B2]] , hE [[�P (B1 +p B2)]]; �i where� = �1 � (E1 n init(�1)) [�2 � (E2 n init(�2))[f (e; p) j e 2 init(�1) n dom(�1) g[f (e; p � �1(e)) j e 2 init(�1) \ dom(�1) g[f (e; 1�p) j e 2 init(�2) n dom(�2) g[f (e; (1�p) � �2(e)) j e 2 init(�2) \ dom(�2) gEP [[B1 jjGB2]] , hE [[�P (B1 jjGB2)]]; �i with� = f ((e; �); p) j (e; p) 2 �1 ^ (e; �) 2 E g [f ((�; e); p) j (e; p) 2 �2 ^ (�; e) 2 E g: �Apart from the probability part � the semantics of the probabilistic expression B=B1 +p B2is equivalent to the semantics of the nondeterministic choice. For noninitial events of B, � isde�ned as the union of �1 and �2. For initial events the situation is slightly more complicated.

204 Chapter 9: The probability moduleAll probabilities of initial events of B1 must be multiplied with p and those of B2 with 1�p.In order to do so we have to distinguish between events that are already assigned a probabilityin B1 or B2 and those that are not.In EP [[B1 jjGB2]] events are assigned a probability when one of their components is equal to� and the other component is assigned a probability in EP [[Bi]], for i=1; 2.9.18. Example. Figure 9.4 shows the probabilistic event structures corresponding to(a) B1 = � ; b ; 0 +1=3 � ; 0, (b) B2 = � ; 0 +1=2 (� ; b ; (� ; 0 +2=5 � ; 0) +1=2 � ; 0), and(c) B1 +1=6 B2. The reader should be able to �nd corresponding expressions of the eventstructures of Figure 9.1 without great di�culty. �

(a) (b)

e1 e2

e3 e4
1/21/4

1/4 e5

b

1/3 2/3

b

e1

e2

e3 e4

e5

2/5 3/5
b

2/5 3/5

b
1/18

1/9

5/24

5/12

5/24

(c)Figure 9.4: Example of semantics for probabilistic choice.The probabilistic extension is backwards compatible with the plain case, in the sense that thesemantics E [[]] of a behaviour in PA is fully preserved in the de�nition of EP [[]].9.19. Theorem. Compatibility theorem8B 2 PAP : L(EP [[B]]) = L(E [[�P (B)]]).Proof. Let EP [[B]] = hE ; �i. By de�nition L(EP [[B]]) = L(E). From De�nition 9.17 it immediatelyfollows that E = E [[�P (B)]]. �9.3.3 PropertiesAs a next property we would like to prove that for all B 2 PAP its causality-based semanticsEP [[B]] is a probabilistic event structure. This means that EP [[B]] must satisfy the constraintsof De�nition 9.2. We �rst prove that for expressions B that do not satisfy the pc predicatedo not contain any initial probabilistic event in EP [[B]].9.20. Lemma. For B 2 PAP let EP [[B]] = � = hE ; �i. Then we have:: pc(B)) init(�) \ dom(�) = ?:

A probabilistic process algebra 205Proof. By induction on the structure of B.Base: For B = 0 and p the lemma trivially holds since dom(�) = ? for these cases. For B = a� ; B1we have init(�) \ dom(�) = f � g \ dom(�1) = ?.Induction Step: Assume the lemma holds for B1 and B2 and suppose : pc(B). Let EP [[Bi]] = �i =hEi; �ii, for i=1; 2. We only consider +, +p , >>, and jjG ; the proofs for the other constructs aresimilar and omitted.1. Choice: B = B1 +B2. For this case we infer:init(EP [[B1 +B2]]) \ dom(�)= f De�nition 9.17 g(init(�1) [init(�2)) \ (dom(�1) [dom(�2))= f E1 \E2 = ? g(init(�1) \ dom(�1)) [(init(�2) \ dom(�2))= f B1 +B2 2 PAP) : pc(B1) ^ :pc(B2); induction hypothesis g? .2. Probabilistic choice: trivial, since the premise does not hold.3. Enabling: B = B1 >> B2. For this case we infer:init(EP [[B1 >> B2]]) \ dom(�)= f De�nition 9.17 ginit(�1) \ (dom(�1) [dom(�2))= f E1 \E2 = ? ginit(�1) \ dom(�1)= f : pc(B1 >> B2), : pc(B1); induction hypothesis g? .4. Parallel composition: B = B1 jjGB2. Then:init(EP [[B1 jjGB2]]) \ dom(�) = ?, f De�nition 9.17 ginit(EP [[B1 jjGB2]]) \ ((dom(�1)� f� g) [(f � g � dom(�2))) = ?(f f e1 j (e1; �) 2 init(EP [[B1 jjGB2]]) g � init(�1); similar for �2 g(init(�1) [init(�2)) \ (dom(�1) [dom(�2)) = ?, f : pc(B1 jjGB2), : pc(B1) ^ :pc(B2); induction hypothesis gtrue . �The following lemma says that the initial events of expression B for which ppc(B) holdsconstitute a cluster.

206 Chapter 9: The probability module9.21. Lemma. 8B 2 PAP : ppc(B)) init(EP [[B]]) 2 cl(EP [[B]]).Proof. By induction on the structure of B.Base: For B = 0 and B = p the premise does not hold, so the lemma holds.Induction Step: Assume the lemma holds for B1 and B2. From the de�nition of ppc it is clearthat we only have to consider probabilistic choice, enabling, hiding and relabelling. For all otherconstructs the predicate does not hold and the lemma is trivially true. Let � = EP [[B]] = hE ; �i and�i = EP [[Bi]] = hEi; �ii, for i=1; 2.1. B = B1 >> B2. For this case we have init(�) = init(�1) and cl(�1) � cl(�). From theinduction hypothesis we know init(�1) � cl(�1), and so init(�) � cl(�). The proofs for hidingand relabelling are similar and omitted.2. B = B1 +p B2. According to the de�nition of ppc there are four cases to be distinguished:(a) B1 = �� ; B01 and B2 = � ; B02. From De�nition 9.17 it follows that init(�) = f �; g, # �, and that �; are not in conict with any other event. In addition, no bundlespoint to � and , �(�) = p and �() = 1�p, so the sum of probabilities in init(�) equals1. This proves that init(�) 2 cl(�).(b) B1 is of the form B01 +q B001 and B2 = � ; B02. According to the induction hypothesisinit(�1) 2 cl(�1). From De�nition 9.17 it follows that init(�) = init(�1) [init(�2) andthat all events in init(�1) are put in conict with all events in init(�2). Besides, no otherconicts or bundles are added. It directly follows that init(�) satis�es the constraints ofDe�nition 9.1. It remains to check that Pe2init(�) �(e) equals 1:Xe2init(�)�(e)= f init(�) = init(�1) [init(�2) gXe2init(�1) [init(�2)�(e)= f De�nition 9.17 gXe2init(�1)ndom(�1) p+ Xe2init(�1)\dom(�1) p � �1(e)+ Xe2init(�2)ndom(�2)(1�p) + Xe2init(�2)\dom(�2)(1�p) � �2(e)= f init(�2) = f g; 62 dom(�2) g(1�p) + Xe2init(�1)ndom(�1) p+ Xe2init(�1)\dom(�1) p � �1(e)= f init(�1) 2 cl(�1), init(�1) \ dom(�1) = init(�1) g(1�p) + p � Xe2init(�1)�1(e)= f induction hypothesis g1 .

A probabilistic process algebra 207(c) B2 is of the form B02 +r B002 and B1 = � ; B01. Similar to the previous case.(d) B1 is of the form B01 +q B001 and B2 is of the form B02 +r B002 . According to the inductionhypothesis init(�1) 2 cl(�1) and init(�2) 2 cl(�2). Analogously to case 2. it follows in astraightforward way that init(�) satis�es the constraints of De�nition 9.1. It remains tocheck that Pe2init(�) �(e) = 1:Xe2init(�)�(e)= f see derivation above gXe2init(�1)ndom(�1) p+ Xe2init(�1)\dom(�1) p � �1(e)+ Xe2init(�2)ndom(�2)(1�p) + Xe2init(�2)\dom(�2)(1�p) � �2(e)= f init(�i) 2 cl(�i), init(�i) \ dom(�i) = init(�i), for i=1; 2 gp � Xe2init(�1)�1(e) + (1�p) � Xe2init(�2)�2(e)= f induction hypothesis g1 . �The previous two lemmas provide the ingredients to prove that for all B 2 PAP we have thatEP [[B]] is a probabilistic event structure.9.22. Theorem. 8B 2 PAP : EP [[B]] 2 EBESP .Proof. By induction on the structure of B. For all B 2 PAP with EP [[B]] = � = hE ; �i itfollows from Theorem 9.19 that E is an extended bundle event structure. It su�ces to consider theconstraints on �. According to De�nition 9.2 this boils down to prove that dom(�) consists of clustersQ, for which Pe2Q �(e) = 1.Base: For B = 0 and B = p the theorem follows directly since � = ? for these cases.Induction Step: Assume the theorem holds for B1 and B2. Let EP [[Bi]] = �i = hEi; �ii, for i=1; 2.We prove the theorem for ;, +, +p and jjG . The proofs for the other operators are similar andomitted.1. B = a ; B1: trivial as cl(�) = cl(�1), � = �1 and the theorem holds for B1.2. B = B1+B2: simple, since cl(�) = cl(�1) [cl(�2), � = �1 [�2 and the theorem holds for B1and B2.3. B = B1 +p B2. It follows from De�nition 9.17 and Lemma 9.21 that cl(�) equalsfQ 2 cl(�1) j Q \ init(�1) = ? g [fQ 2 cl(�2) j Q \ init(�2) = ? g [init(�):From the induction hypothesis we know that for clusters in cl(�1) and cl(�2) the sum of theprobabilities is 1, and that for these clusters the probability function � is una�ected. FromLemma 9.21 it follows that init(�) 2 cl(�).

208 Chapter 9: The probability module4. B = B1 jjGB2. According to De�nition 9.17 cl(�) equalsfQ� f� g j Q 2 cl(�1) g [f f � g �Q j Q 2 cl(�2) g:In addition, dom(�) = (dom(�1)�f� g) [(f � g�dom(�2)). From these two characterizations itfollows from the induction hypothesis that dom(�) solely consists of clusters. Since probabilitiesin these clusters are una�ected it directly follows that the sum of the probabilities of events inclusters equals one. �9.3.4 Event-based operational semantics for PAPIn this section we present an event-based operational semantics for PAP . This operationalsemantics is derived in the same way as in Chapter 5 of this thesis for the timed case. Againeach occurrence of an action-pre�x and successful termination is subscripted with a uniqueevent occurrence identi�er, denoted by a Greek letter.The operational semantics de�nes a probabilistic event transition system. We use two transitionrelations: �! and) for normal and probabilistic transitions, respectively. B (e;a)���!B0denotes that B may perform event e labelled a and evolve into B0. This transition involves noprobabilistic event. B (e;�;p))B0 denotes that B may perform probabilistic event e labelled �with probability p and subsequently will evolve into B0.�! and) are the smallest relations closed under the inference rules of Tables 9.2 and9.3. These inference rules are inspired by a proposal of Langerak & Latella [91] to provide aninterleaving semantics to (a subset of) PAP .The inference rules of Table 9.2 determine �! . These rules are almost identical to thoseof the (nonprobabilistic) event transition system for PA of Chapter 2, except for the twononsynchronization rules for parallel composition. We require that one component of B1 jjGB2can only autonomously perform a (nonprobabilistic) action a if the other component cannotperform a probabilistic event. In this way, probabilistic transitions have priority over othertransitions. This avoids that probabilistic and nonprobabilistic transitions are mixed; seeTheorem 9.25.The probabilistic transition rules for PAP are listed in Table 9.3. There are no inference rulesfor successful termination, action-pre�x, choice and disrupt, since these syntactical constructscannot perform any probabilistic transition. For p and a ; B this is quite obvious: the �rstcan only perform � whereas the second can only perform a. B1 + B2 cannot perform aprobabilistic transition since it has no probabilistic choice at `component' level, i.e., : pc(B1)and : pc(B2) hold. The same applies to B1 [> B2. The �rst two rules for +p are the onlyrules where ordinary transitions of component behaviours result in probabilistic transitions ofthe composite behaviour. The second pair of rules for +p take care of adjusting probabilities.If B1 may perform event e with probability q, then B1 +p B2 may do so with probability p � q.The rules for enabling, hiding and relabelling are rather straightforward extensions of the rulesfor the nonprobabilistic case. For parallel composition the components are required to jointlyperform probabilistic transitions, and while doing so their probabilities are multiplied. This

A probabilistic process algebra 209

p� (�;�)���! 0 a� ; B (�;a)���!BB1 (�;a)���!B01B1 +B2 (�;a)���!B01 B2 (�;a)���!B02B1 +B2 (�;a)���!B02B1 (�;a)���!B01B1 >> B2 (�;a)���!B01 >> B2 (a 6= �) B1 (�;�)���!B01B1 >> B2 (�;�)���!B2B1 (�;a)���!B01B1 [> B2 (�;a)���!B01 [> B2 (a 6= �) B1 (�;�)���!B01B1 [> B2 (�;�)���!B01B2 (�;a)���!B02B1 [> B2 (�;a)���!B02 B (�;a)���!B0B[H] (�;H(a))�����!B0[H]B1 (�;a)���!B01B1 jjGB2 ((�;�);a)�����!B01 jjGB2 (a 62 G� ^ : pc(B2))B2 (�;a)���!B02B1 jjGB2 ((�;�);a)�����!B1 jjGB02 (a 62 G� ^ : pc(B1))B1 (�;a)���!B01 ^ B2 (;a)���!B02B1 jjGB2 ((�;);a)�����!B01 jjGB02 (a 2 G�)B (�;a)���!B0B nG (�;a)���!B0 nG (a 62 G) B (�;a)���!B0B nG (�;�)���!B0 nG (a 2 G)Table 9.2: Nonprobabilistic transition rules for PAP .

210 Chapter 9: The probability moduleB1 (�;�)���!B01B1 +p B2 (�;�;p))B01 B2 (�;�)���!B02B1 +p B2 (�;�;1�p))B02B1 (�;�;q))B01B1 +p B2 (�;�;p�q))B01 B2 (�;�;q))B02B1 +p B2 (�;�;(1�p)�q))B02B1 (�;�;p))B01B1 >> B2 (�;�;p))B01 >> B2B1 (�;�;p))B01B1 jjGB2 ((�;�);�;p))B01 jjGB2 (: pc(B2)) B2 (�;�;p))B02B1 jjGB2 ((�;�);�;p))B1 jjGB02 (: pc(B1))B1 (�;�;p))B01 ^ B2 (;�;q))B02B1 jjGB2 ((�;);�;p�q))B01 jjGB02B (�;�;p))B0B nG (�;�;p))B0 nG B (�;�;p))B0B[H] (�;�;p))B0[H]Table 9.3: Probabilistic transition rules for PAP .ensures that the sum of the probabilities of all outgoing transitions of a state equals 1; seeTheorem 9.26.9.23. Example. Consider B = (�� ; 0 +0:3 � ; 0) jjj a� ; 0. Since probabilistic transitionshave priority over other transitions there is no possibility to initially perform (�; a). We dohave the following derivation:(�� ; 0 +0:3 � ; 0) jjj a� ; 0(�;�;0:3)) f (probabilistic choice), (parallel composition) g0 jjj a� ; 0((�;�);a)�����! f (action-pre�x), (parallel composition) g0 jjj0 . �9.24. Example. Let B = (�� ; a ; 0 +0:2 � ; b ; 0) jjj (�� ; 0 +0:6 �' ; 0). The initial stateof the transition system corresponding to B has four outgoing probabilistic branches labelled:(a) ((�; �); �; 0:48), (b) ((�; '); �; 0:32), (c) ((; �); �; 0:12), and (d) ((; '); �; 0:08). �In the resulting transition system states can be partitioned into two groups: states that onlyhave outgoing probabilistic transitions and states that only have outgoing nonprobabilistictransitions. There are no states that have both.

Time and probability 2119.25. Theorem. 8B 2 PAP : B 6) _ B��!= .Proof. Straightforward by induction on the structure of B. �The following lemma states that the sum of the probabilities of all outgoing probabilistictransitions of a state equals one.9.26. Theorem. 8B 2 PAP : (9 e : B (e;�;p)))) PB (e;�;q)) q = 1:Proof. Straightforward by induction on the structure of B. �Let TSP (B) be the probabilistic event transition system of B obtained by applying the in-ference rules to B. For E [[B]] a probabilistic transition system ETSP is constructed in thefollowing way. States of the transition system ETSP are reachable probabilistic event struc-tures (or, derivates) of E [[B]] with E [[B]] being the initial state. There is a transition from �to �0 if �0 = �[�] for event trace � with j � j = 1. We then have the following consistencyresult between the causality-based semantics and the event-based operational semantics:9.27. Theorem. 8B 2 PAP : �P (TSP (B)) �te �P (ETSP (EP [[B]])).Proof.�P (ETSP (EP [[B]]))=iso f De�nition 9.17 gETS(E [[B]])� f Theorem 2.46 gTS(B)�te f [91, Proposition 4.4] g�P (TSP (B)) . �Stated in words, take the probabilistic transition system for B obtained from the operationalsemantics and construct a probabilistic transition system for the denotational semantics of B,EP [[B]], by considering event traces of length 1. If the probabilities in the transition labelsare omitted (by �P) then the two resulting (plain) transition systems are testing equivalent.Remark that this is not such a strong result; for the timed, real-time and urgent case weobtained strong bisimulation equivalence! The reason for this is that in the operational se-mantics of PAP probabilistic transitions have priority over other transitions. In this way, thepossibility to perform an observable action may be postponed since probabilistic choices haveto be resolved �rst. This phenomenon is not present in the noninterleaving semantics.9.4 Time and probabilityIn this section we briey discuss the integration of our probabilistic model EBESP , the deter-ministic (simple) timed model EBEST , and its urgent variant EBESU . The resulting integrated

212 Chapter 9: The probability modulemodel is used in the next section to illustrate how a performance model can be obtained froman event structure model.In order for clusters to model stochastic experiments we pose the restriction that all events ina cluster are enabled at the same time. Under this constraint situations like
4 7

p 1-p

e1 e2cannot appear. Here it would be di�cult to interpret this cluster as a stochastic experiment,since before time 7 only event e1 can happen and not e2. An alternative interpretation would beto take the individual timing constraints into account only after having made the probabilisticchoice between the events. The main problem with this interpretation is that it is not aplausible interpretation when also considering urgent events. Consider, for instance, the cluster
4 7

p 1-p

e1 e2where event e2 will never happen since it is excluded by urgent e1 since D(e1) < D(e2). Making�rst a choice among the events without taking the timing constraints into consideration wouldmake no sense here. Here, however, it seems quite reasonable to require e1 and e2 to haveidentical timings; what would otherwise be the rôle of the event probabilities? For simplicitywe therefore require all events in a cluster to be enabled at the same time. At a syntacticallevel it su�ces to require all initial (internal) actions in a probabilistic choice to have the sametime delay. From an application point of view this is not a severe restriction as typically notime constraints are put on internal probabilistic behaviour.A timed, urgent, probabilistic event structure is an (extended bundle) event structure equippedwith the deterministic time, urgency and probability modules, D, T , U and �, respectively.The causality-based semantics of an extension of PA including (t) a ; B, +p and UU() cannow easily be provided by combining EU [[]] and EP [[]] in the most obvious way. It is nowstraightforward to prove by induction on the structure of behaviour expressions that for allclusters in the event structure corresponding to timed, urgent, probabilistic behaviour allevents in these clusters are enabled at the same time.9.5 Performance analysis|two examplesThis section presents two simple examples that illustrate how unreliable time-dependent sys-tems can be speci�ed using our formalism, and, more importantly, that exemplify how aperformance model can be generated from a causality-based model. The examples are keptrather intuitive in the sense that no formal mapping between the event structures and theperformance model, that is, discrete-time semi-Markov chains, is given.

Performance analysis|two examples 2139.5.1 Discrete-time semi-Markov chainsAs we do not expect the reader to be fully acquainted with the notion of discrete-time semi-Markov chains (DTSMCs) we give a brief explanation of such processes and explain howlimiting distributions can be obtained for such models. It is assumed that the reader isfamiliar with the notion of discrete-time Markov chains and the notion of limiting distribution(see also Appendix A). A more thorough treatment of semi-Markov processes can be found inRoss [130] and Heyman & Sobel [70].In a discrete-time Markov chain (DTMC) the state residence time (or sojourn time), that is, theprobability distribution of staying in a state for a certain time, is restricted to be geometricallydistributed. A discrete-time semi-Markov chain (DTSMC) allows residence times to have anarbitrary distribution. This means that a DTSMC does not need to satisfy the memorylessproperty (see Lemma 8.2), because the probability of going from one state to another dependsnot only on the current state (as for memoryless distributions) but also on the amount of timealready spent in this state.Apart from the fact that a DTSMC allows more general residence time distributions, it behavessimilar to a DTMC. In fact, when one abstracts from the residence time distributions ina DTSMC one obtains a corresponding DTMC, referred to as the embedded DTMC. FromAppendix A we recall that the limiting distribution � of a DTMC with transition probabilitymatrix P can be computed by solving the following system of linear equations� �P = �; Xi �i = 1 .�i is the limiting distribution of state i, that is, �i is the probability of being in state i of theDTMC `on the long run'. Note that the limiting distribution of a DTMC only exists if thechain is regular (see Appendix A).The limiting distribution of a DTSMC is calculated by �rst determining the limiting distribu-tion of its embedded DTMC in the aforementioned way, and subsequently interpreting theseresults for the DTSMC by taking into account the average residence times. Let Uij be a (dis-crete) stochastic variable that determines the number of time units spent in state i if the nextstate is j (i 6= j) and let Ri be a (discrete) stochastic variable that determines the residencetime of state i (i.e., the number of time units spent in state i). ThenPrfRi = k g , Xj P(i; j) � PrfUij = k g .Let ri denote the average residence time of state i. That is,ri , Xk k � PrfRi = k g .Let Ti denote the average number of time units between successive transitions to i. Thelimiting distribution � of a DTSMC is now de�ned as:

214 Chapter 9: The probability module9.28. Definition. (Limiting distribution of a DTSMC)The limiting distribution �i of state i of a DTSMC equals ri=Ti. �The limiting distribution of a DTSMC exists i� a limiting distribution exists for its embeddedDTMC. Let �i be the limiting distribution of state i of the embedded DTMC. An alternativeinterpretation is that �i denotes the limiting distribution of the DTSMC at hand being in iat some transition instant, that is, at a moment of transition. Stated otherwise, �i can beconsidered as the fraction of (transition) instants at which the DTSMC is in state i, consideringan in�nite amount of transition instants. In order to obtain the fraction of time the system isin state i (i.e., �i), the average residence times must be taken into account. This gives rise tothe following relationship between �i and �i:9.29. Definition. (Alternative characterization of limiting distribution of a DTSMC)For i a state of a DTSMC with limiting distribution �i in the embedded DTMC:�i , �i � riPj �j � rj . �In the following examples we will use these de�nitions in the following way. Given someDTSMC we �rst calculate the limiting distributions �i of its embedded DTMC and determinethe average residence times ri. Using De�nition 9.29 we subsequently determine the limitingdistributions �i of the DTSMC. Finally, we calculate Ti by using De�nition 9.28.9.5.2 An unreliable co�ee machineAs an example of deducing a performance model from a causality-based model we consideran unreliable co�ee machine. Although we have not dealt with recursive speci�cations up tonow, this example uses a simple form of recursion|tail recursion|to describe the iterativebehaviour of processes. (A formal treatment of recursion is provided in Chapter 10.)The example consists of a co�ee machine C and a user U . U represents an impatient user|after inserting a coin he wants to have co�ee at his disposal within n time units, n 2 Time. Ifco�ee is not supplied within this time period a new coin is inserted, assuming that the co�eemachine su�ers from some failure, and the process is repeated. For simplicity it is assumedthat consuming co�ee takes no time.U := Uto(coin ; (co�ee ; U + (n) to ; U)) .The co�ee machine is quite realistic in the sense that it sometimes refuses to o�er any co�eeeven after a coin has been inserted. Let p be the probability the machine behaves in thisunreliable way. Furthermore, producing co�ee is assumed to take k time units (k 2 Time).C := coin ; (� ; C +p � ; (k) co�ee ; C) .

Performance analysis|two examples 215The overall system is speci�ed byS := U jjf coin;co�ee g C .In order to make synchronizations on co�ee possible we assume in the sequel that n > k. The
n

coffee
to

coin

(a)

coin

p 1-p

coffee

coin

1-p

coffee

k
n

k

(b) (c)

to

p

e1

e2 e3

e4 e5

Figure 9.5: Timed probabilistic event structures of (a) U , (b) C, and (c) S.corresponding timed probabilistic event structures of U , C, and S are depicted in Figure 9.5.These �gures only explicitly depict the �nite part of the event structure corresponding to the\body" of the processes. Recursive calls should be considered as appropriate unfoldings ofthe �nite representations. To illustrate this principle Figure 9.6 illustrates for process U howsuch unfolding should be performed. Each successive unfolding is obtained by instantiatingthe original (�nite) structure. The sequence of event structures obtained by unfolding in thisway is equivalent to the approximations of the denotational semantics of recursive processesas de�ned in Chapter 10.The way in which we obtain �nite representations of in�nite event structures is not formalizedhere and is a subject for further study. Finite representations can be obtained in those caseswhere the in�nite event structure possesses a certain regular pattern, such as in Figure 9.6.Unfortunately, it is not so clear to determine this regularity principle such that, for instance,all processes for which a �nite labelled transition system exist are captured. An initial attemptto formally characterize this regularity can be found in Latella [93].Assume now that we want to calculate the average number of cups of co�ee, Nc, o�ered perunit of time. In order to determine this quantity the following grouping of events is introduceds1 = f e1; e2; e4 g and s2 = f e3; e5 g (see Figure 9.7(a)). s1 represents the case in which noco�ee is o�ered, s2 represents the case in which actually co�ee is o�ered, i.e., the successfulcase. The grouping of events imposes a particular view on the system. In this view oneabstracts from system characteristics that are irrelevant for the kind of performance analysisone performs. For instance, for our purpose, it is not necessary to keep events e2 and e4separated as they both lead to the same situation, i.e., not o�ering any co�ee. The groupsof events and probabilistic transitions between them can be considered as a DTSMC, seeFigure 9.7(b).

216 Chapter 9: The probability module
n

coffee
to

coin

n
coffee

to

coin

n
coffee

to

coin

n
coffee

to

coin

Figure 9.6: Unfoldings of the timed probabilistic event structure of U .

S1 S2

S1

S2

p

1-p1

(a) (b)

coin

p 1-p

coffee

n
k

to

e1

e2 e3

e4 e5

Figure 9.7: (a) Grouping of events and (b) a corresponding DTSMC.Under the assumption that an event takes place as soon as it is enabled (maximal progress),we determine the average residence times as follows. From Figure 9.7(a) we deduce that k timeunits are spent in state s2, so r2 = k. For state s1 there are two possibilities: if a transition istaken from s1 to s2 no time is spent in s1, and if the system remains in state s1 n time unitsare spent in s1. The average residence time of s1 thus becomes r1 = (1�p) � 0 + p � n.Using standard means we obtain for the limiting distribution � of the embedded DTMC1:�1 = 12� p , �2 = 1� p2� p .Using De�nition 9.29 and the average residence times determined just above we obtain for the1Since all states are aperiodic it follows that the embedded DTMC of Figure 9.7(b) is regular (cf. AppendixA).

Performance analysis|two examples 217limiting distribution of the DTSMC:�1 = n � pn � p+ k � (1� p) , �2 = k � (1� p)n � p+ k � (1� p) .(Note that for k=n one obtains �1 = p and �2 = 1�p.) According to De�nition 9.28 theaverage number Ti of time units between successive transitions to si equals ri=�i. Since s2represents the successful case we obtain:Nc = 1T2 = 1� pn � p+ k � (1� p) .For p ! 0 the average number of time units between two co�ee events approximates k, thetime to produce co�ee.9.5.3 Illustrating localityOne of the main advantages of using a partial-order model for performance analysis was|asclaimed in Chapter 1|the locality aspect, i.e., if one is interested in analyzing only part of asystem it is relatively easy to do so without considering other (irrelevant) parts. To illustratethis we consider the following example:Q := ((1) c ; p jjj (2) d ; p) ,R := (� ; (db) b ; p +p � ; (da) a ; p) , andP := (1) s ; (R jjjQ) >> P .Here, Q and R are independent processes that only synchronize their start and �nish in each`invocation' of P . R can autonomously choose whether to perform a b (with probability p)or to perform an a (with probability 1�p). For the purpose of this example we assume thatR is `slower' than Q, i.e., max(da; db) > 2, and suppose we are interested in the averagedelay between two events labelled a (or b). Similar to the previous example we consider thetimed probabilistic event structure corresponding to P (cf. Figure 9.8(a)) and group eventsappropriately|s1 = f e1; e2; e6; e8 g and s2 = f e3; e7; e9 g; note that events e4 and e5 do notbelong to any group. The limiting distributions of the embedded DTMC (cf. Figure 9.8(b))are: �1 = 12� p , �2 = 1� p2� p .Using De�nition 9.29 and the fact that r1 = p � (1+db) + (1�p) � 1 and r2 = da we obtain forthe limiting distribution � of the DTSMC:�1 = 1 + db � p1 + da + (db � da) � p , �2 = da � (1� p)1 + da + (db � da) � p .

218 Chapter 9: The probability moduleThe average delay between two a events equals T2, the average time between successive tran-sitions to s2. Using De�nition 9.28 we get:T2 = r2�2 = 1 + da + (db + 1) � p1�p .For p ! 0 the average delay reaches 1+da, which is optimal; for p ! 1 the average delayapproximates 1 and a's are never generated.
s

(a)

1-pp
e2

ab

c d

τ τ

e3

e1

e4 e5

e9

e7e6

e8

S1

S2

p

1-p1

(b)

1
1

2

dadb

Figure 9.8: (a) Timed probabilistic event structure of P and (b) a corresponding DTSMC.Observe that the average delay between two subsequent a's is analyzed without consideringthe|for this purpose|irrelevant process Q (more precisely, events e4 and e5). This seemsreasonable as onlyR is involved in generating a events. Here we claim that this `locality' aspectis a direct consequence of the distinction between parallel composition and nondeterminism inthe probabilistic model. (The corresponding labelled transition system consists of 54 states,and includes 9 transitions labelled a.)9.6 Related and further workProbabilistic process algebras have been studied quite extensively in the literature. Proba-bilistic extensions of di�erent process algebras have been proposed, such as ACP (by Baetenet al. [8]), CCS (by, amongst others, Christo� [34] and Hansson & Jonsson [65]), CSP (byLowe [96, 97] and Seidel [135]), LOTOS (by, amongst others, Miguel et al. [102], Rico & vonBochmann [129], Sisto et al. [138], and recently N�u~nez & de Frutos [115]), and synchronousCCS (by Giacalone et al. [48], Van Glabbeek et al. [53] and Tofts [141]). For overviews ofprobabilistic process algebras we refer to the theses of Christo� [35] and Hansson [64]. Themodels underlying most of these process algebras are labelled transition systems in whichprobabilities are associated with transitions. To our knowledge PAP is the �rst probabilistic

Related and further work 219process algebra with a noninterleaving semantics. In this section we discuss and compareseveral characteristics of our work with that in the literature.9.6.1 Nondeterminism, probabilistic choice and parallelcompositionIn order to be able to specify `real' nondeterminism and probabilistic nondeterminism we havechosen to equip PAP with both a standard and probabilistic choice (see also the discussionin Section 9.3.1). Several probabilistic process algebras replace the standard choice by aprobabilistic one, usually +1=2 . Since in an interleaving setting for �nite processes parallelcomposition can be reduced to choice using the expansion law, parallel composition implicitlybecomes probabilistic! For instance,a jjj b = a ; b +1=2 b ; a .In probabilistic ACP of Baeten et al. [8] parallel composition becomes even explicitly proba-bilistic. There, P jjp;qG Q denotes a process in which an interaction between P and Q happenswith probability 1�q, and an autonomous action of either P or Q with probability q. Giventhat an autonomous action occurs, P will perform such action with probability p and Q withprobability 1�p. A form of probabilistic parallel composition operator, where only the latterprobability (p) is indicated, is proposed for LOTOS by Sisto et al. [138], and independently byN�u~nez & de Frutos [115]. We believe that probabilistic information is typically associated withalternatives in a speci�cation, one excluding the other. Imposing a probability on causallyindependent events|like those resulting from parallel composition|seems not desirable froma design point of view, since it disturbs their independence.9.6.2 Related approachesOther models that do incorporate both a standard and probabilistic choice operator, andbesides require probabilistic choices to be independent from the environment|like we do|can be found in [65, 96, 102, 45].Hansson & Jonsson [65, 64] distinguish in their timed probabilistic variant of CCS, calledTPCCS, between probabilistic (P) and action (A) states such that these two types of statesstrictly alternate. In action states outgoing transitions possibly involve the participation ofthe environment, but in probabilistic states they do not. This implies that probabilistic movesare always performed autonomously. In our operational semantics we also distinguish betweenA- and P-states, but do not require them to strict alternate.Lowe [96] distinguishes between three types of states: action states (A), from which the processmay evolve by performing observable actions; probabilistic states (P), from which the processmay evolve probabilistically; and nondeterministic states (N) from which the process mayevolve nondeterministically. Lowe uses the resulting NPA transition systems (or graphs) asa semantical model for a probabilistic variant of CSP. He allows only internal probabilisticchoices because `we do not believe that a probabilistic external choice is particularly useful in

220 Chapter 9: The probability moduleits own right'. Lowe showed that none of the standard semantical models for CSP (like Hoaretraces and failures) can be extended to cover both +p and +, and concluded that `it seemsvery hard to combine the two phenomena' [97].LOTOS-P, the probabilistic version of LOTOS proposed by Miguel et al. [102], models stochas-tic experiments as internal actions. random x inB denotes a behaviour B possibly containingfree occurrences of variable x, where x is the outcome of a realization of an experiment. Forinstance, an unreliable channel that may lose messages can be speci�ed asChan := in ; random x in ([x]! out ; Chan + [: x]! Chan):Here it is assumed that x models the outcome of an experiment with two possible outcomes:true or false. Each possible outcome is represented by a transition labelled � . In this wayexperiments are obtained that are independent from the environment.Fang et al. [45] present a probabilistic process algebra, called PPARTYi, where probabilitiesare associated with internal activities of a process. Probabilities are linked to time by forcingthat a probabilistic transition takes one unit of time. They do, however, incorporate a (binary)parallel composition operator j, where B1 jB2 terminates as soon as either B1 or B2 terminates.As a result, for instance, a j (� +p �) will never resolve the probabilistic choice, since a is �rstforced to occur (normal transitions have priority over probabilistic ones) which results in thetermination of the entire process.9.6.3 Reactive, generative, and strati�ed modelsSeveral models allow a probabilistic choice to depend on the environment, in the sense thatthe probability of choosing one alternative or the other may depend on interactions with theenvironment. There are di�erent ways in which to resolve such probabilistic interactions.Van Glabbeek et al. [53] consider three approaches: reactive, generative and strati�ed; indecreasing order of abstractness. In the generative case the entire set of alternatives in a state isequipped with a single probability distribution. The probabilities are conditioned on the set ofactions accepted by the environment. Choices involving possibly di�erent actions are resolvedprobabilistically. In the reactive model a separate probability distribution is associated witheach action, and choices between di�erent actions are resolved by the environment. (We donot discuss the strati�ed model here.) In a similar way as pointed out by Hansson [64] ourmodel can be considered to �t within the realm of the reactive models. For example considerthe following probabilistic variants of event structures:

Related and further work 221
c

(a) (b)

d

e

f

1/4

2/5

3/4

3/5

a
a

b
b

a b

1/4 3/4

e f

2/53/5

cd(a) represents a reactive probabilistic process which initially can either perform an eventlabelled a or b.2 (b) represents the corresponding event structure in EBESP . If a is performedboth event structures will with probability 25 be able to perform an event labelled c and withprobability 35 an event labelled d. A similar reasoning applies to the case when b is performed.9.6.4 Compatibility with nonprobabilistic semanticsGiven an expression B 2 PAP and its nonprobabilistic image �P (B) we have the nice resultthat omitting the probability information in EP [[B]], the probabilistic event structure cor-responding to B, results in exactly the `plain' event structure semantics of �P (B). Thus,the semantics of PAP is a complete conservative extension of the semantics of PA. A similarresult has been reported for LOTOS-P [102], the probabilistic variant of LOTOS in [138],and probabilistic ACP [8]. It is interesting to note that for the interleaving semantics for asubset of PAP (using identical syntactical constraints as we have) in [91] such result is notobtained|Langerak & Latella could only prove the transition system of �P (B) and the tran-sition system obtained by removing the probabilities from the probabilistic transition systemof B to be testing equivalent.9.6.5 Further workProbabilistic event structures can be seen as a causality-based denotational model for systembehaviour involving probabilities. An issue for further study is to see how to obtain from thecausality-based semantics of PAP more abstract semantics in the form of equivalences (congru-ences) and pre-orders (pre-congruences) that would reect natural notions of transformationand implementation for probabilistic systems well.Another direction to extend this work would be a further enhancement of expressive power.Interesting topics from an application point of view would be to allow for the assignment ofprobabilities to noninternal events (for instance, in the reactive sense), to work with intervalsof probabilities, as can be found in Wang [150], or to incorporate an operator like [>p that2Evidently, this is not a probabilistic event structure; for the sake of this example we allow probabilities tobe assigned to noninternal events and are not restricted by the cluster concept.

222 Chapter 9: The probability moduleallows for the quanti�cation of the probability a behaviour is disrupted by another one, as canbe found in Sisto et al. [138]. We believe that for [>p a probabilistic extension of would beappropriate; the interpretation of e p e0 being that e will be disabled by e0 with probabilityp once both e and e0 are enabled.We have illustrated the use of our semantic model to obtain a performance model in the formof a discrete-time semi-Markov chain in two simple examples. There, the explicit presence ofparallelism in the semantics helps in obtaining the performance model. It should be noted,however, that this connection is most readily exploited in the form of graphs (as used in theexample), whereas the semantics of in�nite behaviours is in reality given by in�nite eventstructures (see Chapter 10). Under a regularity assumption, which applies in the case of tailrecursion as used in the examples, such in�nite structures can be �nitely represented by graphs,which are subsequently transformed into performance models. It would be most interestingand useful, however, to represent in�nite behaviour directly in terms of such a graph-basedsemantics. A �rst attempt in this direction can be found in Latella [93]. Although the structureof a performance model ultimately depends on the performance metrics one is interested in,such graph models could be a basis to study generic transformations to obtain Markov-likeperformance models from them in a systematic way, and guidelines and heuristics for applyingthem. Certainly, application of our method should �rst be attempted on larger, more realisticexamples (e.g. broadband networks, multi-media), to develop a better feeling for what is reallyrequired.We have addressed the use of probabilities in our deterministic timed model and concludedthat under a simple additional constraint on the timing of cluster-events, clusters remainto correspond to stochastic experiments. We believe that an analogous constraint wouldalso do in the stochastic setting of the previous chapter. It has recently been argued byBrinksma [27] that in the realm of stochastic process algebras di�erent choices exist: the`structural' choice (+), and the `capacitive' choice (denoted here as �) which reects the moreusual interpretation of choice constructs in performance models like CTMCs (see, for instance,Hillston [72]). � can be characterized as(F) a ; B1 � (G) a ; B2 = (F �G) a ; (B1 +p B2)where p = PrfUF < UG g. (Note that +p is an internal choice here.) Incorporating +p inPAGS, the stochastic process algebra of Chapter 8, would enable to express both � and + ina causality-based framework.9.7 ConclusionsIn this chapter we have developed a way of specifying probabilistic behaviour in (extendedbundle) event structures. We have de�ned the notion of cluster, a set of internal, mutuallyconicting events that have identical enablings and disablings. An event structure which onlyassigns probabilities to events in a cluster in such a way that the sum of these probabilitiesfor each cluster equals 1 is referred to as a probabilistic event structure. By assigning prob-abilities in this way clusters represent stochastic experiments, the outcome of which can be

Conclusions 223determined independently from the environment. We considered the status of a probabilisticevent structure after the execution of a set of events and de�ned a probability measure for setsof con�gurations. The mixture of deterministic time and probabilities has been investigated.PA has been equipped with a probabilistic (internal) choice operator +p , p 2 (0; 1), such thatB1 +p B2 nondeterministically behaves like B1 with probability p or like B2 with probability1�p. The resulting formalism, PAP is assigned a causality-based semantics which is proven tobe a conservative extension of the semantics of PA. A corresponding event-based operationalsemantics is presented which is shown to be testing equivalent to an `interleaving' view of thenoninterleaving semantics. Finally, we have exempli�ed how a performance model could beobtained from a (timed) probabilistic event structure.

224 Chapter 9: The probability module

10 Recursion
In order to specify real-life systems, recursion is a vital ingredient of anyspeci�cation formalism. This chapter provides an event structure semanticsfor recursively de�ned processes. We consider the timed, real-time, urgent,and the probabilistic variant, and show that the stochastic case can betaken into account by a straightforward generalization of the deterministictimed case. Recursion is dealt with using the well-known standard domaintheory. A complete partial order is de�ned on each type of event structureand all operators on these structures (which correspond to operators in therelated process algebra) are shown to be continuous w.r.t. this partial order.The semantics of P := B is then de�ned as the limit of a series of betterand better approximations. Finally, for PAT , PAR, PAU and PAP we givean event-based operational semantics for recursively de�ned processes andprove the consistency of this operational semantics and the denotationalcausality-based semantics.10.1 IntroductionIn order to specify practically meaningful systems, recursion is indispensable. Until so far,the di�erent models introduced in this thesis do not incorporate a mechanism to cope withrecursion. The|quite standard|way to incorporate recursion is to extend the syntax of theprocess algebra at hand with the construct B ::= P , where P is a process identi�er, and toassume a behaviour to appear in a context of a �nite set of process de�nitions of the formP := B, where B (the body) is a behaviour that possibly contains occurrences of P (or otherprocess identi�ers). Occurrences of process identi�ers in body B are referred to as processinstantiations.A simple recursive speci�cation is P := a ; P which speci�es a behaviour that in�nitely manytimes can perform action a. In this chapter we consider the event structure semantics ofrecursive process de�nitions. That is, for P := B we are looking for event structures thatsatisfy equations of the form E = FB(E). For the example above, it is clear that an eventstructure consisting of in�nitely many events en with en 7! en+1 for all n > 1, all labelleda, is a solution. To obtain an event structure for arbitrary recursive process de�nitions, is,however, not so evident.Fortunately, there is a well-established piece of theory, referred to as domain theory, that dealswith the problem of constructing a denotational semantics for recursive de�nitions (see e.g.the treatments of Manna et al. [100], Tennent [139], Gunther & Scott [63] and Schmidt [132]).225

226 Chapter 10: RecursionThe basic notions and results from domain theory as used in this chapter are summarized inAppendix B. Domain theory can be applied to our setting as follows.As stated above we are looking for an event structure E that solves E = FB(E). That is,E is a �xed point of FB. Here FB is a function that substitutes an event structure for eachoccurrence of P in B, interpreting all operators in B as operators on event structures. Forexample, for P := a ; P the result is FB(E) = a ; E , where a ; is an operator that `pre�xes' anevent structure with an event labelled a.From domain theory it is known that �xed points can be determined once it is known thatFB is continuous w.r.t. a pointed complete partial order (denoted E) on event structures. Letus �rst consider the order and then deal with continuity. A pointed complete partial order(pointed c.p.o.) is a partial order with a least element, usually denoted ?, such that eachtotally ordered set (i.e., chain) of event structures has a least upper bound (l.u.b.). For chainE1 E E2 E : : : the l.u.b. is denoted Fi Ei. FB is continuous w.r.t. E if and only if it preservesl.u.b.'s:FB(Gi Ei) = Gi FB(Ei) .Preservation of l.u.b.'s means that applyingFB on the l.u.b. of a chain E1 E E2 E : : : is identicalto determining the l.u.b. of the chain FB(E1) E FB(E2) E : : :. In general, preservation ofl.u.b.'s is not straightforward to prove. However, under the condition that two ordered eventstructures with identical sets of events are identical it su�ces, by a nice result of Winskel [155],to prove continuity on events (which is easier) rather than continuity in the above sense. Forthe models in this dissertation this condition applies (as proven in this chapter) and we canadopt Winskel's approach. FB is continuous on events if and only if it is monotonic, that is,E1 E E2) FB(E1) E FB(E2)and, for each chain E1 E E2 E : : :E FB(Gi Ei)! � E Gi FB(Ei)! .Here E(E) denotes the set of events of E . For example, a ; is continuous on events (and so,continuous w.r.t. E) i� (i) it is monotonic|`pre�xing' an event to E1 which is smaller thanE2 should result in a smaller event structure than `pre�xing' the event to E2|and (ii) the setof events of ea pre�xed to l.u.b. Fi Ei is a subset of the set of events of the l.u.b. of the chainobtained by pre�xing each Ei with ea.Given a pointed c.p.o. and a function that is continuous it is known from domain theorythat the set f E j FB(E) = E g has a least element, referred to as the least �xed point, whichis unique and equals FiF iB(?), for i > 0. So, the equation E = FB(E) can be solved bymeans of approximation. That is, E is approximated, starting with the `worst' approximation?, then FB(?), which|by monotonicity|approximates FB(FB(?)), and so on. ?, FB(?),FB(FB(?)); : : : is a sequence of better and better approximations which, by continuity of FB,converges to a limit FiF iB(?).

Extended bundle event structures 227For FB(E) = a ; E we start the approximation with the empty event structure. In eachsuccessive approximation we now extend the previously obtained event structure with a newevent labelled a pointing to the initial event(s) of this structure, and as a result, the l.u.b.of this sequence will be an event structure consisting of an in�nite chain of equally labelledevents (with label a):
a a a a

.........In this chapter the above procedure is applied to timed, real-time, urgent, stochastic andprobabilistic event structures. In this way, we obtain a noninterleaving semantics for PAT ,PAR, PAU , PAGS and PAP that includes recursion. The event-based operational semantics ofPAT ;PAR;PAU and PAP is extended with recursion and consistency between this operationalsemantics and the denotational causality-based semantics is proven.From the above description it is clear that the semantics of P := B may result in an eventstructure of in�nite size, i.e., with an in�nite number of events. As a result bundles of in�nitesize and an in�nite number of conicts can appear. Until so far, our event structure modelshave been �nite, but there are no severe di�culties in extending this to in�nite event structures;only in case of timed event structures we need to adapt the de�nition of time appropriately.In this chapter it is assumed that in�nite event structures can appear.This chapter is further organized as follows. In Section 10.2 we start by recapitulating themost important de�nitions and results of Langerak [89] concerning a pointed c.p.o. on extendedbundle event structures and the denotational semantics of P := B where B 2 PA. Section 10.3considers recursive process de�nitions in PAT . Sections 10.4, 10.5 and 10.6 do the samefor PAU , PAR, and PAGS, respectively. Section 10.7 considers recursion in the probabilisticsetting. Sections 10.4, 10.3 and 10.7 also consider the extension of the event-based operationalsemantics of PAT and PAR, PAU , and PAP with recursion. Section 10.8 presents the conclusionsof this chapter.10.2 Extended bundle event structuresThis section introduces a pointed c.p.o. on extended bundle event structures, explains theapproach of [89, Chapter 8], and summarizes the main results. Section 10.2.1 introducesthe pointed c.p.o. E, provides a characterization of the l.u.b. of a chain of event structuresordered under E, and presents some properties of this ordering and its limits. Section 10.2.2considers the function FB (see Section 10.1), proves continuity w.r.t. E for all operators onevent structures and de�nes the denotational semantics of P := B for B 2 PA.10.2.1 A pointed complete partial order10.1. Definition. (Partial order on extended bundle event structures)Let Ei = (Ei; i; 7!i; li) for i=1; 2. Then E1 E E2 i�

228 Chapter 10: Recursion1. E1 � E22. 1= 2 \ (E1 � E1)3. 7!1= f ((X \ E1); e) j e 2 E1 ^ X 7!2 e g4. l1 = l2 � E1. �where � denotes restriction. It is straightforward to verify that E is a partial order. The con-straint E1 � E2 is self-explanatory. For conicts we require that no new conicts appear in E2between events that are already in E1. Similarly, the third constraint forbids the introductionof bundles in E2 pointing to events in E1 for which there exists no projected bundle in E1. Notethat this constraint allows for bundles to grow in such a way that the old bundle is containedin the new one.10.2. Lemma. hEBES;Ei is a pointed c.p.o..Proof. Routine and omitted. �It is easy to show that ? = (?;?;?;?), the empty bundle event structure, is the least elementunder E.10.3. Example. Consider the event structures of Figure 10.1, referred to as (a) E1, (b)E2, (c) E3 and (d) E4, and assume equally labelled events to be identical. We have E1 E E2since E1 � E2, 1= 2 \ (E1 � E1), and (f ea; ec g \ E1) 7!1 eb. It is also easy to checkthat E2 E E3 (and, since E is a partial order, E1 E E3). Since f ea; ed g 7!4 f eb g, but(f ea; ed g \ E2) 67!2 f eb g we have E2 6E E4. �
(a) (b) (c)

a b

a

c

b

a

c

b

de

(d)

a

c

b

d

Figure 10.1: Extended bundle event structures with (a) E (b) E (c), but (b) 6E (d).For chain E1 E E2 E : : : let event structure Fi Ei be de�ned as follows. For the set of eventsand conicts, and the labelling function, we simply take the union of all events, conicts andlabellings of the event structures in the chain. As bundles may grow this approach does notapply to the set of bundles. Suppose some Ej has bundle Xj 7!j e. According to the de�nitionof E there is a series of bundles Xj 7!j e, Xj+1 7!j+1 e; : : : satisfying (Xk+1 \ Ek) = Xk fork > j. Then Fi Ei has bundle (SnXj+n) 7! e.

Extended bundle event structures 22910.4. Definition. (Least upper bound (under E))Let E1 E E2 E : : : be a chain, then Fi Ei , (SiEi;Si i; 7!;Si li) with7!= f ([k Xk; e) j 9 j : (8 k > j : Xk 7!k e ^ Xk+1 \ Ek = Xk) g: �10.5. Lemma. Fi Ei is the least upper bound of chain E1 E E2 E : : :.Proof. See [89, Theorem 8.2.5]. �Some important and useful properties are listed in the following theorem. The fact that a`larger' event structure allows more event traces is stated in the �rst part of the theorem. So,E preserves sets of event traces. The second part of the theorem states that ordered eventstructures with identical sets of events are identical. As we will see in Lemma 10.11 thisproperty is essential to prove that continuity (w.r.t. E) boils down to continuity on events.The third part of the theorem says that the set of traces of the l.u.b. is simply the union ofthe sets of traces of the elements of the corresponding chain.10.6. Theorem. Let Ei = (Ei; i; 7!i; li) for i=1; 2.1. E1 E E2) T (E1) � T (E2).2. (E1 E E2 ^ E1 = E2)) E1 = E2.3. T (Fi Ei) = Si T (Ei).Proof. See [89, Section 8.2]. �The following result is used in the next sections. Let Ei = (Ei; i; 7!i; li) for i=1; 2.10.7. Lemma. E1 E E2) init(E2) \ E1 = init(E1).Proof. `�': by contradiction. Suppose e 2 init(E2) \ E1, but e 62 init(E1). From e 62 init(E1) weinfer that (9X1 � E1 : X1 7!1 e). But then, since E1 E E2 there exists X2 7!2 e (with X2\E1 = X1).This contradicts with e 2 init(E2).`�': by contradiction. Suppose e 2 init(E1) but e 62 init(E2) \ E1. Since e 62 init(E2) we have(9X2 � E2 : X2 7!2 e). From E1 E E2 and e 2 E1 we have (X2\E1) 7!1 e, contradicting e 2 init(E1).�10.8. Lemma. For � a sequence of events in E1: E1 E E2) en2(�) \ E1 = en1(�).Proof. Straightforward and omitted. �

230 Chapter 10: Recursion10.2.2 A �xed point semanticsIn this section we de�ne an event structure semantics for recursive process de�nitions of theform P := B, where B possibly contains occurrences of P . These occurrences of P in B arecalled process instantiations. For the sake of simplicity we restrict ourselves to single recursivede�nitions using just one process variable (that is, P := : : : P : : : P : : :). As shown by, amongstothers, Manna et al. [100] the generalization to a set of process de�nitions (P := : : : Q : : : P : : :and Q := : : : P : : : Q : : :) is rather straightforward.Like in Chapter 5 we assume all action pre�x and p occurrences to be subscripted with aGreek letter. In addition, each process instantiation is uniquely identi�ed in the same way.For instance, P := a ; P + b ; P becomes P := a� ; P�+ b� ; P . The occurrence identi�ers arerequired to be globally unique.Consider P := B and let the event structure corresponding to P be denoted E . Then theobjective is to �nd a characterization of E . The idea is to de�ne a function FB that substitutesan event structure for each occurrence of P in B, interpreting all operators in B as operators onevent structures. To guarantee unique event names in the result of this substitution procedureeach event in the event structure corresponding to P�, a process instantiation in B, is pre�xedby �. So, if E is the event structure corresponding to P , P� is replaced by �(E), the structureobtained from E by replacing each event name e in E by �e and adjusting , 7! and l in anappropriate way. This renaming of event structures is formalized as follows.10.9. Definition. For E = (E; ; 7!; l) and � an occurrence identi�er let�(E) , (�E; 0; 7!0; l0)with �E = f�e j e 2 E g, �e 0 �e0 i� e e0, �X 7!0 �e i� X 7! e and l0(�e) = l(e).�As a second step towards the de�nition of FB all operators in B (like ;, +, >>, : : :) mustbe interpreted as operators on event structures. In Chapter 2 we have de�ned an eventstructure semantics of PA. Since this de�nition is compositional we have in fact implicitlyde�ned operators on event structures. For example, E [[B1 +B2]] = E [[B1]] + E [[B2]] where +denotes the choice operator on event structures (rather than on expressions), and E [[a� ; B]] =a� ; E [[B]]. In the sequel we denote for operator op 2 PA the corresponding counterpart onevent structures by op .Function FB for P := B replaces all occurrences P� in B by �(E) and interprets all operatorsop in B as operators op on (the substituted) event structures. E.g., forP := a� ; P� jja (a� ; P + c� ; 0)FB(E) is de�ned asFB(E) = a� ;�(E) jja (a� ; (E)+ c� ; 0) .

Extended bundle event structures 231We will not bother the reader with the full de�nition of FB here. The important thing nowis that FB(E) can be considered as a function of E . This enables the characterization of theevent structure semantics of P := B as the problem of �nding a solution of the equationFB(E) = E . From Section 10.1 we recall that E can be determined by means of approximationif FB is continuous w.r.t. E. In order to prove that FB is continuous it su�ces to prove thatits constituents, op and �() (De�nition 10.9) are continuous, for all op . As suggested byWinskel [155] we prove continuity on a set of events rather than on a c.p.o.:10.10. Definition. (Continuity on events)Let hEBES;Ei be a pointed c.p.o. and F : EBES �! EBES. F is continuous on eventsi� F is monotonic and for any chain E1 E E2 E : : : we have E(F (Fi Ei)) � E(Fi F (Ei)).�Here, E(E) for event structure E denotes the set of events of E .10.11. Lemma. For hEBES;Ei and F : EBES �! EBES we have: F is continuous i� F iscontinuous on events.Proof. We concentrate on the proof of (, the proof for the other part is trivial. Let F becontinuous on events and let E1 E E2 E : : : be a chain.8 i : Ei E Fi Ei) f F is monotonic g8 i : F (Ei) E F (Fi Ei)) f Fi F (Ei) is the l.u.b. of F (E1) E F (E2) E : : : gFi F (Ei) E F (Fi Ei), f de�nition of E gFi F (Ei) E F (Fi Ei) ^ E(Fi F (Ei)) � E(F (Fi Ei)), f F is continuous on events gFi F (Ei) E F (Fi Ei) ^ E(Fi F (Ei)) = E(F (Fi Ei))) f Theorem 10.6 gFi F (Ei) = F (Fi Ei) .This proves that F preserves l.u.b.'s and, so that F is continuous (see also Appendix B). �10.12. Theorem. a� ;;+; jjG ; : : : and �() are continuous on hEBES;Ei.Proof. See [89, Theorem 8.3.8]. �10.13. Definition. For P := B a process de�nition let E [[P]] , FiF iB(?). �10.14. Example. As an example of the semantics of a recursive process de�nition, considerP := a ; (b ; P+c ; d ; P). ? is the empty event structure. FB(?) is depicted in Figure 10.2(a).By repeated substitution we obtain the event structure of Figure 10.2(b). �

232 Chapter 10: Recursion
d

a

b c

(a)
d

b c

a

a

b

c

d

a

a

b

c

a

d

a

(b)

a

Figure 10.2: Example of semantics for a recursive process de�nition in PA.10.3 Timed event structuresIn this section we apply the approach of the previous section to timed event structures asintroduced in Chapter 4. A partial order Et on timed event structures is de�ned as a conser-vative extension of E. The l.u.b. of a sequence of timed event structures is characterized asa straightforward generalization of the untimed case. These ingredients, introduced in Sec-tion 10.3.1, provide the basis for a �xed point semantics of PAT . This semantics is presentedin Section 10.3.2. In Chapter 5 we have proven the consistency between the causality-basedsemantics of PAT and an event-based operational semantics based on timed actions. Theextension of this study towards recursive behaviours is provided in Section 10.3.3.10.3.1 A pointed complete partial orderWe start by reconsidering the de�nition of time in Chapter 4. Since we now deal with eventstructures that potentially have an in�nite number of events there maybe an in�nite numberof bundles pointing to an event. The enabling time of an event after trace � was de�ned asthe maximum of a set of time instants. In order to deal with sets of in�nite size we adjust thede�nition as follows:10.15. Definition. For � a sequence of timed events (e1; t1) : : : (en; tn) with ei 2 E, ti 2Time for 0 < i 6 n, and e 2 en([�]), lettime(�; e) , Sup(fD(e) g [H1 [H2) whereH1 = f t+ tj j 9X � E : X t7! e ^ X \ [�] = f ej g g

Timed event structures 233H2 = f tj j 9 ej 2 [�] : ej e g . �Since in�nite suprema cannot appear in our setting it su�ces to consider �nite suprema.The de�nitions and theorems in this section are all relative to timed event structures �i =hEi;Di; Tii with Ei = (Ei; i; 7!i; li) for i=1; 2.10.16. Definition. (Partial order on timed event structures)�1 Et �2 i�1. E1 E E22. D2 � E1 = D13. 8 e 2 E1 : T2((X; e)) = T1((X \ E1; e)). �In addition to the constraints for E (cf. De�nition 10.1) we require that event delays of eventsthat are already in �1 are una�ected. Bundles can grow in such a way that the old bundle iscontained (as in the untimed case) and the bundle delay is kept the same.10.17. Lemma. hEBEST ;Eti is a pointed c.p.o..Proof. Routine and omitted. �It is easy to show that ?t = h?;?;?i, the empty timed event structure, is the least elementunder Et.10.18. Example. Consider the timed event structures of Figure 10.3, referred to as (a) �1,(b) �2 and (c) �3, and assume equally labelled events to be identical. We have that �1 Et �2,since E1 E E2 (see Example 10.3) and the timing of ea; eb and f ea g 17! eb is preserved. �2 6Et �3,however, since �3 violates the third constraint from De�nition 10.16|the timing of bundlef ea; ec; ed g 7! eb should be 1 rather than 2 in order to let �2 Et �3. �
(a) (b) (c)

a b1

1

2

5
5

7

a

c

b
5

7

a

c

b

de 19

Figure 10.3: Timed event structures with (a) Et (b), but (b) 6Et (c).The following lemma is needed to reduce continuity (w.r.t. Et) to continuity on events.

234 Chapter 10: Recursion10.19. Lemma. (�1 Et �2 ^ E1 = E2)) �1 = �2.Proof. Assume �1 Et �2 and E1 = E2. We prove �1 = �2 component-wise:1. �1 Et �2 ^ E1 = E2) E1 E E2 ^ E1 = E2) f Theorem 10.6 g E1 = E2.2. D1 = D2 � E1 = D2 � E2 = D2.3. �1 Et �2) 8 e 2 E1 : T2((X; e)) = T1((X \E1; e)), fE1 = E2 g T2 = T1. �For chain �1 E �2 E : : : let Fi �i be de�ned as follows. The untimed part is constructedaccording to De�nition 10.4. The event delays are the union of all delays of the timed eventstructures in the chain. Fi �i contains bundles of the form (SnXj+n) 7! e where Xj 7!j e,Xj+1 7!j+1 e; : : : is a series of bundles satisfying (Xk+1 \ Ek) = Xk for k > j. As all bundlesin a series retain the same timing the bundle delay is the union of the bundle delays of thestructures in the chain.10.20. Definition. (Least upper bound (under Et))Let �1 E �2 E : : : be a chain, then Fi �i , hFi Ei;SiDi; T i withT = f (([k Xk; e); t) j 9 j : (8 k > j : Xk t7!k e ^ Xk+1 \ Ek = Xk) g: �10.21. Lemma. Fi �i is the least upper bound of chain �1 Et �2 Et : : :.Proof. The proof of this lemma is carried out in two parts. We �rst prove that Fi �i is an upperbound, that is, 8 i > 0 : �i Et Fi �i, and secondly, we prove that it is the least upper bound. LetFi �i = hE ;D;T i.1. 8 i > 0 : �i Et Fi �i. From Theorem 10.5 we have Ei E Fi Ei. In addition, it easily follows thatD � Ei = (SiDi) � Ei = Di. Let X 7! e a bundle in Fi �i with e 2 Ei; from the untimed casewe know that (X \Ei) 7!i e. Then:T ((X; e))= f De�nition 10.4 gT ((SkXk; e))= f De�nition 10.20 gTi((SkXk \Ei; e)) .2. We prove by contradiction that Fi �i is the least upper bound under Et. Suppose there isanother upper bound �0 = hE 0;D0;T 0i of the chain �1 Et �2 Et : : : such that �0 Et Fi �i. Thismeans E0 � SiEi. Since �0 is an upper bound we have Ei � E0, for all i, so SiEi � E0. Itfollows that SiEi = E0. But then according to Theorem 10.19 �0 = Fi �i. Contradiction. �As a next result we prove that Et preserves timed trace sets. It is technically convenient tohave the following result:

Timed event structures 23510.22. Lemma. Let � a sequence of timed events in E1 and e 2 en([�]). Then:�1 Et �2) time1(�; e) = time2(�; e) .Proof. Assume �1 Et �2, let � be a sequence of timed events in E1 and e 2 en([�]). FromLemma 10.8 it follows en1([�]) = en2([�]) \ E1. Thus, time1(�; e) and time2(�; e) are both de�ned.Then: time1(�; e)= f de�nition of time gSup(fD1(e) g [H1 [H2) whereH1 = f t+tj j 9X1 � E1 : X1 t7!1 e ^ X1 \ [�] = f ej g g andH2 = f tj j 9 ej 2 [�] : ej 1 e g= f �1 Et �2 using e 2 E1 gSup(fD2(e) g [H1 [H2) whereH1 = f t+tj j 9X2 � E2 : X2 t7!2 e ^ X2 \E1 = X1 ^ X1 \ [�] = f ej g g andH2 = f tj j 9 ej 2 [�] : ej 2 e g= f [�] � E1 gSup(fD2(e) g [H1 [H2) whereH1 = f t+tj j 9X2 � E2 : X2 t7!2 e ^ X2 \ [�] = f ej g g andH2 = f tj j 9 ej 2 [�] : ej 2 e g= f de�nition of time gtime2(�; e) . �10.23. Theorem. �1 Et �2) TT (�1) � TT (�2).Proof. Straightforward from the fact that traces of E1 are also traces of E2 (cf. Theorem 10.6),and the fact that the enabling times of events in �1 are una�ected in �2 (cf. Lemma 10.22). �The set of timed event traces of Fi �i can be characterized as the union of the sets of timedevent traces of the event structures �1 Et �2 Et : : :.10.24. Theorem. For �1 Et �2 Et : : : a chain: TT (Fi �i) = Si TT (�i).Proof. �': then we derive:true, f Lemma 10.21 g8 i : �i Et Fi �i) f Theorem 10.23 g8 i : TT (�i) � TT (Fi �i)) f set calculus gSi TT (�i) � TT (Fi �i) .`�': let � 2 TT (Fi �i) for Fi �i = hE ;D;T i. Let �k = hEk;Dk;Tki such that [�] � Ek. SinceE = SiEi, �k is a member of the chain. We prove that � 2 TT (�k) by systematically checking theconditions of being a timed event trace. Let � = (e1; t1) : : : (en; tn).

236 Chapter 10: Recursion1. e1 : : : en 2 T (E), f De�nition 4.5 g8 i : ei 2 en([�i]), f �k Et Fi �i; [�] � Ek; Lemma 10.8 g8 i : ei 2 enk([�i]), f De�nition 4.5 ge1 : : : en 2 T (Ek) .2. 8 i : ti > time(�i; ei), f �k Et Fi �i; [�] � Ek; Lemma 10.22 g8 i : ti > timek(�i; ei)Hence, each timed event trace � in Fi �i with [�] � Ek belongs to TT (�k) which proves thatTT (Fi �i) � Si TT (�i). �A result that will be used in the next section is:10.25. Lemma. �1 Et �2) pos(�2) \ E1 = pos(�1).Proof. `�': by contradiction. Suppose e 2 pos(�2)\E1 but e 62 pos(�1). Thus, D1(e) = 0. From�1 Et �2 it follows that D2 � E1 = D1. So, D2(e) = D1(e) = 0, contradicting e 2 pos(�2).`�': similar to the above case and omitted here. �10.26. Corollary. �1 Et �2) pin(�2) \ E1 = pin(�1).Proof. Directly from Lemma 10.7 and 10.25, using that pin(�) = init(�) [pos(�). �10.3.2 A �xed point semanticsIn this section we consider the timed event structure semantics of P := B where B 2 PAT . Inorder to adopt the approach of Section 10.2.2 the crucial issue is to prove that the operators(t) a� ;, +, : : : are continuous in the timed setting1.10.27. Lemma. For hEBEST ;Eti and F : EBEST �! EBEST we have: F is continuous i� Fis continuous on events.Proof. Similar to the untimed case (cf. Lemma 10.11). �According to this lemma it su�ces to prove continuity on events. That is, are the operatorsop monotonic w.r.t. Et (for instance, if �1 Et �2 do we have (t) a� ; �1 Et (t) a� ; �2) and dowe have that the set of events of op applied to the l.u.b. of chain �1 Et �2 Et : : : is contained1Strictly speaking we would need to distinguish between + for PA and + for PAT . Throughout this chapterwe will use the same notation for all cases for the sake of convenience.

Timed event structures 237in the set of events of the l.u.b. of chain op (�1) Et op (�2) Et : : : ? These issues will beconsidered in this section.We start by extending the renaming operator on event structure E , �(E), to timed eventstructures (cf. De�nition 10.9).10.28. Definition. For � = hE ;D; T i and � an occurrence identi�er let�(�) , h�(E);D0; T 0i with D0(�e) = D(e), and T 0((�X; �e)) = T ((X; e)). �10.29. Theorem. (t) a� ;, +, : : : and �() are continuous on hEBEST ;Eti.Proof. We prove that the operators are continuous on events, which|by Lemma 10.27|provesthe case. For the renaming operators �() these proofs are trivial and omitted. We prove the theoremfor (t) a� ; and jjG . The proofs for the other operators are similar and omitted here. In this prooflet �i = hEi;Di;Tii with Ei = (Ei; i; 7!i; li) for i=1; 2. Similarly �0i is de�ned.1. Action-pre�x. Suppose �1 Et �2, and let �01 = (t) a� ; �1 and �02 = (t) a� ; �2. The proofobligation is �1 Et �2) �01 Et �02. This is proven by systematically checking the conditionsof Et (cf. De�nition 10.16).(a) In order to prove E 01 E E 02 it su�ces to concentrate on the bundle constraints; the setsof events, conicts and labelling of events are identical to action-pre�x for the untimedcase, so for these components the constraints hold (cf. Theorem 10.12). For the bundleconstraint we have|according to De�nition 10.16|to check:7! 01= f de�nition ET [[]] g7!1 [(f f � g g � pin(�1))= f Corollary 10.26 g7!1 [(f f � g g � (pin(�2) \ E1))= f �1 Et �2 gf (X \ E1; e) j e 2 E1 ^ X 7!2 e g [(f f � g g � (pin(�2) \ E1))= f de�nition ET [[]]; E0i = Ei [f � g for i=1; 2 gf (X \ E01; e) j e 2 E01 ^ X 7! 02 e g .(b) D02 � E01 = D02 � (f � g [E1) = f (�; t) g [(E1 � f 0 g) = D01.(c) For e 2 E01 we deriveT 01 ((X 02 \E01; e))= f de�nition ET [[]] g(T1((X 02 \E01; e)) if X 02 \E01 7!1 eD1(e) if X 02 = f � g= f �1 Et �2; e 2 E1 g(T1((X 02 \E1; e)) if X 02 \E1 7!1 eD2(e) if X 02 = f � g= f �1 Et �2 g

238 Chapter 10: Recursion(T2((X 02; e)) if X 02 7!2 eD2(e) if X 02 = f � g= f de�nition ET [[]] gT 02 ((X 02; e)) .This proves that (t) a� ; is monotonic. It remains to prove:E((t) a� ; Fi �i)= f de�nition ET [[]] gf � g [E(Fi �i)= f De�nition 10.20 gf � g [SiE(�i)= f set calculus gSi (f � g [E(�i))= f de�nition ET [[]] gSiE((t) a� ; �i)= f De�nition 10.20 gE(Fi (t) a� ; �i) .2. Parallel composition. Suppose �1 Et �2, and let �01 = �1 jjG � and �02 = �2 jjG � where� = hE ;D;T i with E = (E; ; 7!; l). We prove �01 Et �02 by checking the conditions of Et.(a) E 01 E E 02 follows directly from the untimed case (cf. Theorem 10.12) and the fact thatET [[]] is a conservative extension of E 0[[]].(b) D01 = D02 � E01. Recall that events are pairs (e1; e2) where possibly one of the two eventsequals `�'. We consider the following casesi. (e1; e2) is a synchronization event, so e1 2 Es1 and e2 2 Es.D01((e1; e2))= f de�nition ET [[]] gmax(D1(e1);D(e2))= f �1 Et �2) D1(e1) = D2(e1) gmax(D2(e1);D(e2))= f E1 E E2) Es1 � Es2 ; e1 2 Es1 ; de�nition ET [[]] gD02((e1; e2)) .ii. (e1; e2) is a non-synchronizing event, say e1 2 Ef1 and e2 = �. ThenD02((e1; �)) = D2(e1) = D1(e1) = D01((e1; �)).iii. for (�; e2) with e2 6= � the proof is similar and omitted.This proves D01 = D02 � E01.(c) Let e = (e1; e2) an event in E01. Then we derive:T 02 ((X 02; (e1; e2)))= f de�nition ET [[]] g

Timed event structures 239max(T2((pr1(X 02); e1)); T ((pr2(X 02); e2)))= f �1 Et �2 gmax(T1((pr1(X 02) \E1; e1));T ((pr2(X 02); e2)))= f calculus gmax(T1((pr1(X 02 \E01); e1));T ((pr2(X 02 \E01); e2)))= f de�nition ET [[]] gT 01 (((X 02 \E01); (e1; e2))) .This proves that jjG is monotonic in the left argument. By symmetry, the proof for mono-tonicity in the right argument is obtained by reversing the arguments in the above proof. Thefact that jjG is continuous on events follows from the fact that in the untimed case this holdsand the fact that the construction of the set of events in the timed case is identical to theuntimed case. �In the following de�nition let GB be the timed counterpart of FB. GB is a function determinedby op and �(). From the previous theorem it follows that GB is continuous on timed eventstructures ordered under Et. This means that the semantics of P := B for B 2 PAT can nowbe computed as the l.u.b. of sequence ?t;GB(?t);GB(GB(?t)); : : :.10.30. Definition. For P := B a process de�nition let ET [[P]] , Fi GiB(?t). �10.31. Example. As an example of a recursive process de�nition in PAT we considerP := (3) a ; ((14) b ; P + (1) c ; (�) d ; P) .The �rst approximation of the timed event structure semantics of this de�nition is ?t, theempty structure. The second approximation GB(?t) is depicted in Figure 10.4(a). By repeatedsubstitution we obtain the timed event structure depicted in Figure 10.4(b). �For P := B let �T (P) the corresponding untimed behaviour of P . For instance, �T (P) forthe process of the above example equals a ; (b ; P + c ; d ; P). The next theorem extends thecompatibility result of Chapter 4 (Theorem 4.36). We �rst introduce10.32. Lemma. For all i > 0 and GiB(?t) = hEi;Di; Tii we have L(Ei) = L(F i�T (B)(?)).Proof. Straightforward by induction on i, using the fact that (t) a� ;;+; jjG ; : : : preserve lposetequivalence (cf. Theorem 4.36). �10.33. Theorem. For ET [[P]] = hE ;D; T i we have L(E) = L(E [[�T (P)]]).Proof. Let P := B, ET [[P]] = Fi GiB(?t) = hE ;D;T i where GiB(?t) = hEi;Di;Tii. Then:true, f Lemma 10.32 g

240 Chapter 10: Recursion
d

a

b c

(a)
d

b c

a

a

b

c

d

a

a

b

c

a

d

a

(b)

a

3
14 1

π

3
14

π3

3

3
3

3

3

14

14

14

14
14

14

1

1

1
1

1

1

π
π1

Figure 10.4: Example of semantics for a recursive process de�nition in PAT .8 i : L(Ei) = L(F i�T (B)(?)), f L(E) = L(E 0), T (E) = T (E 0) g8 i : T (Ei) = T (F i�T (B)(?))) f set calculus gSi T (Ei) = Si T (F i�T (B)(?)), f Theorem 10.24 gT (Fi Ei) = T (Fi F i�T (B)(?)), f L(E) = L(E 0), T (E) = T (E 0) gL(Fi Ei) = L(FiF i�T (B)(?)), f De�nition 10.20; De�nition 10.13 gL(E) = L(E [[�T (B)]]) . �We conclude this section by discussing the notion of �nite variability. According to Nicollin &Sifakis [112] a behaviour possesses the so-called �nite variability property i� it cannot performin�nitely many events in a �nite amount of time. Such behaviours are also known as non-Zenobehaviours. Several timed process algebras explicitly abandon Zeno behaviours|behavioursthat may execute an in�nite amount of events in �nite time. For instance, in a former proposalfor timed CSP by Reed & Roscoe [124] a small delay is associated to each action such thatZeno-processes cannot be expressed. In our case we permit Zeno behaviours, for instance,P := (0) a ; P is a behaviour that may perform in�nitely many a actions in �nite time. Inthe same way as we are able to construct speci�cations in which deadlocks and/or livelockscan occur we consider it su�cient to be able to verify that a speci�cation has such (possiblyundesired) behaviour. Example algorithms to detect whether a recursive process de�nition

Timed event structures 241allows Zeno behaviours can be found in the thesis of Hansson [64].10.3.3 Event-based operational semanticsThis section extends the event-based operational semantics of PAT with recursion. We followthe approach of Langerak [89, Section 8.4]It is assumed that each process instantiation of P is uniquely identi�ed, as well as all occur-rences of action-pre�x and p. Di�erent occurrences of the same process instantiation shouldproduce di�erent event transitions. In addition, event transitions cannot be repeated. ForP := (2) a� ; P� we �rst have an event transition with (�; a; t) for t > 2; the next time thataction a occurs it should be labelled with a label di�erent from �. These complications areresolved by using an event renaming operator that pre�xes all events in a behaviour with acertain occurrence identi�er. �(B) is behaviour B where all event identi�ers in B are pre�xedwith �. For these renamed behaviours we have the simple rule that whenever B (�;a;t)����!! B0then �(B) can perform (��; a; t) evolving into �(B0). The inference rules for process instanti-ation are presented in Table 10.1.10.34. Example. For example, for P := B with B = (4) a� ; P� + (1) b� ; P we have thefollowing derivation:P (�;a;7)����!! "(7[P�]) (��;b;8)�����!! 7[�(1[P])] (� �;a;12)������!! 7[�(1[(4[P�])])]where " is the empty pre�x. The third transition is derived as follows:B (�;a;4)����!! 4[P�]) f SOS-rule for P� gP (�;a;4)�����!! (4[P�])) f SOS-rule for t[B] g1[P] (�;a;5)�����!! 1[(4[P�])]) f SOS-rule for �(B) g�(1[P]) (� �;a;5)������!! �(1[(4[P�])])) f SOS-rule for t[B] g7[�(1[P])] (� �;a;12)������!! 7[�(1[(4[P�])])] . �B (�;a;t)����!! B0P� (��;a;t)�����!! �(B0) (P := B) B (�;a;t)����!! B0�(B) (��;a;t)�����!! �(B0)Table 10.1: Additional transition rules for PAT .The following theorem extends Theorem 5.10:

242 Chapter 10: Recursion10.35. Theorem. For P := B we have �(TST (P)) = TS(�T (P)).Proof. If we delete all event name information and timing information from the rules in Table 10.1we obtain the following rules B a�!B0P a�!B0 (P := B) B a�!B0B a�!B0The left-hand rule is the standard derivation rule for process de�nition and the second is a tautology.�Like for the nonrecursive case (cf. Chapter 5) the resulting timed event transition system isdeterministic. This implies that the operational semantics of a behaviour can also be givenby its set of timed event traces. In the remainder of this section we would like to prove thatthe operational semantics coincides with the causality-based semantics given in the previoussection, in the sense that both semantic models generate identical sets of timed event traces.In this study we could consider traces of in�nite length (!-traces) but this would not enhanceexpressivity. We can safely restrict ourselves to �nite traces, since two transition systemshaving the same set of �nite traces also have the same set of in�nite traces in case the transitionsystems are deterministic.In order to obtain the set of timed event traces of a process de�nition P := B the idea is tode�ne a function G 0B that substitutes a set of timed event traces for each occurrence of P in B,interpreting all operators in B as operators on timed traces. (Notice the similarity with GB.)We follow a similar procedure as in Section 10.2.2 and start by de�ning a renaming operatoron sets of timed traces.10.36. Definition. For T a set of timed event traces and � an occurrence identi�er let�(T) , f�(�) j � 2 T g where �(") , " and �((e; t) �) , (�e; t) �(�). �As a second step towards the de�nition of G 0B all operators in B (like ;, +, >>, : : :) must beinterpreted as operators on timed event traces. In Chapter 5 we have de�ned a timed eventtrace semantics of PAT . Since this de�nition is compositional we have in fact implicitly de�nedoperators on timed traces. For example, TT [[B1+B2]] = TT [[B1]] +0 TT [[B2]] where +0 denotesthe choice-operation on timed traces (rather than on expressions). In the sequel we denote foroperator op 2 PAT the corresponding counterpart on timed traces by op 0. G 0B for P := Breplaces all occurrences P� in B by �(T) and interprets all operators op in B as operatorsop 0 on (the substituted) timed traces.10.37. Definition. The depth of an event identi�er is de�ned as follows:1. dp(�) = 12. dp(�e) = dp(e) + 13. dp((e1; e2)) = max(dp(e1); dp(e2)). �

Urgent event structures 24310.38. Definition. A timed event trace � is an i-trace (i > 0) i� the depth of each eventin � is at most i, that is, 8 ei 2 [�] : dp(ei) 6 i. �10.39. Lemma. For P := B the set of i-traces of P equals G 0iB(?).Proof. By induction on i. Similar to the untimed case [89, Lemma 8.4.6] and omitted here. �The set of timed event traces of P is equal to the union of the sets of i-traces of P for alli. That is, TT [[P]] , G 0iB(?). The following theorem extends the compatibility result ofChapter 5 towards recursive process de�nitions.10.40. Theorem. For P := B we have TT (ET [[P]]) = TT [[P]].Proof.true, f Theorem 5.18 g8 i : TT (GiB(?t)) = G0iB(?)) f set calculus gSi TT (GiB(?t)) = Si G0iB(?), f Theorem 10.24 gTT (Fi GiB(?t)) = Si G0iB(?), f De�nition 10.30; see above gTT (ET [[P]]) = TT [[P]] . �Similar as for the �nite case this result can be strengthened towards strong bisimulationequivalence of the transition system deduced from the operational semantics and the transitionsystem obtained from the denotational semantics by considering timed remainders after tracesof length 1.10.4 Urgent event structuresThis section treats the extension of PAU with recursion. It basically deals with the extensionof the material of Section 10.3 with the notion of urgency. Section 10.4.1 introduces thepointed c.p.o. Eu, characterizes the l.u.b. of a chain of urgent event structures ordered byEu, and considers some properties of this ordering. E and Et were shown before to preservetrace sets. That is, E1 E E2) T (E1) � T (E2), and similarly for the timed case. It willbe shown that due to the presence of urgent events this property does not hold in generalfor urgent event structures. Conditions will be provided under which trace set inclusion isstill preserved, and a somewhat weaker notion of trace set inclusion will be considered. Thisis presented in Section 10.4.1. The denotational and operational semantics of P := B withB 2 PAU is provided in Sections 10.4.2 and 10.4.3, respectively. The consistency proof of thesetwo semantics is also given in Section 10.4.3.

244 Chapter 10: Recursion10.4.1 A pointed complete partial orderThe de�nitions and theorems in this section are all relative to urgent event structures 	i =h�i;Uii with �i = h(Ei; i; 7!i; li);Di; Tii for i=1; 2.10.41. Definition. (Partial order on urgent event structures)	1 Eu 	2 i� �1 Et �2 and U1 = U2 � E1. �In addition to the constraints forEt (cf. De�nition 10.16) we require that the urgency predicatefor events that are already in 	1 is una�ected.10.42. Lemma. hEBESU ;Eui is a pointed c.p.o..Proof. Routine and omitted. �It is easy to verify that ?u = h?t;?i is the least element under Eu.For chain 	1 E 	2 E : : : we de�ne the following urgent event structure.10.43. Definition. (Least upper bound (under Eu))Let 	1 E 	2 E : : : be a chain, then Fi	i , hFi �i;Si Uii. �10.44. Lemma. Fi	i is the least upper bound of chain 	1 Eu 	2 Eu : : :.Proof. Similar to the proof of Lemma 10.21. �Two urgent event structures that are ordered under Eu and that have identical sets of eventsare identical.10.45. Theorem. (1 Eu 	2 ^ E1 = E2)) 	1 = 	2.Proof. From Theorem 10.23 and U1 = U2 � E1 = U2 � E2 = U2. �For the timed case we had the nice property that a timed trace of �1 is also a timed traceof �2 if �1 is smaller than �2 in the ordering (Et). This property conforms to the intuitionthat possible executions of an approximation �i+1 are consistent extensions of possible runs of�i. As we will show below a similar property for urgent timed event structures does not holdin general, since new urgent events in 	i+1 may restrict (or, even prevent) the occurrence ofevents in 	i.A timed event trace � of 	i disappears in approximation 	i+1 if there is an urgent eventthat could occur earlier than some event in �. Stated otherwise, the only reason that a tracedisappears in a next approximation is by violating the third constraint of being a timed eventtrace (cf. De�nition 6.3).10.46. Lemma. For 	1 Eu 	2 we have:� 2 TU(1) n TU(2))(9 e 2 E2; ei 2 [�] : U2(e) ^ e 2 en2([�i]) ^ time2(�i; ei) > time2(�i; e)):

Urgent event structures 245Proof. Assume 	1 Eu 	2 and let � 2 TU (1) and � 62 TU (2). We systematically check theconditions of � 62 TU (2).1. [�] 62 T (E2). But E1 E E2 and [�] 2 T (E1) implies that [�] 2 T (E2). Contradiction.2. there exists i such that :U2(ei) and ti < time2(�i; ei) or U2(ei) and ti 6= time2(�i; ei). But, since[�] � E1 we have that U1(ei) = U2(ei) and time1(�i; ei) = time2(�i; ei), and since � 2 TU (1)it follows that the timing of ei is correct. Contradiction.3. � is not time-consistent. Contradiction with � 2 TU(1).So, � satis�es three of the four conditions of being a timed event trace of 	2, and � 62 TU (2) canonly be caused by violation of the third constraint. �As a next step we investigate under which conditions trace sets are preserved and under whichconditions a somewhat weaker notion of trace inclusion (but still a rather intuitive notion) ispreserved. It is intuitively not hard to see that trace inclusion is preserved when the set ofurgent events does not `grow' in subsequent approximations. This is shown in the followinglemma. Let U() be the set of urgent events of 	, i.e., U() , f e 2 E j U(e) = true g.10.47. Lemma. (1 Eu 	2 ^ U(1) = U(2))) TU(1) � TU(2).Proof. Let � = (e1; t1) : : : (en; tn) in TU (1). We prove that � 2 TU (2) by systematicallychecking the conditions of being a timed event trace of 	2.1. e1 : : : en 2 T (E1)fTheorem 10.6 ge1 : : : en 2 T (E2) .2. 8 i : (U1(ei)) ti = time1(�i; ei)) ^ (:U1(ei)) ti > time1(�i; ei))) f U(1) = U(2) and U2 � E1 = U1 g(8 i : U2(ei)) ti = time1(�i; ei)) ^ (:U2(ei)) ti > time1(�i; ei)), f [�] � E1) [�i] � E1, for all i; Lemma 10.22 g8 i : (U2(ei)) ti = time2(�i; ei)) ^ (:U2(ei)) ti > time2(�i; ei)) .3. � is time-consistent since � 2 TU (1).4. 8 i; e 2 E1 : e 2 en1([�i]) ^ U1(e)) ti 6 time1(�i; e), f U(1) = U(2) g8 i; e 2 E2 : e 2 en1([�i]) ^ U2(e)) ti 6 time1(�i; e), f [�] � E1) [�i] � E1, for all i; Lemma 10.22 g8 i; e 2 E2 : e 2 en1([�i]) ^ U2(e)) ti 6 time2(�i; e), f Lemma 10.8 g8 i; e 2 E2 : e 2 en2([�i]) ^ U2(e)) ti 6 time2(�i; e) . �

246 Chapter 10: Recursion10.48. Corollary. For chain 	1 Eu 	2 Eu : : : with U(i+1) = U(i), for i > 0:TU(Gi 	i) = [i TU(i) .Proof. Straightforward from the previous lemma and Theorem 10.45. �Eu corresponds to a weaker notion of trace set inclusion in case the introduction of new urgentevents is allowed, but only in such a way that the introduction of conicts e e0, where e0is a new urgent event and e an already existing one, is prohibited. In this case new urgentevents will not restrict the occurrence of already existing events, but the `old' events may bepreceded by the new urgent events. For example, in
7

b ≤
7

b
2

au(eb; 7) is not a timed trace of the `larger' structure, but (ea; 2)(eb; 7) is|event eb is precededby a new urgent event, but is not excluded.As a subsidiary notion we de�ne an ordering relation on sets of timed traces, called weak traceset inclusion. This ordering relation is based on restriction of timed traces on sets of events.10.49. Definition. For timed event trace � and set of events E, � � E is de�ned by1. " � E , "2. ((e; a; t) �) � E , ((e; a; t) (� � E) if e 2 E� � E if e 62 E: �10.50. Definition. For T1; T2 sets of timed event traces letT1 v T2 () (8 �1 2 T1 : (9�2 2 T2 : �2 � [�1] = �1)) . �We now have the following result concerning weak trace set inclusion:10.51. Theorem. Weak trace set inclusion theorem	1 Eu 	2 ^ (8 e 2 E1; e0 2 E2 n E1 : e 2 e0) :U2(e0))) TU (1) v TU(2):Proof. Assume 	1 Eu 	2 and let � = (e1; t1) : : : (en; tn) with � 2 TU (1). The proof is asfollows. We �rst provide a recipe to generate from � a sequence �0 of the following form �0 =�01 (e1; t1) �02 (e2; t2) : : : �0n (en; tn) and subsequently prove that �0 2 TU (2).The algorithm to compute subsequences �0i is as follows:for 0 < i 6 ndo �0i := ";�00 := �01 (e1; t1) �02 : : : �0i�1 (ei�1; ti�1) �0i;Si := f (e; t) j e 2 en2([�00]) ^ U2(e) ^ ti > time(�00; e) = t g;

Urgent event structures 247while Si 6= ?do choose (e; t) 2 Si such that 8 (e0; t0) 2 Si : t 6 t0�0i := �0i (e; t);�00 := �00 (e; t);Si := f (e; t) j e 2 en2([�00]) ^ U2(e) ^ ti > time(�00; e) = t g;odod.Obviously, this algorithm should terminate since � is �nite and 	2 contains a �nite set of events. Weprove that �0 is a timed event trace of 	2 by checking the conditions of being a timed event trace:1. the proof that [�0] 2 T (E2) is by contradiction. Suppose [�0] 62 T (E2). Then this could only bebecause one of the following reasons:(a) 9 ei; ej : ei 2 ej and j 6 i. Consider the following cases:i. ei; ej 2 [�]. But then ei 1 ej and [�] would not be an event trace of T (E1).Contradiction.ii. ei; ej 62 [�]. But then ei 2 ej which is impossible by construction of �0.iii. ei 2 [�]; ej 62 [�]. But then U2(ej) and ei 2 E1 and ei 2 ej . Contradiction.iv. ei 62 [�]; ej 2 [�]. But then ei 2 ej which is impossible by construction of �0.(b) 9X2 � E2 : X2 7!2 ei ^ X2 \ [�0i] = ?. Consideri. ei 62 [�]. But then ei would not be enabled in �0 which is impossible by constructionof �0.ii. ei 2 [�]. But then ei 2 E1 and X1 7!1 ei such that X2 \E1 = X1. Since � 2 TU (1)we have that there exists ej (j < i) in � such that ej 2 X1. By construction it followsthat ej in �0. Contradiction.This proves that [�0] 2 T (E2).2. since [�] � E1 and 	1 Eu 	2 it follows from Lemma 10.22 that time2(�; e) = time1(�; e) fore 2 E1. Since the new urgent events in 	2 are not in conict with any event in 	1 we havetime1(�; e) = time2(�0; e) for e 2 E1. In addition, 	1 Eu 	2) U2 � E1 = U1. From this itfollows that events in � have associated a correct timing in �0. From the algorithm it is evidentthat �0i consists solely of urgent events, and these events occur as soon as they are enabled.This proves that all events in �0 have associated a correct timing.3. since � 2 TU (1), � is time-consistent. In addition, from the algorithm it is evident that (a)�0i is time-consistent, and (b) all events in �0i have a timing of at least ti�1 and at most ti.This proves that �0 is time-consistent.4. from the algorithm it follows that for each event ei in � there does not exist an urgent eventthat could have occurred earlier|otherwise such urgent event is included in �0i. The sameapplies to each �0i: suppose there is for e0j in �0i an urgent event that could occur earlier, thenit would precede e0j in �0i. This proves that for each event in �0 there is no urgent event thatcould occur earlier. �

248 Chapter 10: RecursionGiven this result the question arises whether we cannot strengthen De�nition 10.41 suchthat conicts between urgent events in a next approximation and already existing events areexplicitly forbidden. The following examples show that this would not be a solution.Consider the urgent event structures in the following �gure. Obviously, the structures in (a)are ordered, since ?u is the least element. Since we want the choice operator to be monotonicwe then also would have (b) which equals (c).
≤

3
⊥ b

(a)

⊥ +
2

a ≤
3

b +
2

a

2
a ≤

3

b

2

a

(b)

(c)

u

u u

u

u

In addition, consider the urgent event structures in the following �gure. Since we would expect(a) and we want the disable operator to be monotonic we then also have (b) which equals (c).
(a)

4

c δ

(b)

(c)

7
b ≤

7
b

2
a

[>
7

b ≤
4

c δ

7
b

2
a

[>

4

c
δ

7 b

≤

4

c
δ

7

b
2
a

u

u

u

These examples show that the aforementioned suggestion is not a solution to our problem.So, we should allow the inclusion of new urgent events in conict with already existing ones.We conclude this section by characterizing the set of timed event traces of the l.u.b. Fi	i.The following results are all relative to a chain 	1 Eu 	2 Eu : : :. It is technically convenientto introduce the following result:10.52. Lemma. For � 2 TU(Fi	i) we have: 8 k : [�] � Ek) � 2 TU(k).Proof. Let � 2 TU (Fi	i) for Fi	i = hE ;D;T ;Ui. Let 	k = hEk;Dk;Tk;Uki such that [�] � Ek.Since E = SiEi, 	k is a member of the chain. We prove that � 2 TU (k) by systematically checkingthe conditions of being a timed event trace. Let � = (e1; t1) : : : (en; tn).1. the proof that e1 : : : en 2 T (E)) e1 : : : en 2 T (Ek) is identical to the proof of Theorem 10.24.2. 8 i : (:U(ei)) ti > time(�i; ei)) ^ (U(ei)) ti > time(�i; ei))

Urgent event structures 249, f 	k Et Fi	i; [�] � Ek; Lemma 10.22 g8 i : (:U(ei)) ti > timek(�i; ei)) ^ (U(ei)) ti > timek(�i; ei)), f 	k Et Fi	i) U(ei) = Uk(ei) for ei 2 Ek g8 i : (:Uk(ei)) ti > timek(�i; ei)) ^ (Uk(ei)) ti > timek(�i; ei)) .3. by de�nition, � is time-consistent.4. 8 i; e 2 E : e 2 en([�i]) ^ U(ei)) ti 6 time(�i; ei)) f Ek � E g8 i; e 2 E : e 2 en([�i]) \Ek ^ U(ei)) ti 6 time(�i; ei), f 	k Et Fi	i) U(ei) = Uk(ei) for ei 2 Ek g8 i; e 2 Ek : e 2 en([�i]) \Ek ^ Uk(ei)) ti 6 time(�i; ei), f 	k Et Fi	i; [�] � Ek; Lemma 10.8; Lemma 10.22 g8 i; e 2 Ek : e 2 enk([�i]) ^ Uk(ei)) ti 6 timek(�i; ei) . �Timed event traces that are present in each approximation from the n-th approximation onare called n-persistent.10.53. Definition. (n-persistent trace)A sequence � of timed events is n-persistent i� 9n : (8 j > n : � 2 TU(j)). �The set of timed event traces of Fi	i can be characterized as the union of the n-persistenttimed traces of its approximations.10.54. Theorem. TU(Fi	i) = Si Tj>i TU(j).Proof. `�': follows directly from Lemma 10.52.`�': let � 2 Tj>n TU (j), for some n. Then � is n-persistent. We prove that � 2 TU(Fi	i) bycontradiction. Assume � 62 TU(Fi	i). Since we have that 	i Eu Fi	i it follows from Lemma 10.46that there exists e 2 E and ei in � such thatU(e) ^ e 2 en([�]) ^ time(�i; ei) > time(�i; e):But since E = SiEi and U = Si Ui it follows that there exists an m with e 2 Em, [�] � Em andUm(e) and timem(�i; e0) = time(�i; e0) for all e0 2 Em. But this would mean that � 62 TU(k), for allk > m. This contradicts with the fact that � is n-persistent. �10.4.2 A �xed point semanticsIn this section we consider the denotational semantics of P := B where B 2 PAU . In order toadopt the approach of Sections 10.2.2 and 10.3.2 the crucial issue is to prove that the operators(t) a� ;, +, : : :, UU () are continuous w.r.t. Eu. As for the timed case, it su�ces to considercontinuity on events.

250 Chapter 10: Recursion10.55. Lemma. For hEBESU ;Eui and F : EBESU �! EBESU we have: F is continuous i� Fis continuous on events.Proof. Similar as the proof of Lemma 10.11. �Since Eu is a conservative extension of Et it su�ces to only prove for all operators in PAT thatthe additional constraint on urgent events is satis�ed (cf. De�nition 10.41), and that the newoperator UU() is continuous. The renaming operator �() is de�ned on urgent event structuresas follows.10.56. Definition. For 	 = h�;Ui and � an occurrence identi�er let �() , h�(�);U 0iwith U 0(�e) = U(e). �10.57. Theorem. (t) a� ;, +, : : :, UU() and �() are continuous on hEBESU ;Eui.Proof. We prove that the operators are continuous on events, which|by Lemma 10.55|provesthe case. For the renaming operators �() these proofs are trivial and omitted. We prove the theoremfor (t) a� ;, +, jjG and UU (). For each of these constructs we prove continuity on events. The proofsfor the other operators are similar and are omitted here. For all cases it su�ces to only considerthe additional constraints of De�nition 10.41 on urgent events. In this proof let 	i = h�i;Uii with�i = hEi;Di; Tii and Ei = (Ei; i; 7!i; li) for i=1; 2. Similarly 	0i is de�ned.1. Action-pre�x. Suppose 	1 Eu 	2, let 	01 = (t) a� ; 	1 and 	02 = (t) a� ; 	2. Then:U 02 � E01 = U 02 � (f � g [E1) = f (�; false) g [U2 � E1 = f (�; false) g [U1 = U 01.2. Choice. Suppose 	1 Eu 	2, let 	01 = 	1+	 and 	02 = 	2+	. Then:U 02 � E01 = (U2 [U) � (E1 [E) = U2 � (E1 [E) [U � (E1 [E) = U1 [U = U 01.3. Parallel composition. Suppose 	1 Eu 	2, let 	01 = 	1 jjG	 and 	02 = 	2 jjG	. We then prove	01 Eu 	02 as follows. According to the de�nition of EU [[]]:U 02((e1; e)) � E01 = (U2 � (E1 [f � g))(e1) _ (U � (E [f � g))(e) .We distinguish between the following cases(a) (e1; e) is a synchronization event. Then(U2 � (E1 [f � g))(e1) _ (U � (E [f � g))(e), f e1 2 Es2 and e 2 Es g(U2 � E1)(e1) _ (U � E)(e), f 	1 Eu 	2 ; U � E = U gU1(e1) _ U(e), f E1 E E2) Es1 � Es2 ; de�nition EU [[]] gU 01((e1; e)) .(b) e1 = � and e 2 Ef . Then:(U2 � (E1 [f � g))(e1) _ (U � (E [f � g))(e), f e 2 Ef and e1 = � g

Urgent event structures 251false _ (U � E)(e), f U � E = U gU1(�) _ U(e), f de�nition EU [[]] gU 01((�; e)) .(c) e1 2 Ef2 and e = �. Similar to the previous case and omitted.4. Urgency. Suppose 	1 Eu 	2, and let 	01 = UU(1) and 	02 = UU(2). We prove that 	01 Eu 	02by checking the conditions of Eu.(a) Since �01 = �1 and �02 = �2, it follows directly from 	1 Eu 	2 that �01 Et �02.(b) For e 2 E01 we deriveU 02(e), f de�nition EU [[]] gU2(e) _ l2(e) 2 U, f 	1 Eu 	2; e 2 E01 , e 2 E1 gU1(e) _ l2(e) 2 U, f E1 E E2) l1 = l2 � E1; e 2 E1 gU1(e) _ l1(e) 2 U, f de�nition EU [[]] gU 01(e) .This proves that UU() is monotonic. Continuity on events follows from:E UU (Gi 	i)! = E Gi 	i! =[i E(i) =[i E(UU (i)) = E Gi UU(i)! : �In the following de�nition letHB be the urgent counterpart of FB. HB is a function determinedby op and �(). From the previous theorem it follows that HB is continuous on urgent eventstructures ordered under Eu. This means that the semantics of P := B for B 2 PAU can nowbe computed as the l.u.b. of ?u;HB(?u);HB(HB(?u)); : : :.10.58. Definition. For P := B a process de�nition let EU [[P]] , FiHiB(?u). �10.59. Example. As an example of a recursive process de�nition in PAU we considerP := Ua((2) a ; P jjj (11) b ; 0) .The �rst approximation is ?u. The second and third approximation HB(?u) resp. H2B(?u)are depicted in Figure 10.5(a) and (b), respectively. Notice that (ea; 2)(eb; 11) is a timed eventtrace of (a), but not of (b), since the introduced event labelled a is forced to occur at time 4,so before eb. By repeated substitution we obtain the urgent event structure of Figure 10.5(c).�

252 Chapter 10: Recursion
11

b

2 a

11

b

2 a

(a) (b)

11
b

2
a

11
b

2
a

11

b

2 a

11
b

2
a

11

b

2 a

(c)Figure 10.5: Example of semantics for a recursive process de�nition in PAU .10.4.3 Event-based operational semanticsIn this section we consider the extension of the operational semantics of PAU with recursion,and show its consistency with the causality-based semantics de�ned just before. For theinference rules we adopt the approach of Section 10.3.3. The additional inference rules forPAU are presented in Table 10.2. Notice the resemblance with the rules for PAT as listed inTable 10.1. hB; ti (�;a)���!hB0; tihP�; ti (��;a)����!h�(B0); ti (P := B) hB; ti hB0; t0ihP�; ti h�(B0); t0i (P := B)hB; ti (�;a)���!hB0; tih�(B); ti (��;a)����!h�(B0); ti hB; ti hB0; t0ih�(B); ti h�(B0); t0iTable 10.2: Additional transition rules for PAU .Recall that the passage of time for UU(B) is restricted by the dmin function. For P := Blet dmin(a; P) , dmin(a; B). In order to let this de�nition make sense we require P to beguarded. This means that all process instantiations in the body B of P must be preceded bya timed action-pre�x or a sequential composition. For instance, P := (2) a ; P + p >> Qis guarded, whereas P := (2) a ; P jjjQ is not. A recursive process de�nition P := B isconsidered to be weakly guarded if B becomes guarded by substituting for a �nite numberof times the bodies of processes for the process instantiations occurring in B. For instance,P := (2) a ; P jjjQ where Q := (3) b ; Q is weakly guarded, since it can be rewritten intothe guarded P := (2) a ; P jjj (3) b ; Q by a single substitution. From now on we require forP := B that B is weakly guarded.In order to prove the consistency between the denotational and event-based operational se-mantics for the urgent case the approach of Section 10.3.3 fails, since the set of timed eventtraces generated operationally cannot be characterized by substituting ? for all occurrencesof P in B, and then continuing by approximation. We therefore take a di�erent route here.

Urgent event structures 25310.60. Definition. (Substitution on terms)For B;B0 2 PAU and P a process instantiation, B0[P := B], is de�ned as0[P := B] , 0p[P := B] , p(opB1)[P := B] , opB1[P := B] for op 2 f a ; ; n; [];UU() g(B1 opB2)[P := B] , B1[P := B] opB2[P := B] for op 2 f+; >>; [>; jj gQ[P := B] , (�(B) if Q = P�Q if Q 6= P: �B0[P := B] denotes behaviour B0 where all occurrences of P� in B0 are replaced with �(B).As a next subsidiary notion we de�ne the unfoldings of P .10.61. Definition. (Unfoldings of P)For P := B the n-th unfolding of P , denoted P̂ n, is de�ned as:P̂ 0 , PP̂ n+1 , B[P := P̂ n]: �The n-th approximation of P is de�ned as the n-th unfolding where each occurrence of P isreplaced by 0.10.62. Definition. (Approximations of P)For P := B the n-th approximation of P , denoted P n, is de�ned as P n , P̂ n[P := 0].�The set of timed event traces of P is equal to that of its n-th unfolding.10.63. Lemma. 8n > 0 : TU [[P]] = TU [[P̂ n]].Proof. By induction on n. Let P := B.Base: for n=0 we have according to De�nition 10.61 TU [[P̂ 0]] = TU [[P]].Induction step: Assume the lemma holds for n=k and consider k+1.TU [[P̂ k+1]]= f De�nition 10.61 gTU [[B[P := P̂ k]]]= f induction hypothesis; substitution preserves trace equivalence gTU [[B[P := P]]]= f De�nition 10.60; P := B gTU [[P]] . �Timed event traces of the n-the unfolding of P are also timed event traces of the n-th approx-imation of P .

254 Chapter 10: Recursion10.64. Lemma. 8n > 0 : TU [[P n]] � TU [[P̂ n]].Proof. By induction on n.Base: For n=0 we derive� 2 TU [[P 0]], f De�nition 10.62 g� 2 TU [[P̂ 0[P := 0]]], f De�nition 10.61 g� 2 TU [[P [P := 0]]], f De�nition 10.60 g� 2 TU [[0]]) f TU [[0]] = f " g; " 2 TU [[B]] for all B g� 2 TU [[P̂ 0]] .Induction step: Assume the lemma holds for n=k and consider k+1.� 2 TU [[P k+1]], f De�nition 10.62; De�nition 10.61 g� 2 TU [[B[P := P̂ k][P := 0]]], f substitution property g� 2 TU [[B[P := P̂ k[P := 0]]]], f De�nition 10.62 g� 2 TU [[B[P := P k]]]) f induction hypothesis g� 2 TU [[B[P := P̂ k]]], f De�nition 10.62 g� 2 TU [[P̂ k+1]] . �If B (e;a;t)����!�B0 and B is guarded then this transition can be derived without applying one ofthe transition rules for recursive process behaviours (cf. Table 10.2) due to the guardednessof B. But then, the process instantiations occurring in B may be replaced by some arbitraryexpression X without prohibiting this transition.10.65. Lemma. Let B 2 PAU such that B is guarded. Then for arbitrary X 2 PAU andprocess identi�er P we have:B (e;a;t)����!�B0) B[P := X] (e;a;t)����!� B0[P := X] .Proof. Straightforward by induction on B. �The following lemma is based on the intuition that traces of length at most n can involve atmost n unfoldings of process instantiations. More precisely, it states that if � is a timed traceof B0 where all occurrences of P are replaced by its n-th unfolding P̂ n and j � j 6 n, then Pmay be replaced in the resulting term by an arbitrary term X while preserving that � is atimed trace.

Urgent event structures 25510.66. Lemma. Let B0 2 PAU possibly containing unguarded occurrences of P , for P := Band B guarded. Then for arbitrary term X 2 PAU :8n > 0 : � 2 TU [[B0[P := P̂ n]]] ^ j � j 6 n) � 2 TU [[B0[P := P̂ n[P := X]]]]:Proof. By induction on n.Base: for n=0 the lemma trivially holds since " is a trace of each behaviour.Induction step: Assume the lemma holds for n=k; consider k+1. First we deriveB0[P := P̂ k+1]= f De�nition 10.61 gB0[P := B[P := P̂ k]]= f substitution property gB0[P := B][P := P̂ k] .In a similar way we can derive thatB0[P := P̂ k+1[P := X]] = B0[P := B][P := P̂ k[P := X]] . (10.1)Now assume � 2 TU [[B0[P := B][P := P̂ k]]] with � = (e; a; t)�0 and j �0 j = k. Then:� 2 TU [[B0[P := P̂ k+1[P := X]]]], f (10.1) g� 2 TU [[B0[P := B][P := P̂ k[P := X]]]], f � = (e; a; t)�0; B is guarded gB0[P := B][P := P̂ k[P := X]] (e;a;t)����!� B00[P := P̂ k[P := X]]^ �0 2 TU [[B00[P := P̂ k[P := X]]]](f B0[P := B] is guarded (since B is); Lemma 10.65 gB0[P := B][P := P̂ k] (e;a;t)����!� B00[P := P̂ k] ^ �0 2 TU [[B00[P := P̂ k[P := X]]]](f induction hypothesis gB0[P := B][P := P̂ k] (e;a;t)����!� B00[P := P̂ k] ^ �0 2 TU [[B00[P := P̂ k]]], f � = (e; a; t)�0 g� 2 TU [[B0[P := B][P := P̂ k]]], f assumption gtrue . �The set of timed event traces of of P is equal to the union of the sets of i-persistent timedevent traces for all i.10.67. Theorem. For P := B we have TU [[P]] = Si Tj>i TU [[P j]].Proof. `�':� 2 TU [[P]] ^ j � j 6 n, f De�nition 10.60 g

256 Chapter 10: Recursion� 2 TU [[P [P := P]]] ^ j � j 6 n, f Lemma 10.63 g� 2 TU [[P [P := P̂ n]]] ^ j � j 6 n) f Lemma 10.66 g� 2 TU [[P [P := P̂ n[P := 0]]]], f De�nition 10.62 g� 2 TU [[P [P := P n]]], f De�nition 10.60 g� 2 TU [[P n]] .Since this holds for all n it immediately follows that � 2 TU [[P]]) � 2 Si Tj>i TU [[P j]].`�': � 2 Si Tj>i TU [[P j]], f calculus g8 j > i : � 2 TU [[P j]]) f Lemma 10.64 g8 j > i : � 2 TU [[P̂ j]], f Lemma 10.63 g� 2 TU [[P]] . �Then we have the following consistency result between the denotational semantics in terms ofurgent event structures and the event-based operational semantics.10.68. Theorem. For P := B we have TU(EU [[P]]) = TU [[P]].Proof.TU (EU [[P]])= f De�nition 10.58 gTU (FiHiB(?u))= f Theorem 10.54 gSi Tj>i TU (HjB(?u))= f gSi Tj>i TU (P j)= f Theorem 6.34 gSi Tj>i TU [[P j]]= f Theorem 10.67 gTU [[P]] . �

Real-time event structures 25710.5 Real-time event structuresIn this section we extend the results of Section 10.3 for real-time event structures. Thede�nitions in this section are all relative to real-time event structure �i = hEi;Di; Ti;Uii fori=1; 2.10.69. Definition. (Partial order on real-time event structures)�1 Er �2 i�1. E1 E E22. D1 = D2 � E13. 8 e 2 E1 : T1((X \ E1; e)) = T2((X; e))4. U1 = U2 � E1. �This ordering is identical to the ordering of urgent event structures (except for the fact that Dand T are dealing with sets of time instants rather than time instants). It follows in the sameway as in Section 10.4 that hEBESR;Eri is a pointed complete c.p.o.. Also characterizationsof l.u.b., timed event traces of Fi�i, and so on, are identical to the urgent case. It remains tocheck continuity on events of B and I.10.70. Theorem. (T) a� ;, +, B�, I, : : : and �() are continuous on hEBESR;Eri.Proof. For all operators, except for the new operators I and B, the proof is identical to that ofcontinuity in the urgent case. We prove the theorem for I. For B the theorem follows immediatelysince B1 tB� B2 is modelled as B1 + ([t; t]) �� ; B2 where � is urgent, the fact that Er equals Eu, andthat (t) a� ;;+, and UU () are continuous on hEBESU ;Eui.In this proof let �i = hEi;Di;Ti;Uii with Ei = (Ei; i; 7!i; li) for i=1; 2. Similarly �0i is de�ned.Suppose �1 Er �2 and let �01 = � tI�1 and �02 = � tI�2. We prove that �01 Er �02 by systematicallychecking the constraints of Er.1. E 01 E E 02 follows directly from the fact that the `plain' event structure of �0i, for i=1; 2, isidentical to that of � [>�i, and the fact that [> is continuous.2. D02 � E01= f de�nition ER[[]] gD02 � (E [E1)= f de�nition ER[[]] gf (e;D(e) \ [0; t]) j e 2 E g [(f (e; t+D2(e)) j e 2 E2 g � E1)= f �1 Er �2) E1 � E2 ^ D2 � E1 = D1 gf (e;D(e) \ [0; t]) j e 2 E g [f (e; t+D1(e)) j e 2 E1 g= f de�nition ER[[]] gD01 .

258 Chapter 10: Recursion3. T 02 ((X 02; e)) = (T [T2)((X 02; e)) = (T [T1)((X 02 \E1; e)) = T 01 ((X 02 \E1; e)).4. U 02 � E01 = (U [U2) � (E [E1) = U [(U2 � E1) = U [U1 = U 01.This proves that tI is monotonic in the right argument. The proof for monotonicity in the leftargument is obtained in a similar way. In addition we haveE (Gi �i)I�! = E (Gi �i) [>�! = E Gi (�i [>�)! = E Gi (�iI�)! .This proves that I is continuous on events. �The event-based operational semantics of PAR can be extended in the same way as for PAT ,that is, by incorporating the inference rules:B (�;a;t)����!! B0P� (��;a;t)�����!! �(B0) (P := B) B (�;a;t)����!! B0�(B) (��;a;t)�����!! �(B0)The function ut is extended for process instantiation P such that ut(P) , ut(B) for P := B.In order to let ut be well-de�ned we require P := B to be weakly guarded, i.e., B should becomeguarded by substituting for a �nite number of times the bodies for the process instantiationsoccurring in B.10.6 Stochastic event structuresThe de�nitions in this section are all relative to stochastic event structures �i = hEi;Fi;Giiwith Ei = (Ei; i; 7!i; li) for i=1; 2. For this case we only provide de�nitions of the partialorder (Es) and the l.u.b.. From these de�nitions it will be clear that the results from thedeterministic timed case can be carried over to the stochastic setting in an easy way.10.71. Definition. (Partial order on stochastic event structures)Let Xi � Ei for i=1; 2. Then �1 Es �2 i�1. E1 E E22. F2 � E1 = F13. 8 e 2 E1 : G2((X2; e)) = G1((X2 \ E1; e)). �10.72. Lemma. hEBESS;Esi is a pointed c.p.o..Proof. Routine and omitted �It is easy to verify that ?s = h?;?;?i, the empty stochastic event structure, is the leastelement under Es.

Probabilistic event structures 25910.73. Definition. (Least upper bound (under Es))Let �1 E �2 E : : : be a chain, then Fi�i , hFi Ei;SiFi;Gi withG = f (([k Xk; e); F) j 9 j : (8 k > j : Xk F7!k e ^ Xk+1 \ Ek = Xk) g: �10.74. Lemma. Fi�i is the least upper bound of chain �1 Es �2 Es : : :.Proof. Similar as the proof of Lemma 10.21. �Given the de�nitions of Es and Fi�i it is now straightforward to de�ne a continuous functionFB in a similar way as for the deterministic timed case. The semantics ES[[P]] is then de�nedas the l.u.b. of the sequence ?s;FB(?s); : : :. We will not bother the reader with the detailshere.10.7 Probabilistic event structuresIn this section we will consider recursion in the probabilistic setting (as introduced in Chapter9). Section 10.7.1 de�nes a c.p.o. Ep on probabilistic event structures and characterizes a l.u.b.of chains under this ordering. Ep is shown to satisfy the nice properties, such as preservationof trace sets. Section 10.7.2 proves all operators, including +p , to be continuous on Ep andprovides a denotational semantics of P := B for weakly guarded B. Section 10.7.3 presentsan event-based operational semantics for P := B.10.7.1 A pointed complete partial orderThe de�nitions and results in this section are all relative to probabilistic event structures�i = hEi; �ii with Ei = (Ei; i; 7!i; li) for i=1; 2.10.75. Definition. (Partial order on probabilistic event structures)Let �1 Ep �2 i� E1 E E2 and �1 = �2 � E1. ��1 is `smaller than' �2 i� their event structures are smaller (i.e., E1 E E2) and events in �1 areonly assigned a probability in �2 if this was done in �1 and this probability does not change.10.76. Lemma. hEBESP ;Epi is a pointed c.p.o..Proof. Routine and omitted. �It is easy to show that ?p = h?;?i, the empty probabilistic event structure, is the leastelement of hEBESP ;Epi.10.77. Example. Consider the probabilistic event structures of Figure 10.6, referred to as(a) �1, (b) �2, and (c) �3, and assume equally labelled events in di�erent structures to be

260 Chapter 10: Recursion

(a) (b)

(c)

b

d

c

a

τ

τ

p

1-p

pq

(1-p)q

r(1-q)

(1-r)(1-q)
b

a

a

pq

(1-p)q
r(1-q)

(1-r)(1-q)
b

s

(1-s)p(1-s)(1-p)Figure 10.6: Probabilistic event structures with (a) 6Ep (b) and (b) Ep (c).the same. We have E1 6E E2, since �1 6= �2 � E1. The reader should be able to verify that�2 Ep �3 without great di�culty. �For chain �1 Ep �2 Ep : : : let Fi�i be de�ned as follows. The probability function � is theunion of the probability functions of the elements in the chain.10.78. Definition. (Least upper bound (under Ep))Let �1 Ep �2 Ep : : : be a chain, then Fi�i , hFi Ei;Si �ii. �10.79. Lemma. Fi�i is the least upper bound of chain �1 Ep �2 Ep : : :.Proof. Routine and omitted. �The following theorem lists some properties of Ep.10.80. Theorem. We have:1. �1 Ep �2) TP (�1) � TP (�2).2. (�1 Ep �2 ^ E1 = E2)) �1 = �2.3. TP (Fi�i) = Si TP (�i).4. �1 Ep �2) cl(�1) � cl(�2).Proof. 1. and 3. follow directly from Theorem 10.6 and the fact that TP (�i) = T (Ei), for i=1; 2.4. follows directly from the de�nition of Ep. For 2. suppose �1 Ep �2 and E1 = E2. Then E1 E E2,and by Theorem 10.6, E1 = E2. Since �1 Ep �2 we have �1 = �2 � E1 = �2 � E2 = �2. So, �1 = �2.�10.7.2 A �xed point semanticsIn this section we consider the semantics of P := B where B 2 PAP . Again, we �rst have toprove that the operators a� ;;+; +p ; : : : are continuous w.r.t. Ep. This is similar to the timedand urgent case discussed before, due to:

Probabilistic event structures 26110.81. Lemma. For hEBESP ;Epi and F : EBESP �! EBESP we have: F is continuous i� Fis continuous on events.Proof. Similar to the proof of Lemma 10.11. �The renaming operator on event structures is extended to probabilistic ones as follows.10.82. Definition. For � = hE ; �i and � an occurrence identi�er let �(�) , h�(E); �0iwith �0(�e) = �(e) for �e 2 �(dom(�)). �10.83. Theorem. a� ;;+; +p ; : : : and �() are continuous on hEBESP ;Epi.Proof. We prove that the operators are continuous on events, which|by Lemma 10.81|provesthe case. For the renaming operators �() these proofs are trivial and omitted. We prove the theoremfor a� ;;+; +p and jjG . The proofs for the other cases are similar and omitted here. For thetreated constructs it su�ces to only consider the constraints from De�nition 10.75 concerning theprobabilistic parts. Apart from +p it su�ces to only prove monotonicity since EP [[]] is a conservativeextension of E [[]]. In this proof let �i = hEi; �ii with Ei = (Ei; i; 7!i; li) for i=1; 2. Similarly �0i isde�ned.1. Action-pre�x. Suppose �1 Ep �2, let �01 = a� ; �1 and �02 = a� ; �2. We infer: �02 � E1 = �2 �E1 = �1 = �01. This proves that a� ; is monotonic.2. Choice. Suppose �1 Ep �2, let �01 = �1+� and �02 = �2+�. We infer:�02 � E01= f de�nition EP [[]] g(�2 [�) � (E1 [E)= f calculus g�2 � (E1 [E) [� � (E1 [E)= f E \Ei = ? for i=1; 2 g�2 � E1 [�= f �1 Ep �2 g�1 [�= f de�nition EP [[]] g�01 .3. Probabilistic choice. Suppose �1 Ep �2, let �01 = �1+p� and �02 = �2+p�. Since thecausality-based semantics of +p is equal to that of + (cf. Chapter 9), except for the treatmentof �, we only have to consider the probabilistic part. So we check:8 e 2 dom(�01) : �02(e) = �01(e), f de�nition EP [[]] g8 e 2 dom(�1) [init(�1) [dom(�) [init(�) : �02(e) = �01(e), f 8 e 2 dom(�) [init(�) : �02(e) = �01(e) (cf. de�nition EP [[]]) g8 e 2 dom(�1) [init(�1) : �02(e) = �01(e)

262 Chapter 10: Recursion, f A [B = A nB [B nA [(A \B) g8 e 2 dom(�1) n init(�1) [init(�1) n dom(�1) [(dom(�1) \ init(�1)) : �02(e) = �01(e), f de�nition of EP [[]] g(8 e 2 dom(�1) n init(�1) : �02(e) = �1(e))^ (8 e 2 init(�1) n dom(�1) : �02(e) = p)^ (8 e 2 dom(�1) \ init(�1) : �02(e) = p � �1(e))(f Lemma 10.7; dom(�2) \E1 = dom(�1); de�nition of EP [[]] g(8 e 2 dom(�1) n init(�1) : �2(e) = �1(e))^ (8 e 2 init(�1) n dom(�1) : p = p)^ (8 e 2 dom(�1) \ init(�1) : p � �2(e) = p � �1(e)), f A [B = A nB [B nA [(A \B) g8 e 2 dom(�1) : �2(e) = �1(e)(f �1 Ep �2 gtrue .The proof of monotonicity in the second argument (that is, �1 Ep �2) �+p�1 Ep �+p�2)is obtained by reversing the arguments in the above proof. In addition we haveE(Gi �i+p�) = E(Gi �i+�) = E(Gi (�i+�)) = E(Gi (�i+p�)):This proves that +p is continuous on events.4. Parallel composition. Suppose �1 Ep �2, let �01 = �1 jjG� and �02 = �2 jjG�. The proof that�01 Ep �02 is as follows:8 e 2 dom(�01) : �02(e) = �01(e), f de�nition of EP [[]] g8 e 2 (dom(�1)� f� g) [(f � g � dom(�)) : �02(e) = �01(e), f g(8 e 2 dom(�1) : �02((e; �)) = �01((e; �)))^ (8 e 2 dom(�) : �02((�; e)) = �01((�; e))), f de�nition of EP [[]] g(8 e 2 dom(�1) : �2(e) = �1(e)) ^ (8 e 2 dom(�) : �(e) = �(e)), f �1 Ep �2 gtrue .This proves that jjG is monotonic in the �rst argument; like for +p the proof for monotonicityin the second argument can be obtained by reversing the arguments in the above proof. �Recall that the syntax of PAP is de�ned using the predicated pc, ppc, and ppa. For P := Bwe extend the de�nitions of these predicates as follows: pc(P) , pc(B), ppc(P) , ppc(B)and ppa(P) , ppa(B). In order to have these predicates well-de�ned we require P := B tobe weakly guarded, that is, B should become guarded by substituting for a �nite number of

Conclusions 263times the bodies of processes for the process instantiations occurring in B. The event structuresemantics of P := B is now de�ned as the l.u.b. of the sequence ?p;PB(?p);PB(PB(?p)); : : :,where PB is the probabilistic variant of FB.10.84. Definition. For P := B a process de�nition let EP [[P]] , Fi P iB(?p). �10.85. Theorem. 8P 2 PAP : L(EP [[P]]) = L(E [[�P (P)]]).Proof. Straightforward and omitted. �10.7.3 Event-based operational semanticsThis section extends the event-based operational semantics of PAP of Chapter 9 with recursion.We take the same approach as in Section 10.3.3. So, each process instantiation of P is uniquelyidenti�ed, as well as all occurrences of action-pre�x and p. The additional inference rules arepresented in Table 10.3.B (�;a)���!B0P� (��;a)����!�(B0) (P := B) B (�;a)���!B0�(B) (��;a)����!�(B0)B (�;�;p))B0P� (��;�;p))�(B0) (P := B) B (�;�;p))B0�(B) (��;�;p))�(B0)Table 10.3: Additional transition rules for PAP .In the same way as in Section 10.3.3 it can be proven that for P := B the set of eventtraces generated by the operational semantics coincides with the set of event traces from thedenotational semantics. We will not further elaborate on this here.10.8 ConclusionsIn this chapter we have proposed a denotational semantics for recursively de�ned processes.This was done by applying standard �xed point theory. For each type of event structurede�ned in Chapters 4 through 9 of this thesis a pointed c.p.o. (or: domain) was de�ned anda characterization of the least upper bound of a chain under this order was provided. Exceptfor the urgent and real-time event structures the ordering was shown to correspond to anintuitive semantical notion, viz. trace set inclusion. Besides, for each case it was shown thatcontinuity w.r.t. the ordering boils down to continuity on events; a notion which is|as shownby Winskel [155]|technically more convenient to handle.

264 Chapter 10: RecursionAll operators in the process algebras PA, : : :, PAP were shown to be continuous w.r.t. theappropriate ordering. This enabled us to de�ne the denotational semantics of P := B as theleast �xed point of a function on event structures. For all cases (except the urgent and real-time case) it was shown that this semantics is a conservative extension of the denotationalsemantics of recursive process de�nitions in PA|when eliminating the time, stochastic, orprobabilistic information from the lposets of the event structure at hand we obtain the lposetsof the event structure that are obtained by eliminating the quantitative information from theevent structure at hand.For the extended process algebras PAT , PAR, PAU and PAP we provided an event-based oper-ational semantics for the derivation of timed (or probabilistic) event transitions of recursivelyde�ned processes. For all these cases we have shown that this operational semantics is consis-tent with the denotational �xed point semantics in the sense that identical sets of timed eventtraces are generated.We de�ned the meaning of a recursive process de�nition by de�ning a pointed c.p.o. and bytaking the limits of the meaning of its approximants. For event structure models this approachis quite common, see Winskel [155], Langerak [89] and Degano et al. [42]. An alternativeapproach is taken by, for instance, Loogen & Goltz [95] and Baier & Majster-Cederbaum [10]by de�ning a complete metric space on event structures. The relationship between the useof pointed c.p.o.'s and complete metric spaces in the context of event structures has beenaddressed by Baier & Majster-Cederbaum [11]. For all cases we used the structure of theevent structure as a means to de�ne a pointed c.p.o.; for the interval event structures ofMurphy [108], a timed variant of event structures, the structure of time is used instead tode�ne a pointed c.p.o..

11 Conclusion
This chapter contains a retrospective view on the work presented in this dis-sertation, summarizes the main technical results and provides some overallconclusions. In addition, some thoughts on future work are presented.11.1 IntroductionThis dissertation concerns extensions of (a variant of) event structures, a partial-order modelfor concurrent systems. The original incentives of our work were to study the expressiveness ofevent structures to e�ectively support the speci�cation of distributed systems and to facilitatethe formal representation of performance and reliability aspects in these models. A secondaryaim was to (formally) relate the quantitative extensions of event structures to interleavingmodels for concurrency such that partial-order and interleaving models can be used coherentlyin the system design process and can be compared in a perspicuous way.To achieve this we have widened in several ways the notion of extended bundle event structures,a model developed by Langerak [89] for providing a noninterleaving semantics to the stan-dardized process algebra LOTOS. Basically these event structures consist of labelled eventsmodelling occurrences of actions, a bundle relation indicating the causal dependencies amongevents, and an (asymmetric) conict relation modelling the branching structure of events. Thebundle relation relates a set of events, the bundle set, to an event. Bundles have to satisfy thestability constraint that requires events in a bundle set to be mutually in conict such thatonly one event in a bundle set can happen.11.2 OriginalityThis dissertation introduced dual event structures, a model obtained from extended bundleevent structures by dropping the stability constraint, and several quantitative extensions ofextended bundle event structures that treat real-time (both of a deterministic and stochasticnature), urgency, and probability.Dual event structures support the speci�cation of disjunctive causality, a type of causality thathas received only scant attention in the literature. Rensink's [126, 127] families of labelledpartial orders (lposets) were used as an underlying semantical model for dual event structures.Other models that support disjunctive causality among events are the event automata of Pinna& Poign�e [118], fAND;ORg automata of Gunawardena [60], and local event structures ofHoogers et al. [75, 76]. These models are all based on a kind of event automaton, where states265

266 Chapter 11: Conclusionkeep information about the events that have happened so far, and transitions correspond tooccurrences of events. Neither of these models, however, keeps track of the causal dependenciesbetween events. Recently, Pinna & Poign�e equipped their event automata with a means tomimic causal dependencies [117], but they do not address the problem of how to deduce causaldependencies in case of disjunctive causality as we did in this dissertation.Although quantitative extensions of interleaving models have been (and still are) in vogue,noninterleaving models have been scarcely enriched with notions like time and probability.This dissertation addressed a series of such extensions of extended bundle event structures.A few partial-order models are known to us that are equipped with real-time; extensionswith urgent and non-urgent events, probabilities, or time constraints de�ned by distributionfunctions, as treated in this dissertation, are unknown to us. Our real-time model, referred toas real-time event structures, associates a set of time instants to events, modelling absolute timeconstraints, and to bundles, modelling relative time constraints between causally dependentevents. This model resembles the real-time extension of causal trees by Fidge [47], althoughhe only associates time to events, does not incorporate a timeout and watchdog operator, andbases his approach on a linear-time model. Other work in this direction has been reported byCasley et al. [32], Maggiolo-Schettini & Winkowski [99], Murphy [106, 108], Gunawardena [61,62], and Janssen et al. [78]. A more detailed description of these approaches and their relationwith real-time event structures is given in Chapter 7.11.3 Main technical achievementsThis dissertation proposed a series of novel types of event structures: dual, timed, real-time,urgent, stochastic, and probabilistic event structures. Except for dual event structures that aremore expressive than currently available process algebras, we considered the appropriatenessof all these models to provide a noninterleaving semantics for quantitative extensions of aprocess algebra PA akin to LOTOS. For each variant of PA we could obtain a denotationalsemantics using the appropriate type of event structures, while retaining the noninterleavingsemantics of PA to a maximal extent. A corresponding event-based operational semantics formost process algebras was given. This operational semantics keeps track of the occurrence ofactions, rather than the actions themselves (as usual).Below we list for each type of event structure (and related process algebra) the main technicalachievements.Dual event structures� Characterization of lposets both in an intensional way, i.e., using the structure of thedual event structure at hand, and in an operational way, i.e., starting from event traces(but without equipping them with causality information). As an interesting result thesecharacterizations do not coincide like for extended bundle event structures.� Event traces are not su�ciently expressive as an underlying semantical model for dualevent structures.

Main technical achievements 267� Dual event structures are (on the level of lposets) strictly more expressive than Winskel'sstable event structures [153, 154], and as a result, do not respect a �xed cause-and-e�ectrelation between events.Urgent event structures� Due to the global impact of urgency (roughly speaking, timeouts), event traces arerequired to be time-consistent.� The denotational semantics of PAU , the urgent timed variant of PA, is not a conservativeextension of the semantics of PA, since urgent events may prevent (conicting) eventsto occur.� The corresponding event-based operational semantics of PAU , based on a separationbetween action- and time-transitions, closely resembles a proposal of Bolognesi et al. [19].Real-time event structures� Appropriate to provide a novel noninterleaving semantics to a real-time process algebrathat includes timeout and watchdog operators.� Absence of any mechanism to explicitly force the passage of time; time is included as aparameter in extended bundle event structures.� Restrict the global impact of urgency such that event traces of a real-time event structuredo respect causality, but not necessarily time. For each ill-timed trace, however, there isa corresponding time-consistent trace with the same timed events.� The event-based operational semantics of PAR, PA with time, timeout and watchdogoperator, is a minimal and (in our opinion) elegant extension of the standard (inter-leaving) operational semantics of PA, and is strong bisimulation equivalent with the(noninterleaving) denotational semantics of PAR.Stochastic event structures� When time constraints are determined by exponential distributions it su�ces to associaterates|a rate uniquely de�nes an exponential distribution|only to events; the resultingmodel is well-suited to provide a noninterleaving semantics to a stochastic process alge-bra. The corresponding operational semantics coincides with several proposals from theliterature, if rates are combined in the appropriate way at synchronization.� Non-memoryless distributions can be supported if the class of distribution functions athand is closed under product and has a unit element for this operation. Phase-typedistributions �t well these requirements and are useful from a practical perspective.

268 Chapter 11: ConclusionProbabilistic event structures� Probabilistic behaviour can be represented by decorating events with probabilities.� The denotational semantics of PAP , PA + an internal probabilistic choice operator, is aconservative extension of the denotational semantics of PA.� The event-based operational semantics of PAP is testing-equivalent with the denotationalsemantics using probabilistic event structures.11.4 Epilogue and further workWe conclude this section by comparing the achievements of this dissertation with quantitativeextensions of labelled transition systems, one of the most prominent interleaving models, inthe literature. We believe that this dissertation has proven that most quantitative extensionsof event structures are intuitively appealing and conceptually simpler than their interleavedcounterparts. In the real-time model we bene�t from the absence of actions that explicitly forcetime to pass; in the probabilistic model we do not have to distinguish between probabilisticand nonprobabilistic transitions (or the like) and simply attach probabilities to events; and,in the stochastic model we can exploit the notion of causal independence such that non-memoryless distribution functions can be incorporated, a problem that has not (yet) beensolved satisfactory in labelled transition systems. We admit, however, that in the urgentmodel the advantages of event structures diminish due to the global impact of urgent events.The fact that we are `forced' in this framework to work in a time-consistent manner, inparticular that all urgent events (including causally independent ones) must be executed inthat way, thwarts one of the main bene�ts of event structures, i.e., the locality aspect (or, theabsence of a global state).Another interesting result of this dissertation is that most of the event-based operationalsemantics for the various quantitative extensions of PA are relatively simple (and conservative)extensions of the standard interleaving semantics of PA. The inference rules for the real-timeextension are signi�cantly less complex than most existing interleaving proposals, while in theprobabilistic case the rules simplify those of Hansson & Jonsson [65]. For the urgent case wedo not `gain' something compared to the interleaving case; the rules for this case are almostidentical to those of Bolognesi et al. [19].To our opinion these results justify a further exploration of the models introduced in thisdissertation in order to make them suitable to e�ectively support the design and performanceanalysis of concurrent systems. Some topics that need to be addressed to reach these goals arethe notions of equivalences (congruences) and preorders (precongruences) on event structuresthat reect natural notions of transformation and implementation, the incorporation of data(like value passing), and the development of tool support (for instance, based on earlier workof Botma & Langerak [22]). In addition, the mapping of event structures to performancemodels in a systematic way needs to be addressed. There it would be interesting to considerperformance models that are not based on global states (like Markov chains), but that aremore `truly concurrent'.

Appendix A Stochastic processes
In this appendix we briey recall some results and de�nitions from basic probability theory asfar as they are needed to understand the stochastic material in this thesis (mainly Chapters 8and 9). For a more through treatment we refer to Kobayashi [87] and Kant [80]. We assumethe reader to be familiar with the notion of stochastic variables.A.1 Basic notionsA.1. Definition. A stochastic variable U is characterised by a distribution function FU suchthat FU(x) , PrfU 6 x g. �A stochastic variable is continuous if its distribution function is everywhere continuous. Inthis appendix we mainly deal with continuous distribution functions. Distribution functionssatisfy the following properties:1. x < y) FU(x) 6 FU(y)2. limx�!�1 FU(x) = 0 and limx�!1 FU(x) = 13. FU(x) > 0 for �1 < x <1 .The �rst and last property are self-explanatory. The �rst part of the second property statesthat the event U 6 x for x �! �1 converges towards the impossible event and that theprobability of this event is 0. The second part of this property states that for x �! 1 theevent U 6 x converges towards the certain event which occurs with probability 1. As FU (x)corresponds to a probability we have that 0 6 FU(x) 6 1 for all x.A.2. Definition. Whenever it exists, the derivative of distribution function FU is called theprobability density function of U , and is denoted F 0U . ThereforeFU(x) , Z x�1 F 0U(y) dy . �A.3. Definition. The i-th moment (i=1; 2; : : :), denoted �i, of stochastic variable U is de-�ned as the expectation of U i. That is,�i , E[U i] = Z 1�1 yiF 0U(y)dy . 269

270 Appendix A: Stochastic processesThe expectation of U equals the �rst moment �1 and the variance of U equals �2 � �21.�In order to be able to consider combinations of stochastic variables the joint distribution isused.A.4. Definition. Let U1; : : : ; Un (n > 1) be stochastic variables where Ui has distributionFUi, and U = (U1; : : : ; Un). FU is called a joint distribution function and is de�ned forx = (x1; : : : ; xn) asFU(x) , Z x1�1 : : : Z xn�1 F 0U(y1; : : : ; yn) dyn : : : dy1:U1; : : : ; Un are called statistically independent i�FU(x) = nYi=1FUi(xi) = Z x1�1 F 0U1(y1) dy1 � : : : � Z xn�1 F 0Un(yn) dyn: �Note that FU(x) = PrfU1 6 x1; : : : ; Un 6 xn g.Stochastic variables can be de�ned as functions from other stochastic variables. For instance,if U and V are stochastic variables, then U+c, where c is some constant, U+V and max(U; V)are stochastic variables.A.5. Lemma. For stochastic variables U; V with U = V + c for some constant c we haveFU(x) = FV (x�c) and F 0U(x) = F 0V (x�c).Proof. FU (x) = PrfU 6 x g = PrfV + c 6 x g = PrfV 6 x�c g = FV (x�c). �Basically, a stochastic process is a collection of stochastic variables fU(t) j t 2 Time g whereusually U(t) denotes the value, or state, of U at time t. (We assume the state space to bediscrete.) If Time is a denumerable set then the stochastic process is called discrete-time, if itis continuous the stochastic process is called continuous-time. If the next state of a stochasticprocess only depends on the current state, and not on earlier states, it is called a Markovprocess.A.6. Definition. (Markov process)A stochastic process fU(t) j t 2 Time g is a Markov process i� for any i (i > 0) thedistribution of U(ti+1) only depends on U(ti). That is,PrfU(ti+1) 6 x j U(t1) = x1; : : : ; U(tn) = xn g = PrfU(ti+1) 6 x j U(tn) = xn g: �A similar de�nition can be given for the discrete-time case. In Chapter 8 we consider Markovprocesses that are invariant under time shifts.

Discrete-time Markov chains 271A.7. Definition. Markov process fU(t) j t 2 Time g is called time-homogeneous i� for anyt; t0 such that t0 < t and x; x0 we havePrfU(t) 6 x j U(t0) = x0 g = PrfU(t��) 6 x j U(t0 ��) = x0 g: �For Markov processes the next state only depends on the current state, and not the amountof time already spent in that state. This means that the distribution function that determinesthe residence time in a state should satisfy the memoryless property (see also Chapter 8).As a result, state residence times are exponentially distributed in the continuous-time case,and geometrically distributed in the discrete-time case. An extension of Markov processes,referred to as semi-Markov processes, allows arbitrary state residence times. These processeswill be further dealt with in Chapter 9.In this thesis we only consider Markov processes with a discrete state space. Such processes arecalled Markov chains. In the sequel we consider how continuous-time and discrete-time Markovchains (CTMCs and DTMCs) are described and con�ne ourselves to time-homogeneous chains.We �rst consider the discrete case.A.2 Discrete-time Markov chainsWe start by a classi�cation of DTMCs which is of importance when calculating performanceresults. The terminology used here is adopted from Kemeny & Snell [85]. An ergodic chain(or irreducible chain) is a chain in which it is possible to go from every state to every otherstate1.A DTMC is often represented by a transition probability matrix P, where P(i; j) can beinterpreted as the probability of going from state i to j in a single transition. In general, forn > 0, Pn(i; j) denotes the probability of going from state i to j in n transitions.A.8. Definition. (Transition probability matrix)P is a transition probability matrix (or stochastic matrix) i� for all i, Pj P(i; j) = 1(that is, each row sums up to 1) and 0 6 P(i; j) 6 1, for all i; j. �An important notion is periodicity.A.9. Definition. The period d(i) of state i is: d(i) , gcdfn j n > 0 ^ Pn(i; i) > 0 g,where gcd(?) , 0. If d(i) > 1, i is called periodic, if d(i) = 1, i is called aperiodic. �gcd denotes the greatest common divisor of a set of positive naturals. When state i in anergodic chain is periodic with period d(i), then all states in this chain are periodic with periodd(i), so we can simply speak about the period d of an ergodic chain.1We restrict ourselves to �nite Markov chains. By de�nition, �nite ergodic chains are so-called positiverecurrent [80]. Positive recurrence means that the expected number of transitions to return to a state issmaller than 1, and is a necessary precondition for a general Markov chain|possibly in�nite|to be ergodic.Since we only consider �nite chains, the notion of positive recurrence does not have to be dealt with.

272 Appendix A: Stochastic processesA.10. Definition. A periodic chain is an ergodic chain with a periodic state. A regularchain is an ergodic chain without a periodic state. �(It should be noticed that sometimes regular chains are called ergodic, while ergodic chainsare called irreducible.)An important part of the analysis of Markov chains is the calculation of stationary distributionsand so-called steady state (or limiting) distributions. Intuitively, once a system starts in astationary distribution it remains there forever. The limiting distribution is the distributionthe system will have when time t �!1, given some initial distribution.Let �(n) be the distribution of a chain at the n-th step (n>0). The elements of �(n) de�nethe probability, �j(n), of being in state j at the n-th step. A chain is completely characterizedby its transition probability matrix P and its initial distribution �(0).A.11. Definition. (Stationary distribution)� is a stationary distribution of a chain i�: �(0) = �) (8n : �(n) = �). �For stationary distribution � it holds that if the system is started with � as the initial distri-bution, it will retain this distribution forever. Thus the system does not move and is calledstationary.A.12. Definition. (Limiting distribution)� is the limiting distribution of a chain if, for all initial distributions �(0), we have� = limn�!1 �(n), provided this limit exists. �It is a well-known fact that for regular chains a limiting and stationary distribution alwaysexist and that these distributions are identical.�(n) can be calculated from �(n�1) as follows:�(n) = �(n�1) �P; for n > 1:This recursive equation can be rewritten into�(n) = �(0) �Pn: (A.1)Thus, the limiting distribution of a chain is equal to limn�!1 �(0) � Pn, provided this limitexists. This limit exists for regular chains, but not for periodic ones. So, a regular chain has aunique limiting distribution, but a periodic one does not. Intuitively this is clear as, althougha periodic chain `on the long run' reaches some `stationary behaviour', it remains cycling ina �xed way. The limiting distribution of a DTMC can|if it exists|be computed by solvingthe following system of linear equations� �P = �; Xj �j = 1 .

Continuous-time Markov chains 273
1 2

1

1

p

1-p

3 P
0 1 0
p 0 1 p−
0 1 0

=Figure A.1: Periodic discrete-time Markov chain.A.13. Example. Consider the periodic chain (d=2) of Figure A.1, and assume the chainis initially in state 1, that is, �(0) = [1; 0; 0]. Using equation (A.1) we get:�(n) = ([0; 1; 0] if n is odd[p; 0; 1�p] if n is even:Therefore, limn�!1 �(n) does not exist for �(0) and|by de�nition|the chain has no limitingdistribution. However, for �0(0) = [12 p; 12 ; 12 (1�p)] we get �(n) = �0(0), for all n. Thisis a stationary distribution of the chain. So, although the periodic chain has a stationarydistribution, it has no limiting distribution. �A.3 Continuous-time Markov chainsA CTMC is determined by its (in�nitesimal) generator matrix (or rate matrix) and its initialdistribution.A.14. Definition. (Generator matrix)Q is a generator matrix i�, for all i, Q(i; j) > 0 (i 6= j), PjQ(i; j) = 0 (that is, eachrow sums up to 0), and Q(i; i) = �Pj 6=iQ(i; j). �For obtaining the limiting distribution � of a CTMC (which, in the continuous case, alwaysexists) the following system of linear equations has to be solved� �Q = 0; Xj �j = 1 .

274 Appendix A: Stochastic processes

Appendix B Domain theory
In this appendix we briey recall some results and de�nitions from basic domain theory asfar as they are needed to understand Chapter 10. For a more thorough treatment we refer toSchmidt [132] and Gunther & Scott [63]. A more informal treatment is given in Tennent [139]and Manna et al. [100].B.1. Definition. (Partial order)A binary relation E on set D is a partial order i�, for all d; d0; d00 2 D:1. d E d (reexivity)2. (d E d0 ^ d0 E d)) d = d0 (anti-symmetry)3. (d E d0 ^ d0 E d00)) d E d00 (transitivity). �The pair hD;Ei is a partially ordered set, or shortly, poset. If d 6E d0 and d0 6E d then d andd0 are incomparable.B.2. Definition. Let hD;Ei a poset and D0 � D.1. d 2 D is an upper bound of D0 if 8 d0 2 D0 : d0 E d.2. d 2 D is a least upper bound (l.u.b.) of D0, denoted FD0, if d is an upper boundof D0 and (8 d00 2 D : d00 is an upper bound of D0) d E d00). �B.3. Lemma. Let hD;Ei a poset and D0 � D. If D0 has a l.u.b., this l.u.b. is unique.Proof. Routine and omitted. �B.4. Definition. Let hD;Ei a poset and D0 � D. D0 is a chain if D0 6= ? and (8 d; d0 2D0 : d E d0 _ d0 E d). (D0 is totally ordered.) �The l.u.b. of chain d1 E d2 E : : : is denoted FiD where D = f d1; d2; : : : g, or simply by Fi di.B.5. Definition. Let hD;Ei a poset.1. hD;Ei is complete (c.p.o.) if each chain in D has a l.u.b..275

276 Appendix B: Domain theory2. hD;Ei is pointed complete if it is complete and there exists a least element in D,denoted ?, such that 8 d 2 D : ? E d. �(Note: di�erent terminology in the literature exists. Sometimes a pointed c.p.o. is called aScott domain, or simply domain, and sometimes the existence of a least element is incorporatedin the de�nition of c.p.o.. Here, we follow Schmidt [132].)B.6. Definition. Let hD;Ei and hD0;E0i posets and F : D! D0.1. F is monotonic i� 8 d1; d2 2 D : d1 E d2) F (d1) E0 F (d2).2. If D and D0 are complete, then F is continuous i� for each chain E in D we haveF (FD E) = FD0 F (E). �That is, F is continuous if and only if it preserves l.u.b.'s.B.7. Corollary. Let hD;Ei and hD0;E0i be c.p.o.'s and F : D ! D0. Then:F is continuous) F is monotonic :Proof. Consider w.l.o.g. D = f d; d0 g. Then we derive:d E d0= f De�nition B.2 gFDf d; d0 g = d0) f Leibniz's rule gF (FDf d; d0 g) = F (d0)= f F is continuous gFD0fF (d); F (d0) g = F (d0)= f De�nition B.2 gF (d) E0 F (d0) . �For function F , let F 0 be the identity function, and F n+1 = F �F n, for n > 0, where � denotesusual function composition.B.8. Theorem. Kleene's �rst recursion theoremLet hD;Ei a pointed c.p.o. and F : D ! D continuous. Then:1. f d 2 D j F (d) = d g has a least element, denoted �xF .2. �xF is unique and �xF = Fi F i(?), for i > 0.

Appendix B: Domain theory 277Proof. See, for instance, [132, Theorem 6.11]. ��xF is called the least �xed point of F .B.9. Theorem. Let hD;Ei, hD0;E0i and hD00;E00i c.p.o.'s, F : D ! D0 and G : D0 ! D00be continuous functions. Then G � F is continuous.Proof. Routine and omitted. �B.10. Definition. Let hD1;E1i; : : : ; hDn;Eni pointed c.p.o.'s. Then de�ne hD;Ei withD = D1 � : : :�Dn and (d1; : : : ; dn) E (d01; : : : ; d0n) i� di Ei d0i, for all 0 < i 6 n. �B.11. Lemma. hD;Ei, the product of pointed c.p.o.'s hD1;E1i; : : : ; hDn;Eni, is a pointedc.p.o..Proof. See, for instance, [132, Proposition 6.17]. �B.12. Lemma. A function F : D1 � : : :�Dn ! E is continuous i� it is continuous on everyDi, for 0 < i 6 n.Proof. See, for instance, [132, Proposition 6.18]. �

278 Appendix B: Domain theory

Bibliography[1] L. Aceto and D. Murphy. On the ill-timed but well-caused. In Best [15], pages97{111.[2] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Informatica,1996. (to appear).[3] M. Ajmone Marsan and A. Bianco and L. Ciminiera and R. Sisto and A.Valenzano. A LOTOS extension for the performance analysis of distributed systems.IEEE/ACM Transactions on Networking, 2(2):151{164, 1994.[4] M. Ajmone Marsan and G. Conte and G. Balbo. A class of generalized stochasticPetri nets for the performance evaluation of multiprocessor systems. ACM Transactionson Programming Languages and Systems, 2(2):93{122, 1984.[5] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,126:183{235, 1994.[6] J.C.M. Baeten. The total order assumption. In S. Purushothaman and A. Zwarico,editors, Proceedings First North American Process Algebra Workshop, Workshops inComputing, pages 231{240. Springer-Verlag, 1993. (also in Proceedings of the Workshop"What good are partial orders?", E. Best (editor), Hildesheimer Informatik-Berichte13/92, pages 1-11, 1992).[7] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects ofComputing, 3(2):142{188, 1991.[8] J.C.M. Baeten and J.A. Bergstra and S.A. Smolka. Axiomatizing probabilisticprocesses: ACP with generative probabilities. Information and Computation, 121:234{255, 1995. (preliminary version appeared in W.R. Cleaveland, editor, Concur '92, LNCS630, pages 472{485. Springer-Verlag, 1992).[9] J.C.M. Baeten and J.W. Klop, editors. Concur '90: Theories of Concurrency {Uni�cation and Extension, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.[10] C. Baier and M.E. Majster-Cederbaum. The connection between an event struc-ture semantics and an operational semantics for TCSP. Acta Informatica, 31:81{104,1994.[11] C. Baier and M.E. Majster-Cederbaum. Denotational semantics in the cpo andmetric approach. Theoretical Computer Science, 135:171{220, 1994.[12] Y. Ben-Asher and E. Farchi. Using true concurrency to model execution of parallelprograms. International Journal of Parallel Programming, 22(4):375{407, 1994.279

280 Bibliography[13] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-tion. Theoretical Computer Science, 37(1):77{121, 1985.[14] M. Bernardo and L. Donatiello and R. Gorrieri. Modeling and analyzingconcurrent systems with MPA. In Herzog and Rettelbach [69], pages 175{189.[15] E. Best, editor. Concur '93: Concurrency Theory, volume 715 of Lecture Notes inComputer Science. Springer-Verlag, 1993.[16] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation languageLOTOS. Computer Networks and ISDN Systems, 14:25{59, 1987.[17] T. Bolognesi and G. Ciaccio. Cumulating constraints on the `when' and the `what'.In Tenney et al. [140], pages 433{448.[18] T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions anda unique powerful binary operator. In de Bakker et al. [40], pages 124{148.[19] T. Bolognesi and F. Lucidi and S. Trigila. Converging towards a timed LOTOSstandard. Computer Standards & Interfaces, 16:87{118, 1994.[20] T. Bolognesi and S. Schneider. Unpublished manuscript, 1994.[21] T. Bolognesi, J. van de Lagemaat, and C.A. Vissers, editors. LOTOSphere:Software Development with LOTOS. Kluwer Academic Publishers, 1995.[22] B. Botma and R. Langerak. Simulator for LOTOS to study the independence andcausality of events. In D. Hogrefe and S. Leue, editors, Formal Description TechniquesVII, Participants proceedings, pages 201{203, 1994.[23] G. Boudol and I. Castellani. A non-interleaving semantics for CCS based onproved transitions. Fundamenta Informaticae, 11(4):433{452, 1988.[24] G. Boudol and I. Castellani. Permutations of transitions: An event structuresemantics for CCS and SCCS. In de Bakker et al. [39], pages 411{427.[25] G. Boudol and I. Castellani. Flow models of distributed computations: Eventstructures and nets. Rapports de Recherche 1482, INRIA, 1991.[26] G. Boudol and I. Castellani. Flow models of distributed computations: threeequivalent semantics for CCS. Information and Computation, 114:247{314, 1994. (pre-liminary version appeared in I. Guessarian, editor, Semantics of Systems of ConcurrentProcesses, LNCS 469, pages 96{141. Springer-Verlag, 1990).[27] E. Brinksma. Performance and formal design{a process algebraic perspective. (oralpresentation at 6th Int. Workshop on Petri Nets and Performance Models), 1995.[28] E Brinksma and J.-P. Katoen and R. Langerak and D. Latella. Performanceanalysis and true concurrency semantics. In T. Rus and C. Rattray, editors, Theoriesand Experiences for Real-Time System Development, volume 2 of AMAST Series inComputing, chapter 12, pages 309{337. World Scienti�c, 1994.

Bibliography 281[29] E. Brinksma and J.-P. Katoen and R. Langerak and D. Latella. A stochasticcausality-based process algebra. The Computer Journal, 38(7):552{565, 1995.[30] P. Buchholz. Markovian process algebra: Composition and equivalence. In Herzogand Rettelbach [69], pages 11{30.[31] R.T. Casley. On the Speci�cation of Concurrent Systems. PhD thesis, StanfordUniversity, 1991.[32] R.T. Casley and R.F. Crew and J. Meseguer and V.R. Pratt. Temporalstructures. Mathematical Structures in Computer Science, 1(2):179{213, 1991.[33] C.-T. Chou. Mechanical veri�cation of distributed algorithms in higher-order logic.The Computer Journal, 38(2):152{162, 1995.[34] I. Christoff. Testing equivalences and fully abstract models for probabilistic processes.In Baeten and Klop [9], pages 126{140.[35] L. Christoff. Speci�cation and Veri�cation Models for Probabilistic Processes. PhDthesis, Uppsala University, 1993. (also available as Technical Report 93/37).[36] P. Darondeau and P. Degano. Causal trees. In G. Ausiello, M. Dezani-Ciancaglini,and S. Ronchi Della Rocca, editors, Automata, Languages and Programming, volume 372of Lecture Notes in Computer Science, pages 234{248. Springer-Verlag, 1989.[37] P. Darondeau and P. Degano. Event structures, causal trees, and re�nement. InB. Rovan, editor, Mathematical Foundations of Computer Science 1990, volume 452 ofLecture Notes in Computer Science, pages 239{245. Springer-Verlag, 1990.[38] M. Davio. Kronecker products and shu�e algebra. IEEE Transactions on Computers,C-30(2):116{125, 1981.[39] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Linear Time,Branching Time and Partial Order in Logics and Models for Concurrency, volume 354of Lecture Notes in Computer Science. Springer-Verlag, 1989.[40] J.W. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg, edi-tors. Real-time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.Springer-Verlag, 1992.[41] M.K. de Weger and H. Franken and C.A. Vissers. A development model fordistributed information systems. In Proceedings of the 1st Int. Distributed Conferenceon High Performance Networking for Teleteaching (IDC'95), 1995.[42] P. Degano and R. De Nicola and U. Montanari. On the consistency of `trulyconcurrent' operational and denotational semantics (extended abstract). In Third An-nual Symposium on Logic in Computer Science, pages 133{141. IEEE Computer SocietyPress, 1988.

282 Bibliography[43] P. Degano and R. Gorrieri and S. Vigna. On relating some models for concur-rency. In M.-C. Gaudel and J.-P. Jouannaud, editors, Theory and Practice of SoftwareTechnology, volume 668 of Lecture Notes in Computer Science, pages 15{30. Springer-Verlag, 1993. (revised version as Technical Report UBLCS-93-35, University of Bologna).[44] M. Diaz and R. Groz, editors. Formal Description Techniques V, volume C{10 ofIFIP Transactions. North-Holland, 1993.[45] M. Fang and C.J. Ho-Stuart and H.S.M. Zedan. Speci�cation of real-timeprobabilistic behaviour. In A. Danthine, G. Leduc, and P. Wolper, editors, ProtocolSpeci�cation, Testing, and Veri�cation, XIII, volume C{16 of IFIP Transactions, pages143{157. North-Holland, 1993.[46] L. Ferreira Pires. Architectural Notes: A Framework for Distributed Systems De-velopment. PhD thesis, University of Twente, 1994.[47] C. Fidge. A constraint-oriented real-time process calculus. In Diaz and Groz [44],pages 363{378.[48] A. Giacalone and C.-C. Jou and S.A. Smolka. Algebraic reasoning for prob-abilistic concurrent systems. In M. Broy and C.B. Jones, editors, Proceedings of theWorking Conference on Programming Concepts and Methods, pages 443{458. North-Holland, 1990.[49] R.J. van Glabbeek. The linear time { branching time spectrum. In Baeten and Klop[9], pages 278{297.[50] R.J. van Glabbeek. The linear time { branching time spectrum II. In Best [15], pages66 { 81.[51] R.J. van Glabbeek. What is branching time semantics and why to use it? Bull. Eur.Ass. Theoret. Comput. Sci., 53:190{198, 1994.[52] R.J. van Glabbeek and G.D. Plotkin. Con�guration structures (extended ab-stract). In D. Kozen, editor, Proceedings 10th Annual Symposium on Logic in ComputerScience. IEEE Computer Society Press, 1995.[53] R.J. van Glabbeek and S.A. Smolka and B. Steffen. Reactive, generative,and strati�ed models of probabilistic processes. Information and Computation, 121:59{80, 1995. (earlier version, together with C. Tofts, in Proceedings 5th Annual IEEESymposium on Logic in Computer Science, pages 130{141, IEEE Computer SocietyPress, 1990).[54] R.J. van Glabbeek and F.W. Vaandrager. Petri Net models for algebraic the-ories of concurrency. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors,PARLE | Parallel Architectures and Languages Europe, volume 259 of Lecture Notesin Computer Science, pages 224{242. Springer-Verlag, 1987.

Bibliography 283[55] P. Godefroid. Partial-Order Models for the Veri�cation of Concurrent Systems{AnApproach to the State-Explosion Problem. PhD thesis, Universit�e de Liege, 1994. (arevised version appeared as volume 1032 of Lecture Notes in Computer Science, 1996).[56] R. Gorrieri and M. Roccetti and E. Stancampiano. A theory of processes withdurational actions. Theoretical Computer Science, 140:73{94, 1995.[57] N. G�otz. Stochastische Prozessalgebren{Integration von Funktionalem Entwurf undLeistungsbewertung Verteilter Systeme. PhD thesis, Universit�at Erlangen-N�urnberg,1994. (in German).[58] N. G�otz and U. Herzog and M. Rettelbach. Multiprocessor and distributedsystem design: The integration of functional speci�cation and performance analysisusing stochastic process algebras. In L. Donatiello and R. Nelson, editors, PerformanceEvaluation of Computer and Communication Systems, volume 729 of Lecture Notes inComputer Science, pages 121{146. Springer-Verlag, 1993.[59] N. G�otz and U. Herzog and M. Rettelbach. TIPP { introduction and applicationto protocol performance analysis. In H. K�onig, editor, Formale Beschreibungstechnikenf�ur verteilte Systeme, FOKUS series. Saur Verlag, 1993.[60] J. Gunawardena. Causal automata. Theoretical Computer Science, 101:265{288,1992.[61] J. Gunawardena. Periodic behaviour in timed systems with fAND;ORg causality |part I: Systems of dimensions 1 and 2. Technical Report STAN-CS-93-1462, StanfordUniversity, 1993.[62] J. Gunawardena. A dynamic approach to timed behaviour. In B. Jonsson and J. Par-row, editors, Concur' 94: Concurrency Theory, volume 836 of Lecture Notes in ComputerScience, pages 178{193. Springer-Verlag, 1994.[63] C.A. Gunther and D.A. Scott. Semantic domains. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science (Vol. B: Formal Models), chapter 12, pages633{674. Elsevier Science Publishers B.V., 1990.[64] H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhDthesis, Uppsala University, 1991. (revised version appeared in the series Real-TimeSafety Critical Systems, vol. 1, Elsevier, 1994).[65] H. Hansson and B. Jonsson. A calculus for communicating systems with timeand probabilities. In Proceedings of 11th IEEE Real-Time Systems Symposium, pages278{287. IEEE Computer Society Press, 1990.[66] C. Harvey. Performance engineering as an integral part of system design. BritishTelecom Technology Journal, 4:142{147, 1986.[67] M. Hennessy and T. Regan. A temporal process algebra. Information and Compu-tation, 117:221{239, 1995.

284 Bibliography[68] H. Herrmanns and M. Rettelbach. Syntax, semantics, equivalences, and axiomsfor MTIPP. In Herzog and Rettelbach [69], pages 71{87.[69] U. Herzog and M. Rettelbach, editors. Proceedings of the 2nd Workshop onProcess Algebras and Performance Modelling, Erlangen, 1994. Universit�at Erlangen-N�urnberg.[70] D.P. Heyman and M.J. Sobel. Stochastic Models in Operations Research, volume 1- Stochastic Processes and Operating Characteristics. McGraw-Hill, New York, 1982.[71] J. Hillston. PEPA: Performance Enhanced Process Algebra. Technical Report CSR-24-93, University of Edinburgh, 1993.[72] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, Uni-versity of Edinburgh, 1994. (also available as Technical Report CST-107-94).[73] J. Hillston. The nature of synchronisation. In Herzog and Rettelbach [69], pages51{70.[74] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[75] P.W. Hoogers. Behavioural Aspects of Petri Nets. PhD thesis, Leiden University,1994.[76] P.W. Hoogers and H.C.M. Kleijn and P.S. Thiagarajan. An event structuresemantics for general Petri nets. Theoretical Computer Science, 153(1/2):129{170, 1996.(preliminary version appeared in E. Best, editor, Concur '93, LNCS 715, pages 462{476.Springer-Verlag, 1993).[77] W. Janssen. Layered Design of Parallel Systems. PhD thesis, University of Twente,1994.[78] W. Janssen and M. Poel and Q. Wu and J. Zwiers. Layering of real-timedistributed processes. In Langmaack et al. [92], pages 393{417.[79] A.S.A. Jeffrey and S. Schneider and F.W. Vaandrager. A comparison ofadditivity axioms in timed transition systems. Technical Report CS-R9366, Centre forMathematics and Computer Science, 1993.[80] K. Kant. Introduction to Computer System Performance Evaluation. Computer ScienceSeries. McGraw-Hill, Inc., 1992.[81] J.-P. Katoen. Causal behaviours and nets. In G. de Michelis and M. Diaz, editors,Application and Theory of Petri Nets 1995, volume 935 of Lecture Notes in ComputerScience, pages 258{277. Springer-Verlag, 1995.[82] J.-P. Katoen and R. Langerak and D. Latella. Modelling systems by prob-abilistic process algebra: An event structures approach. In Tenney et al. [140], pages253{268.

Bibliography 285[83] J.-P. Katoen and D. Latella and R. Langerak and E. Brinksma and T.Bolognesi. A consistent causality-based view on a timed process algebra. In A. Cor-nell and D. Ionescu, editors, Proceedings 3rd Amast Workshop on Real-Time SystemDevelopment, 1996.[84] R.M. Keller. Formal veri�cation of parallel programs. Communications of the ACM,19(7):371{384, 1976.[85] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, 1960.[86] A.S. Klusener. Models and axioms for a fragment of real time process algebra. PhDthesis, Eindhoven University of Technology, 1993.[87] H. Kobayashi. Modeling and Analysis: An Introduction to System Performance Eval-uation Methodology. Addison-Wesley, 1978.[88] L. Lamport. On interprocess communication, part I: Basic formalism. DistributedComputing, 1:77{85, 1986.[89] R. Langerak. Transformations and Semantics for LOTOS. PhD thesis, University ofTwente, 1992.[90] R. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. InDiaz and Groz [44], pages 331{346.[91] R. Langerak and D. Latella. A language of �nite probabilistic processes and itsinterleaving semantics. Memoranda Informatica 93-24, University of Twente, 1993.[92] H. Langmaack, W.-P. de Roever, and J. Vytopil, editors. Formal Techniquesin Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in ComputerScience. Springer-Verlag, 1994.[93] D. Latella. Recursive bundle event structures. Memoranda Informatica 93{27, Uni-versity of Twente, 1993.[94] L. Logrippo and M. Faci and M. Haj-Hussein. An introduction to LOTOS:learning by examples. Computer Networks and ISDN Systems, 23:325{342, 1992.[95] R. Loogen and U. Goltz. Modelling nondeterministic concurrent processes withevent structures. Fundamenta Informaticae, 14:39{74, 1991.[96] G. Lowe. Representing nondeterminism and probabilistic behaviour in reactive pro-cesses. Technical Report PRG-TR-12-93, Oxford University Computing Laboratory,1993.[97] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical ComputerScience, 138:315{352, 1995.

286 Bibliography[98] N.A. Lynch and F.W. Vaandrager. Action transducers and timed automata. For-mal Aspects of Computing, 1996. (preliminary version appeared in W.R. Cleaveland,editor, Concur'92, LNCS 630, pages 436{455. Springer-Verlag, 1992).[99] A. Maggiolo-Schettini and J. Winkowski. Towards an algebra for timed be-haviours. Theoretical Computer Science, 103:335{363, 1992.[100] Z. Manna and S. Ness and J. Vuillemin. Inductive methods for proving propertiesof programs. Communications of the ACM, 16(8):491{502, 1973.[101] A. Mazurkiewicz. Basic notions of trace theory. In de Bakker et al. [39], pages285{363.[102] C. Miguel and A. Fern�andez and L. Vidaller. LOTOS extended with proba-bilistic behaviours. Formal Aspects of Computing, 5:253{281, 1993.[103] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes inComputer Science. Springer-Verlag, 1980.[104] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[105] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baetenand Klop [9].[106] D.V.J. Murphy. Time, Causality, and Concurrency. PhD thesis, University of Surrey,1990. (also available as Technical Report CSC 90/R32, University of Glasgow).[107] D.V.J. Murphy. Timed process algebra, Petri nets, and event re�nement. In J.M.Morris and R.C. Shaw, editors, 4th Re�nement Workshop, Workshops in Computing,pages 456{478. Springer-Verlag, 1991.[108] D.V.J. Murphy. Time and duration in noninterleaving concurrency. FundamentaInformaticae, 19:403{416, 1993.[109] M.F. Neuts. Matrix-geometric Solutions in Stochastic Models{An Algorithmic Ap-proach. The Johns Hopkins University Press, 1981.[110] M.F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications.Marcel Dekker, Inc., 1989.[111] R. De Nicola and M. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 34:83{133, 1984.[112] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.In de Bakker et al. [40], pages 526{548.[113] X. Nicollin and J. Sifakis and S. Yovine. From ATP to timed graphs and hybridsystems. In de Bakker et al. [40], pages 549{572.

Bibliography 287[114] M. Nielsen and G.D. Plotkin and G. Winskel. Petri nets, event structures anddomains, part 1. Theoretical Computer Science, 13(1):85{108, 1981.[115] M. N�u~nez and D. de Frutos. Testing semantics for probabilistic LOTOS. In G. vonBochmann, R. Dssouli, and O. Ra�q, editors, Formal Description Techniques VIII, pages365{380, 1995.[116] D. Park. Concurrency and automata on in�nite sequences. In P. Deussen, editor,Proceedings 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages167{183. Springer-Verlag, 1981.[117] G.M. Pinna and A. Poign�e. The mathematics of event automata. In ProceedingsInt. Conf. on Category Theory and Computer Science, 1993.[118] G.M. Pinna and A. Poign�e. On the nature of events: another perspective in con-currency. Theoretical Computer Science, 138(2):425{454, 1995. (preliminary versionappeared in I.H. Havel and V. Koubek, editors, Mathematical Foundations of ComputerScience' 92, LNCS 629, pages 430{441. Springer-Verlag, 1992).[119] B. Plateau and J.-M. Fourneau. A methodology for solving Markov models ofparallel systems. Journal of Parallel and Distributed Computing, 12:370{387, 1991.[120] G.D. Plotkin. A structural approach to operational semantics. Technical ReportDAIMI FN-19, Computer Science Department, Aarhus University, 1981.[121] V.R. Pratt. Modeling concurrency with partial orders. International Journal ofParallel Programming, 15(1):33{71, 1986.[122] S. Purushothaman and P.A. Subrahmanyam. Reasoning about probabilisticbehaviour in concurrent systems. IEEE Transactions on Software Engineering, SE-13(6):740{745, 1987.[123] J. Quemada and D. de Frutos and A. Azcorra. TIC: A TImed Calculus. FormalAspects of Computing, 5:224{252, 1993.[124] G.M. Reed and A.W. Roscoe. A timed model for Communicating Sequential Pro-cesses. Theoretical Computer Science, 58:249{261, 1988. (preliminary version appearedin L. Kott, editor, Proceedings 13th Int. Colloquium on Automata, Languages and Pro-gramming (ICALP), LNCS 226, pages 314{323. Springer-Verlag, 1986).[125] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical ComputerScience. Springer-Verlag, 1985.[126] A. Rensink. Posets for con�gurations! In W.R. Cleaveland, editor, Concur '92, volume630 of Lecture Notes in Computer Science, pages 269{285. Springer-Verlag, 1992.[127] A. Rensink. Models and Methods for Action Re�nement. PhD thesis, University ofTwente, 1993.

288 Bibliography[128] M. Rettelbach. Stochastische Prozessalgebren mit zeitlosen Aktivit�aten und prob-abilistischen Verzweigungen. PhD thesis, Universit�at Erlangen-N�urnberg, 1996. (inGerman).[129] N. Rico and G. von Bochmann. Performance description and analysis for distributedsystems using a variant of LOTOS. In B. Jonsson et. al., editor, Protocol Speci�cation,Testing, and Veri�cation IX, pages 199{213. North-Holland, 1991.[130] S.M. Ross. Stochastic Processes. John Wiley & Sons, New York, 1983.[131] R.A. Sahner and K.S. Trivedi. Performance and reliability analysis using directedacyclic graphs. IEEE Transactions on Software Engineering, SE-13(10):1105{1114,1987.[132] D.A. Schmidt. Denotational Semantics: a methodology for language development.Allyn and Bacon, 1986.[133] S. Schneider. An operational semantics for timed CSP. Information and Computation,116:193{213, 1995.[134] R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-tations: in search of the holy grail. Distributed Computing, 7:149{174, 1994.[135] K. Seidel. Probabilistic communicating processes. Theoretical Computer Science,152:219{249, 1995.[136] R. Sharp. Principles of Protocol Design. Prentice-Hall, 1994.[137] M.W. Shields. Concurrent machines. The Computer Journal, 28(5):449{465, 1985.[138] R. Sisto and L. Ciminiera and A. Valenzano. Probabilistic characterization of al-gebraic protocol speci�cations. In Proceedings 12th Int. Conf. on Distributed ComputingSystems, pages 260{268. IEEE Computer Society Press, 1992.[139] R.D. Tennent. The denotational semantics of programming languages. Communica-tions of the ACM, 19:437{453, 1976.[140] R.L. Tenney, P.D. Amer, and M.�U. Uyar, editors. Formal Description Tech-niques VI, volume C{22 of IFIP Transactions. North-Holland, 1994.[141] C.M.N. Tofts. A synchronous calculus of relative frequency. In Baeten and Klop [9],pages 467{480.[142] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University ofTwente, 1992.[143] K.S. Trivedi and A. Bobbio and G. Ciardo and R. German and A. Puliafitoand M. Telek. Non-Markovian Petri nets. Performance Evaluation Review, 23:263{264, 1995.

Bibliography 289[144] F.W. Vaandrager. A simple de�nition for parallel composition of prime event struc-tures. Report CS-R8903, Centre for Mathematics and Computer Science, 1989.[145] M. van Sinderen and L. Ferreira Pires and C.A. Vissers and J.-P. Katoen.A design model for open distributed processing systems. Computer Networks and ISDNSystems, 27:1263{1285, 1995.[146] T. Verhoeff. A Theory of Delay-Insensitive Circuits. PhD thesis, Eindhoven Univer-sity of Technology, 1994.[147] C.A. Vissers. FDTs for open distributed systems, a retrospective and a prospectiveview. In L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Speci�cation, Testingand Veri�cation X, pages 341{362. North-Holland, 1990.[148] C.A. Vissers and G. Scollo and M. van Sinderen and E. Brinksma. On theuse of speci�cation styles in the design of distributed systems. Theoretical ComputerScience, 89(1):179{206, 1991.[149] Y. Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop [9], pages502{520.[150] Y. Wang. Algebraic reasoning for real-time probabilistic processes with uncertaininformation. In Langmaack et al. [92], pages 680{693.[151] H. Wehrheim. Parametric action re�nement. In E.-R. Olderog, editor, ProgrammingConcepts, Methods, and Calculi, volume A{56 of IFIP Transactions, pages 247{266.North-Holland, 1994.[152] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980. (alsoavailable as Technical Report CST-10-80).[153] G. Winskel. Event structure semantics for CCS and related languages. In M. Nielsenand E.M. Schmidt, editors, Automata, Languages and Programming, volume 140 ofLecture Notes in Computer Science, pages 561{576. Springer-Verlag, 1982.[154] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,Petri Nets: Applications and Relationships to Other Models of Concurrency, volume 255of Lecture Notes in Computer Science, pages 325{392. Springer-Verlag, 1987.[155] G. Winskel. An introduction to event structures. In de Bakker et al. [39], pages364{397.[156] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D.M. Gab-bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4:Semantic Modelling, pages 2{148. Oxford University Press, 1995.[157] A. Yakovlev and M. Kishinevsky and A. Kondratyev and L. Lavagno. Onthe models for asynchronous circuit behaviour with OR causality. Technical Report463, University of Newcastle upon Tyne, 1993. (extended abstract in R. Valette, editor,

290 BibliographyApplication and Theory of Petri Nets 1994, LNCS 851, pages 568{587. Springer-Verlag,1994).[158] J.J. �Zic. Time-constrained bu�er speci�cations in CSP+T and timed CSP. ACMTransactions on Programming Languages and Systems, 16(6):1661{1674, 1994.[159] J. Zwiers and W. Janssen. Partial order based design of concurrent systems. InW.-P. de Roever J.W. de Bakker and G. Rozenberg, editors, A decade of concurrency{reections and perspectives, volume 803 of Lecture Notes in Computer Science, pages622{684. Springer-Verlag, 1994.

Glossary of notationGeneral notations? empty set, empty function, empty relationX �! Y total function from X to YX �!p Y partial function from X to Ydom(f) domain of function fSa S [f a gSa;b S [f a; b g=iso isomorphism between labelled transition systems�te testing equivalence� weak bisimulation equivalence� con�guration equivalence, strong bisimulation equivalence" empty trace, empty lposet, is de�ned by[x]R equivalence class of x under relation R� projection� function compositionP(S) powerset of set SR� reexive and transitive closure of relation RS� set of �nite sequences of elements in set S[[]] semantic mappingS1 onG S2 set of synchronized (on G) timed events in S1 and S2ClassesAct universe of observable actionsA universe of actionsDF class of distribution functionsEBES class of extended bundle event structuresBES class of bundle event structuresDES class of dual event structuresEDES class of extended dual event structuresEBEST class of timed event structuresEBESR class of real-time event structuresEBESS class of stochastic event structuresEBESU class of urgent event structuresEBESP class of probabilistic event structures291

292 Glossary of notationEU universe of eventsLTS class of labelled transition systemsIR set of real numbersTime time domainBehaviour expressions0 inactionp successful terminationa ; B action-pre�x(T) a ; B timed action-pre�x(F) a ; B stochastic action-pre�xB +B choiceB +p B probabilistic choiceB >> B enablingB [> B disruptB jjGB parallel compositionB jjB full synchronizationB jjjB no synchronizationB nG hidingB[H] relabellingB B B timeoutB I B watchdogUU(B) urgency operatort[B] time-shift of behaviour B with t time unitstfB g behaviour B that can only perform events later than t� silent action� successful termination actionAct(B) set of observable actions in behaviour BH relabelling function from Act�;� �! Act�;�G set of observable actions, G � ActEvent structuresinit(E) initial events of event structure Eexit(E) termination events of event structure EE(E) set of events of event structure ET (E) set of event traces of event structure EC(E) set of con�gurations of event structure EL(E) set of lposets of event structure Epos(�) set of events with a nonzero delay in �

Glossary of notation 293# symmetric conict relation asymmetric conict relation, time passing transition relationX 7! e bundle relation� ow relation` enabling relation
 interleaving relation�C precedence relation on con�guration CX t7! e timed bundle relationl event labelling functionD event delay functionT bundle delay functionU urgency predicate� probability function, limiting distribution of DTMC and CTMCE [�] event structure E after event trace �Es set of synchronizing eventsEf set of non-synchronizing eventsL� intensional characterization of lposetsL� operational characterization of lposetsE partial order on event structuresop operator op on behaviours interpreted on event structuresEvent traces� set of elements in ��i pre�x of � upto the i-th element�T timed con�guration equivalence<� precedence relation on trace �j � j the number of elements in �[�] set of events in sequence � of timed events4 faster than relation on timed traces� nG � with actions in G hidden�[H] � relabelled by Ht[�] sequence � of timed events shifted by t time unitsmx(�) maximal timing of event in �Time and stochastic related notionsT set of time instants T � Time1[x; y] interval f t j x 6 t 6 y g(x; y] interval f t j x < t 6 y g(x; y) interval f t j x < t < y g

294 Glossary of notation[x; y) interval f t j x 6 t < y gx	 y max(x�y; 0)PrfA g probability of event AFU distribution function of stochastic variable UE[U] expectation of stochastic variable U~ rate composition operatoru identity of product on distribution functionsP transition probability matrixQ generator matrix(�;T) representation of phase-type distribution� tensor sum
 tensor product� limiting distribution of DTSMCri average residence time in state iMiscellaneous�! event transition relation) observable action transition relation,probabilistic transition relation�!! timed event transition relation�!� combined time passing and event transition relationFi di least �xed point of chain d1 E d2 E : : :? least element of partial order

IndexAACP, 5, 113, 123, 141, 142, 218, 221action persistency, 111, 129, 169action-pre�x (;), 7actions, 11aperiodic, 216, 271apparent rate, 181asymmetric conict (), 12, 27, 44, 87Bbackwards compatibility, 6, 83, 204, 243branching-time, 15bundle, 25bundle delay function, 67, 145bundle event structure, 25bundle redundancy, 32, 57bundle relation (7!), 25, 27, 44bundle set, 25Cc.p.o., 275causal ambiguity, 23causal ow relation, 60causal trees, 170causality relation, 12, 20CCS, 5, 90, 112, 170, 218, 219chain, 226, 275choice (+), 7, 201, 219cluster, 195, 205combined time and action-transitions, 90complete metric space, 264complete partial order, 275compositionality, 6con�guration, 13, 21, 23, 24, 26, 28, 44con�guration equivalence, 29conict backpropagation, 118conict relation (#), 12, 20, 22, 24, 25conjunctive causality, 41conservative extension, 6, 86, 97continuous function, 226, 276continuous on events, 226, 231continuous-time, 270continuous-time Markov chain, 186, 271Coxian distribution, 187CSP, 5, 19, 112, 218, 219CTMC, 271

cyclic bundle, 32, 57D�, 6delay function, 78, 152discrete-time, 270discrete-time Markov chain, 213, 271discrete-time semi-Markov chain, 213disjunctive causality, 41, 43, 87disrupt ([>), 7, 27distribution function, 269domain, 276domain theory, 225, 275DTMC, 213, 271DTSMC, 213dual event structure, 44event trace, 44family of lposets, 45remainder, 52transformation rules, 54Eembedded Markov chain, 213enabling (>>), 7enabling relation (`), 22ergodic Markov chain, 271Erlang distribution, 187, 191event delay function, 67, 145event structures, 11event trace, 23, 24, 26, 28, 44event-based operational semantics, 38, 91, 103,125, 167, 179, 208, 241, 252, 263events, 12expectation, 187, 270exponential distribution, 175, 187expressivity of event structures, 26, 30, 57extended bundle event structure, 12, 27, 227con�guration, 28event trace, 28family of lposets, 28partial order, 227remainder, 30transformation rules, 31extended dual event structure, 62remainder, 63295

296 IndexFfamily of lposets, 14, 28, 45, 73, 118, 147pre�x, 52�nite representation, 215�nite variability, 240�xed point, 226ow event structure, 24, 90ow relation (�), 24Ggenerative probabilistic model, 220generator matrix, 186, 273guarded process de�nition, 252Hhiding (n), 7, 142hyper-exponential distribution, 187hypo-exponential distribution, 187Iill-timed traces, 69, 113, 147immediate action, 179impossible event, 25, 32, 55inaction (0), 7independence relation, 12in�nite traces, 242initial events, 32intensional characterization of lposets, 29, 46interleaving, 2interleaving relation (
), 62, 87interval event structure, 170, 264isomorphism (=iso), 10Jjoint distribution function, 183, 270Ll.u.b., 226, 275labelled transition system, 8, 96, 174, 194least �xed point, 226, 277least upper bound, 226, 229, 234, 244, 259, 260,275limiting distribution, 213, 272, 273linear-time, 15LOTOS, 6, 19, 89, 112, 123, 141, 142, 218, 220,221lposet, 13family of, see family of lposetspre�x, 14

lposet equivalence, 30MMarkov chain, 271Markov process, 270maximal progress, 66, 142, 216maximum of stochastic variables, 177memoryless property, 174, 175, 213, 271minimal enablings, 49monotonic function, 226, 276MTIPP, 181, 190Nnon-synchronizing events, 36nondeterminism, 202noninterleaving, 2noninterleaving semantics, 32, 79, 124, 153,178, 184, 203Ooccurrence identi�ers, 39operational characterization of lposets, 29PPAGS, 184noninterleaving semantics of, 184syntax, 184PA, 5event-based operational semantics, 38�xed point semantics, 231interleaving semantics, 7noninterleaving semantics, 32syntax, 6PAP , 200event-based operational semantics, 208, 263�xed point semantics, 263noninterleaving semantics, 203syntax, 202PAS, 177event-based operational semantics, 179noninterleaving semantics, 178syntax, 177PAT , 78event-based operational semantics, 91, 103,241�xed point semantics, 239noninterleaving semantics, 79syntax, 78PAR, 151

Index 297event-based operational semantics, 167noninterleaving semantics, 153syntax, 152PAU , 123event-based operational semantics, 125, 252�xed point semantics, 251noninterleaving semantics, 124syntax, 123parallel composition (jj), 7, 219partial order, 275passage of time, 86, 90, 103, 113passive action, 179PEPA, 181, 190performance analysis, 3, 212periodic, 271periodic Markov chain, 272persistent trace, 249PH-distribution, 186, 187phase-type distribution, 186, 187pointed c.p.o., 226, 276pointed complete partial order, 276pomsets, 2, 14, 170poset, 275positive recurrence, 271prime algebraic coherent partial order, 21prime event structure, 20, 39, 90, 112probabilistic choice (+p), 194, 201, 219probabilistic event, 193probabilistic event structure, 196, 259event trace, 197partial order, 259remainder, 197probabilistic event transition system, 208probabilistic process algebra, 200probabilistic remainder, 197probabilistic transition system, 211probability density function, 177, 187, 269probability function, 196process algebra, 5process instantiation, 7, 225, 230Rrandom event trace, 183rate, 175rate function, 176reactive probabilistic model, 220reactive systems, 1real-time ACP, 113, 123, 141

real-time event structure, 145, 257family of lposets, 147partial order, 257remainder, 148timed event trace, 146transformation rules, 150real-time process algebra, 151real-time remainder, 148regular Markov chain, 213, 216, 272relabelling ([]), 7remainder, 30, 52, 63residence time, 213, 271SScott domain, 276self-conicting event, 24, 25, 55separate time and action-transitions, 90, 103,126silent action (�), 6simple stochastic event structure, 176event trace, 176smoothening, 51stability constraint, 23, 25, 27, 42stable event structure, 22start event, 67stationary distribution, 272statistical independence, 174, 178, 188, 195,270stochastic choice, 199stochastic event structure, 182, 258event trace, 183partial order, 258stochastic event trace, 176stochastic event transition system, 180stochastic Petri nets, 191stochastic process algebra, 177, 184stochastic variable, 173, 269strati�ed probabilistic model, 220strong bisimulation equivalence (�), 10, 39,103, 141, 243strong timeout, 116structured operational semantics, 7, 38, 91, 103,125, 167, 179, 208, 241, 252, 263successful termination (p), 7successful termination events, 34synchronization events, 36synchronous CCS, 218

298 IndexTtensor product (
), 188tensor sum (�), 188testing equivalence (�te), 11, 202, 211theoretical CSP, 39, 90, 112TIC, 113time additivity, 111, 129, 169time and probability, 211time determinism, 110, 129, 169time trajectory condition, 111time-homogeneous, 187, 271time-shift (t[]), 93timed action-pre�x, 78, 152timed con�guration, 117timed con�guration equivalence, 69timed CSP, 112, 142timed event structure, 67, 212, 232family of lposets, 73partial order, 233remainder, 74timed event trace, 69transformation rules, 77timed event trace, 69, 117, 146timed event trace semantics, 99, 107, 137timed event transition system, 90, 95, 102, 141timed process algebra, 78timed remainder, 74timelock, 141, 171timeout, 116timeout operator (B), 152, 257trace equivalence, 11transformation rules, 31, 54, 77, 150transition probability matrix, 213, 271Uurgency, 117, 123, 124urgency in process algebras, 141urgency operator (UU ()), 123urgent actions, 124urgent event, 115urgent event structure, 116, 212, 243family of lposets, 118partial order, 244remainder, 120timed event trace, 117urgent remainder, 120

Vvariance, 187, 270Wwatchdog operator (I), 152, 257weak bisimulation equivalence (�), 10, 39, 112weak timeout, 116weakly guarded, 263weakly guarded process de�nition, 252Winskel's switch, 45, 59ZZeno behaviours, 240

SamenvattingHet speci�ceren, ontwerpen, en analyseren van functionele aspekten van (gedistribueerde)systemen is een belangrijke toepassing van formele methoden. Recentelijk is er meer be-langstelling ontstaan voor het bestuderen van kwantitatieve aspekten van dergelijke systemengebaseerd op formele methoden. Diverse uitbreidingen van formele methoden zijn bekend uitde literatuur waarbij het optreden van een aktie een bepaalde kans kan worden toegekenden/of waarbij het tijdstip van optreden van een aktie kan worden aangegeven.Een belangrijke reden voor het verrijken van formele methoden met kwantitatieve informatieis het mogelijk maken van de analyse van prestatiekenmerken van een systeemontwerp. Hier-door kan de e�ci�entie van verschillende ontwerpalternatieven worden bepaald zodat al in eenvroeg stadium van het ontwerpproces kan worden afgezien van een bepaald ontwerp, omdatdeze in onvoldoende mate aan de gewenste prestatiekenmerken voldoet. Dit voorkomt kost-baar herontwerp in latere ontwerpfasen. Een formele speci�catie die kwantitatieve informatiebevat is ook bruikbaar voor het ontwikkelen van prestatiemodellen, zoals Markov ketens enwachtrijsystemen, op een begrijpbare en e�ectieve wijze vanuit systeemspeci�caties.De formele methoden waarvan kwantitatieve uitbreidingen bekend zijn, zijn veelal gebaseerdop de interleaving (of: verweving) van causaal onafhankelijke akties. Interleaving modellenabstraheren van het feit dat systemen feitelijk bestaan uit een aantal (deels) onafhankelijkedeelsystemen. De globale toestand van het systeem wordt als uitgangspunt genomen, zonderdaarbij het distributie-aspekt te vertegenwoordigen. Het systeemgedrag wordt gemodelleerddoor het beschouwen van totaal geordende sequenties van akties waarin akties van het eneonafhankelijke deelsysteem worden verweven met akties van andere deelsystemen.Dit proefschrift behandelt kwantitatieve en kwalitatieve uitbreidingen van eventstrukturen,een belangrijke representant van parti�ele order, of zogenaamde noninterleaving modellen voorconcurrente systemen. Uitbreidingen die aan de orde komen zijn bijvoorbeeld de behandel-ing van tijdsaspekten, zowel in de normale als stochastische zin, urgentie van optreden, enprobabiliteitsaspekten. Tot op heden heeft de behandeling van deze noties in de kontekst vannoninterleaving modellen nauwelijks de aandacht gekregen.Noninterleaving modellen abstraheren niet van het feit dat systemen bestaan uit een aantal(deels) onafhankelijke deelsystemen en het begrip `globale toestand' speelt geen voorname rolin deze modellen. Het systeemgedrag wordt gemodelleerd door het beschouwen van geordendesequenties van akties die niet totaal geordend behoeven te zijn, maar partieel geordend. Decausale afhankelijkheden worden weergegeven door deze parti�ele ordening.Interleaving en noninterleaving modellen zijn complementair ten op zichte van elkaar in hetsysteemontwerpproces. Hoewel we in dit proefschrift voor het merendeel noninterleavingmodellen beschouwen, zullen we ook de ingredi�enten presenteren voor het verkrijgen vanovereenkomende interleaving modellen. Hierdoor kunnen beide type modellen op een co-herente wijze worden toegepast en is een vergelijking mogelijk tussen onze modellen en die uitde literatuur. 299

300 SamenvattingUitgangspunten voor dit proefschrift zijn� extended bundle event structures, een aangepaste versie van de traditionele eventstruk-turen van Winskel die tegemoet komt aan de speci�eke eisen van synchronisatie metmeerdere partijen en disruptie, en� procesalgebra's, abstracte beschrijvingsformalismen voor gedistribueerde systemen diebestaan uit een aantal krachtige operatoren om systeemspeci�caties samen te stellen.Extended bundle event structures bestaan uit gelabelde events die gebeurtenissen van ak-ties (aangegeven door het label) modelleren, een bundle relatie die causale afhankelijkhedentussen events aangeeft, en een (asymmetrische) conict relatie die uitsluitingen tussen eventsaangeeft. Eventstrukturen, in het bijzonder extended bundle event structures, worden behan-deld in Hoofdstuk 2.De bundle relatie brengt een verzameling events, de bundle verzameling, in verband met eenevent. De interpretatie is dat �e�en event in de bundle verzameling moet zijn opgetreden om hetoptreden van het event waarmee het in relatie staat te doen optreden (dat is, te veroorzaken).Alle events in een bundle verzameling staan onderling met elkaar in conict zodat slechts �e�enevent in zo'n verzameling kan optreden. Wanneer deze eis wordt losgelaten kunnen meerdereevents in een bundleverzameling optreden en wordt de uitdrukkingskracht vergroot, dat wilzeggen, zogenaamde disjunktieve causaliteit wordt ondersteund. In Hoofdstuk 3 wordt onder-zocht hoe gelabelde parti�ele ordeningen (lposets), die in dit proefschrift worden gebruikt alsonderliggend semantisch model van eventstrukturen, kunnen worden gegenereerd als deze eisvervalt. In dit hoofdstuk worden ook een aantal bruikbare transformatieregels bepaald voorhet resulterende model die gelijkheid in termen van lposets bewaren, en beschouwd verder nogeen symmetrische irreexieve interleaving relatie tussen events.Eventstrukturen beschrijven systeemgedrag met behulp van causale ordeningen (bundles)tussen events en hun onderlinge uitsluitingen (conicten). Om het beschrijven van tijdsaf-hankelijke systemen, zoals communicatieprotocollen, mogelijk te maken beschouwen we hetconcept tijd. Hoofdstukken 4, 6 en 7 behandelen uitvoerig de toevoeging van tijd aan extendedbundle event structures. Real-time event structures kennen een verzameling tijdstippen toeaan bundles, die de relatieve tijdseisen tussen causaal afhankelijke events weergeven, en aanevents, om absolute tijdseisen weer te kunnen geven (Hoofdstukken 4 en 7). Urgente eventstructures staan alleen de speci�catie van minimale tijdseisen toe, maar bevatten urgenteevents, events die moeten optreden zodra ze mogelijk zijn (Hoofdstuk 6). Timeouts zijn eentypisch fenomeen die door urgent events kunnen worden gemodelleerd. De veralgemeniseringrichting de notie van tijd van een meer stochastische aard wordt behandeld in Hoofdstuk 8.Stochastische event structures kennen verdelingsfunkties toe aan events en bundles, in plaatsvan verzamelingen tijdstippen. Uiteindelijk behandelen we in Hoofdstuk 9 de toevoeging vanprobabiliteit aan extended bundle event structures. Een probabiliteit kan worden toegekendaan een event die aangeeft wat de kans is dat dat event daadwerkelijk optreedt gegeven dathet kan optreden.Eventstrukturen zijn zeer geschikt voor het geven van een noninterleaving semantiek vanprocesalgebra's op een compositionele wijze. Dit houdt in dat de interpretatie van een samen-gestelde procesalgebraische expressie gede�nieerd wordt als een funktie van de interpretaties

Samenvatting 301van haar componenten. In dit proefschrift onderzoeken we of de kwantitatieve uitbreidingenvan eventstrukturen kunnen worden gebruikt om een noninterleaving semantiek te geven vanprocesalgebra's met kwantitatieve informatie. Hiertoe gebruiken we de procesalgebra PA alsbasis, in feite de internationaal gestandaardiseerde procesalgebra LOTOS met een wat be-knoptere syntax. De gehanteerde principes zijn echter ook bruikbaar voor gerelateerde proce-salgebra's zoals CCS van Milner en CSP van Hoare. Voor iedere kwantitatieve variant vanPA hebben we geprobeerd de noninterleaving semantiek van PA zoveel mogelijk te behouden,zodat maximale compatibiliteit wordt gegarandeerd.De kwantitatieve uitbreidingen van procesalgebra's die we beschouwen zijn real-time variantendie timeout, watchdog en urgency operatoren bevatten, stochastische varianten waarin het tijd-stip van voorkomen van akties wordt bepaald door exponenti�ele, of de algemenere en praktischmeer bruikbare, fase type verdelingsfunkties, en een probabilistische variant die een (interne)probabilistische keuze operator bevat. Voor iedere variant wordt een denotationele semantiekgegeven in termen van de overeenkomende kwantitatieve uitbreiding van eventstrukturen. Ditwordt gedaan op een modulaire wijze zodat combinaties (zoals tijd en probabiliteit) op eeneenvoudige wijze kunnen worden verkregen.Bovendien wordt voor de meeste genoemde procesalgebra's een operationele semantiek gepre-senteerd die gebaseerd is op events, dus voorkomens van akties, in plaats van de akties zelf(zoals te doen gebruikelijk in operationele semantiek). Zo'n operationele semantiek schepteen basis voor de vergelijking van ons werk met bestaande kwantitatieve uitbreidingen vaninterleaving modellen. De operationele regels voor het real-time geval zijn een nieuwe (enminimale) uitbreiding van het ongetimede geval; voor het urgente geval verkrijgen we regels diesterk overeenkomen met een voorstel van Bolognesi, Lucidi en Trigila; voor het stochastischegeval met exponenti�ele verdelingen vormen de verkregen regels een basis voor verschillendebestaande stochastische procesalgebra's en voor het probabilistische geval verkrijgen we regelsdie gerelateerd (doch iets eenvoudiger) zijn aan het werk van Hansson en Jonsson. De relatietussen de verschillende operationele semantieken en denotationele semantiek wordt uitgebreidonderzocht.Hoofdstuk 10 behandelt recursie in alle varianten van procesalgebra's uit dit proefschrift.Gebruik makende van standaard domeintheorie wordt de denotationele semantiek van recursiefgede�nieerde processen voor de kwantitatieve uitbreidingen van PA bepaald. Ook wordt deoperationele semantiek gebaseerd op events uitgebreid met recursie. Aangetoond wordt datde relatie tussen denotationele en operationele semantiek ook geldt voor het recursieve geval.Hoofdstuk 11 bevat een terugkijkende blik op het werk van dit proefschrift, vat de belangrijkstetechnische resultaten samen, en presenteert een aantal algemene conclusies.

302 Samenvatting

Curriculum Vitae6 october 1964 geboren te Krimpen aan den IJssel1977 { 1983 Athenaeum BCarolus Clusius CollegeZwolleseptember 1983 { december 1987 studie InformaticaUniversiteit Twentemet lof afgestudeerd bij devakgroep Systeem Programmatuur en Apparatuurfebruari 1988 { februari 1990 tweede-fase opleidingInformatie- en CommunicatietechniekTechnische Universiteit Eindhovenafdeling Wiskunde & Informaticavakgroep Parallellisme en Architectuurfebruari 1990 { april 1992 wetenschappelijk medewerkerPhilips Natuurkundig Laboratoriumafdeling Information and Software Technologyapril 1992 { april 1996 medewerker onderzoekUniversiteit Twentefaculteit Informaticavakgroep Tele-Informatica en Open Systemen

303

